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Abstract

Background: c-radiation is an effective treatment for cancer. There is evidence that radiotherapy supports tumor-specific
immunity. It was described that irradiation induces de novo protein synthesis and enhances antigen presentation, we
therefore investigated whether c-radiation results in increased expression of cancer-testis (CT) antigens and MHC-I, thus
allowing efficient immunological control. This is relevant because the expression of CT-antigens and MHC-I on tumor cells is
often heterogeneous. We found that the changes induced by c-radiation promote the immunological recognition of the
tumor, which is illustrated by the increased infiltration by lymphocytes after radiotherapy.

Methods/Findings: We compared the expression of CT-antigens and MHC-I in various cancer cell lines and fresh biopsies
before and after in vitro irradiation (20 Gy). Furthermore, we compared paired biopsies that were taken before and after
radiotherapy from sarcoma patients. To investigate whether the changed expression of CT-antigens and MHC-I is specific for
c-radiation or is part of a generalized stress response, we analyzed the effect of hypoxia, hyperthermia and genotoxic stress
on the expression of CT-antigens and MHC-I. In vitro irradiation of cancer cell lines and of fresh tumor biopsies induced a
higher or de novo expression of different CT-antigens and a higher expression of MHC-I in a time- and dose-dependent
fashion. Importantly, we show that irradiation of cancer cells enhances their recognition by tumor-specific CD8+ T cells. The
analysis of paired biopsies taken from a cohort of sarcoma patients before and after radiotherapy confirmed our findings
and, in addition showed that irradiation resulted in higher infiltration by lymphocytes. Other forms of stress did not have an
impact on the expression of CT-antigens or MHC-I.

Conclusions: Our findings suggest that c-radiation promotes the immunological recognition of the tumor. We therefore
propose that combining radiotherapy with treatments that support tumor specific immunity may result in increased
therapeutic efficacy.
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Introduction

c-radiation or radiotherapy is one of the most widely used

treatments for cancer [1]. Irradiation induces death of tumor cells

[2,3], but there is accumulating evidence that adaptive immunity

significantly contributes to the efficacy of radiotherapy [4]. For

example, irradiated tumors in patients and in mice are more often

infiltrated by leukocytes than the unirradiated tumors [5,6,7] and

very recent studies in preclinical models showed that the efficacy of

radiotherapy depends on the presence of CD8+ T cells [8]. The

fact that tumors are targeted and controlled by CD8+ T cells is

suggested by the increased tumor incidence in immunosuppressed

patients [9,10,11] and by the fact that tumor-specific immunity

can be detected in cancer patients [12,13,14,15]. As the

recognition of tumor cells by CD8+ T cells depends on the

presentation of tumor-associated antigens (TAAs) in the context of

MHC-I molecules, the often-heterogeneous expression of TAA

and/or MHC-I within a tumor negatively impacts on the efficacy

of tumor-specific immunity. In the present study we asked the

specific question whether irradiation induces or up-regulates the

expression of a prominent group of TAAs, the so-called CT-

antigens. The CT-antigens form an extended family of antigens
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that are expressed in a large variety of malignancies but are absent

from healthy tissue except for the testis and placenta [16,17].

Cancer patients often develop spontaneous immune responses

towards CT-antigens, which illustrates their immunogenicity [18].

Due to their immunogenicity and restricted pattern of expression,

CT-antigens are considered promising targets for immunotherapy

in cancer patients [19,20]. We observed that irradiation induced a

higher or a de novo expression of different CT-antigens as well as an

up-regulation of MHC-I expression in multiple cancer cell lines

and in fresh, ex vivo irradiated tumor biopsies. Importantly,

comparison of paired tumor sections obtained from sarcoma

patients before and after irradiation showed up-regulated or de novo

expression of MHC-I and CT-antigens and the concomitant

increase of infiltrating CD8+ T cells, suggesting that irradiation

mobilizes local, tumor-specific immune responses. Furthermore,

our findings indicate that a combination of radiotherapy and

active immunization with relevant CT-antigens may be a

treatment modality with higher efficacy compared to either

therapy alone.

Materials and Methods

Ethics Statement
The ethics committee "Ethical committee of the canton of

Zurich" specifically approved this study (Study No: EK-1017).

Cells
Cell lines. MDA-MB-469, MDA-MB-231 and MCF 7

(breast cancer cell lines), MCF 10A (normal breast cell line,

immortalized, non-transformed), Saos, LM5, 143B, HOS,

HU09, and M132 (osteosarcoma cell lines), A549, H460,

Calu1 and Calu3 (lung cancer cell lines), SK-MEL-37

(melanoma cell line) and PC3 and DU145 (prostate cancer cell

lines) were obtained from American Type Culture Collection

(Manassas, VA). The osteosarcoma cell lines were a gift from Dr.

Bruno Fuchs (Department of Orthopedics, University Clinic

Balgrist, Zurich). All cell lines and biopsies were cultured in

RPMI 1640 medium (Invitrogen, Carlsbad, CA) containing 10%

fetal bovine serum (FBS; Sigma-Aldrich Corp. St. Louis, MO),

L-glutamine and antibiotics. PC3 and DU145 were cultured in

DMEM medium (Invitrogen), containing 10% FBS, L-glutamine

and antibiotics.

Primary human cells. Human foreskin keratinocytes were

obtained as a gift from Dr. Onur Boyman (Department of

Dermatology, University Hospital Zurich) and were cultured in

Keratinocyte serum free medium (K-SFM; Invitrogen),

supplements (EGF Human Recombinant and Bovine Pituitary

Extract; Invitrogen), L-glutamine and antibiotics as described [21].

Normal human dermal fibroblasts (NHDF) were obtained from

PromoCell GmbH (Heidelberg, Germany). Human microvascular

endothelial cells (HMEC-1) were obtained as a gift from Dr.

Therese Resink (Department of Biomedicine, University Hospital

Basel) and were cultured in Dulbecco’s modified Eagle’s medium

(DMEM; Invitrogen) supplemented with 5% FBS (Sigma-Aldrich)

and antibiotics. Human lung fibroblasts (MRC-5) were obtained as

a gift from Dr. Giancarlo Marra (IMCR, Zurich) and were

originally obtained from Coriell Cell Repositories (Camden, NJ)

and cultured in MEM medium (Invitrogen), containing 15% FBS,

L-glutamine and antibiotics. ZT-821 cells (primary renal cells)

were established in our lab from a single cell suspension of healthy

kidney tissue. The NHDF and ZT-821 cells were cultured in

RPMI 1640 medium (Invitrogen) containing 10% FBS (Sigma-

Aldrich), L-glutamine and antibiotics.

Treatment of cells
Ionizing radiation. Cells and fresh tumour biopsies were

exposed to c-radiation from a 60Co source. The doses of

irradiation used are described in each experiment.
Hyperthermia. Cells were incubated at 42uC for 1 h or 5 h

and cultured subsequently for 72 h at 37uC. The treated and non-

treated cells were then processed for analysis by RT-qPCR.
Hypoxia. Cells were incubated under hypoxic conditions (1%

O2 vol/vol) in a hypoxic workstation (InVivoO2-400, Ruskinn

Technology, Leeds, UK) for different time points (8 h, 48 h or

72 h). The treated and non-treated cells were then processed for

analysis by RT-qPCR.
Genotoxic stress. Cells were treated at 37uC with 1 mg/mL

cisplatin (Sigma-Aldrich Corp. St. Louis, MO) for 24 h or with

15 mM etoposide (Sigma-Aldrich) for 1 h or with 150 mM

bleomycin (Sigma-Aldrich) for 1 h. This time point was

considered as T0. At the end of the treatment, the medium was

replaced with fresh culture medium without the drug. The cells

were then cultured for additional 72 h at 37uC. Control cultures

were treated under similar experimental conditions in the absence

of the drug.
Small-molecule protein kinase inhibitors. A stock

concentration of 10 mM in 100 % dimethyl sulfoxide (DMSO)

of specific inhibitors for ataxia telangiectasia mutated (ATM), KU

55933 (Tocris bioscience, Ellisville, MO) and DNA-dependent

protein kinase catalytic subunit (DNA-PKcs), NU7441 (Tocris

bioscience) were diluted to a working concentration of 10 mM in

1% DMSO. The inhibitors were added 1 h before irradiation, and

were left in the culture throughout the experiment. Control

cultures were treated under similar experimental conditions in the

absence of the drug with 1% DMSO.

Tumor biopsies
Biopsies were obtained from the University Hospital Zurich. All

patients underwent surgery as part of their standard treatment and

signed the informed consent. The ethics committee "Ethical

committee of the canton of Zurich" specifically approved this

study (Study No: EK-1017). Immediately upon resection, biopsies

were cut into multiple pieces of 2-4 mm3. The pieces were

randomized in two batches and put into culture medium. One

batch was irradiated with a single dose of 20 Gy, whereas the other

batch served as control. The tumor pieces were cultured for 72 h

following ex vivo radiation and the gene expression was determined

by RT-qPCR analysis. Paired biopsies from sarcoma before and

after irradiation were collected for another purpose and therefore

the time points of collection after radiotherapy varied between 2-6

weeks. The tumors were irradiated in vivo with a linear accelerator

and received a dose of 50-64 Gy.

RNA extraction and preparation of cDNA
Total RNA was extracted using the RNeasy Mini Kit (Qiagen,

Valencia, CA) and was subsequently digested with DNAse I

(Invitrogen). The concentration and purity was evaluated using the

NanoDrop ND-1000 spectrophotometer (NanoDrop Technolo-

gies, Wilmington, DE). 150 ng of RNA was reverse transcribed

using the high-capacity cDNA Reverse Transcription Kit (Applied

Biosciences, Foster City, CA). The cDNA was either used

immediately for RT-qPCR reactions or stored at -20uC until

use. All kits were used according to the manufacturer’s

instructions.

RT-qPCR
The expression of CT-antigens and MHC-I was analyzed using

TaqMan gene analysis primers and TaqMan 1x universal master
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mix (Applied Biosystems) on a RotoGene cycler (Corbett

Research, Sydney, NSW). The reaction mixture (10 mL) consisted

of 1 mL cDNA, 3.5 mL water, 0.5 mL primer and 5 mL TaqMan

1x universal master mix. The following cycle conditions were used:

2 min 50uC, 10 min 95uC, 45 cycles of 15 s at 95uC, 1 min 60uC.

The change in expression levels of CT-antigens and MHC-I is

given as the fold increase in expression by comparing the delta-Ct

values of the treated to that of the non-treated samples after

normalization to 18S rRNA. Ct values . 38 cycles were

interpreted such that the gene is not expressed and a fold

expression , 2 was considered as no change. Each of the breast

cancer and osteosarcoma cell lines were tested in two independent

experiments and the lung carcinoma and the prostate carcinoma

cell lines in one. Each sample was loaded in duplicates/triplicates

for each of the RT-qPCR experiments.

Flow cytometry
Cells were stained with PE-labeled anti-HLA-A,B,C (clone

G46-2.6, 1:100), FITC-labeled anti-b2-microglobulin (clone

TU99, 1:100) (BD Pharmingen, San Diego, CA) and propidium

iodide (PI; Sigma). Samples were measured with a FACS Calibur

(BD) and analyzed with FlowJo software (Treestar) after gating on

live (PI-negative) cells. Appropriate isotype controls were used.

Immunohistochemistry
Formalin-fixed, paraffin-embedded paired tissue sections ob-

tained from sarcoma patients before and after irradiation were

stained with mouse anti-human monoclonal antibodies against

CD4 (clone 1F6, 1:30, ZYMED Laboratories Inc.), CD8 (clone

C8/114B, 1:100, DAKO A/S, Carpinteria, CA), granzyme B

(clone Gr B-7, 1:25, DAKO A/S), MHC-I (clone C21, 1:1000,

RDI Research Diagnostics, Inc.), CT7 (clone CT7-33, 1:80,

DAKO A/S), CT10 (rabbit polyclonal, 1:500, ProteinTech

Group, Inc.), NY-ESO-1 (clone E978, 1:50, ZYMED) and

Perforin (clone 5B10, 1:20, Novocastra Laboratories Ltd). Sections

were counterstained with hematoxylin, dehydrated and mounted.

All sections were stained either with the Ventana Benchmark

automated staining system (Ventana Medical Systems, Tucson,

AZ) using Ventana reagents for the entire procedure for NY-ESO-

1, CT7, granzyme B, CD4, CD8 and perforin and BondMax

(Vison BioSystems, Newcastle upon Tyne, UK) for CT10 and

MHC-I. UView (Ventana) or Refine DAB (Vision BioSystems)

were used as chromogens against the primary antibodies. Images

of the stained sections were acquired on Zeiss-Axiovert 200 M

(Carl Zeiss Light Microscopy Göttingen, Gearmany) inverse

microscope using Carl Zeiss Axiovision CD28 imaging system.

The stainings were scored on a scale of 0 to 5 for the expression of

NY-ESO-1, MAGE-C1/CT7, and MAGE-C2/CT10 as a

percentage, based on the number of positive cells expressing the

antigen to the total number of cells in a high power field (HPF)

using a 40X objective lens. The scoring for MHC-I expression was

done based on the intensity of staining. The tumor infiltrates were

calculated as the number of cells expressing CD4, CD8 and

granzyme per HPF using a 40X objective. Each stained section

was evaluated in five different regions (for detailed list of scores see

Table S4). Three individuals performed the scoring blindly and

independently for the MHC-I stainings and two individuals

performed the scoring blindly for the other stainings.

Immunofluorescence
Cells (10’000-20’000 cells in 1 mL medium) were plated on

compartmented culture slides (BD Biosciences) to adhere over-

night. Cells were then fixed with 4% paraformaldehyde for 15 min

at room temperature, permeabilized with 0.1% TritonX-100

(Sigma-Aldrich) for 5 min at room temperature, followed by

blocking with 10% BSA/PBS for 30 min at room temperature.

The cells were then incubated with monoclonal mouse antibodies

against NY-ESO-1 (clone E978, 1:500, Invitrogen) or MAGE-C1/

CT7 (clone CT7-33, 1: 500, Dako) in 10% BSA/PBS for 1 h at

room temperature in the dark, followed by incubation with FITC-

labeled secondary antibody goat anti-mouse IgG1 (Poly4053,

1:2000, Biolegend) for 15 min at room temperature in the dark.

The slides were counterstained with 4’,6’-diamidino-2-phenylin-

dole hydrochloride (DAPI, 1:500) for 2 minutes in the dark and

inspected using a Zeiss-Axiovert 200 M inverse microscope and a

Carl Zeiss Axiovision CD28 imaging system.

Western blot analysis
Irradiated and non-irradiated cells were checked for the protein

expression using monoclonal mouse antibodies against NY-ESO-1

(clone E978, 1:500, Invitrogen) or MAGE-C1/CT7 (clone CT7-

33, 1: 500, Dako) and b-actin (clone 4i374, 1:8000, Santa Cruz
Biotech, CA). The effect of genotoxic agents and DNA-PKcs and

ATM inhibition, on the c-irradiation induced gene expression in

cells was evaluated by using antibodies against pS2056-DNA-PKcs

(rabbit polyclonal to phospho S2056-DNA-PKcs, 1:300, Abcam

Inc, MA), FANC-D2 (clone Fl17, 1:200, Santa Cruz Biotech,

CA), pS1981-ATM (clone EP1890Y, 1:5000, Eitomics, CA) and

pS15-p53 (clone 16G8, 1:1000, Cell Signaling Technology, MA).

Followed by incubation with the secondary antibody, polyclonal

goat anti-mouse IgG1 HRP (Poly4053, 1:10000, Biolegend) or

polyclonal goat anti-rabbit HRP (1:10000, Abcam). ECL reagent

(Amersham, UK) was used as luminescence substrate.

CD107a Degranulation Assay
Recognition of cells expressing NY-ESO-1 following irradiation

by antigen-specific CD8+ T cells was tested using the CD107a

degranulation assay. Three x 105 NY-ESO-1157-165/HLA-A2-

specific cloned CD8+ T cells (generated as described [22]) were

incubated with 106 CFSE-labeled (1 mM) HLA-A2+ MDA-MB-

469 cells – that were or were not irradiated with 20 Gy 72 h earlier

– in a 96-well microtiter roundbottom plate in a final volume of

200 mL RPMI + 10% FCS and antibiotics in the presence of PE-

labeled anti-CD107a (1:20, BioLegend, SD, California). As

positive control, MDA-MB-469 cells were loaded with 10-6 M

NY-ESO-1157-165 peptide. Two independent T cell clones (2A7

and 2B5) were used and all cultures were performed in duplicate.

The incubation was performed at 37uC for 4 h. The cells were

collected and washed in 2 mL FACS-buffer (FB) followed by

staining with pacific blue-labeled anti-CD8 (BioLegend) in 50 mL

FB for 30 min at 4uC. The cells were washed once with 2 mL FB

and resuspended in 200 mL FB. Samples were measured on CyAn

ADP9 (Beckman Coulter Inc, Fl, USA) and analyzed with FlowJo

software (Treestar).

Results

In vitro c-radiation up-regulates transcripts of CT-
antigens and MHC-I molecules

Breast, osteosarcoma, lung and prostate cancer and normal

primary cells were exposed to a single-dose radiation of 20 Gy,

after 72 h the cells were harvested and analyzed for the expression

of CT-antigens and MHC-I by RT-qPCR. Most of these cancer

cell lines expressed undetectable or very low levels of CT-antigens

under standard culture conditions. In contrast, c-radiated cells

showed de novo or up-regulated expression of various CT-antigens

in a randomized fashion (Figure 1A-D). In a panel of the four

cancer cell line types, c-radiation was found to have the most
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profound effect on the breast cancer and osteosarcoma cell lines

and the least on the prostate cancer cell lines. The up-regulation of

MHC-I and CT-antigens upon c-radiation seems to be a specific

feature of malignant cells, as this was not observed in any of the

normal primary cells that we tested here (ZT-812, human foreskin

keratinocytes, HMEC-1, MRC-5, NHDF and MCF 10A, Figure
S1A, S1B). The melanoma cell line SK-MEL-37 is known to

express all tested CT-antigens under normal culture conditions

and was therefore included as the positive control. Irradiation of

this cell line resulted in a clear up-regulation of all the CT-antigens

and MHC-I (data not shown). We detected an increased

expression of CT-antigens and MHC-I as early as 24 h after

irradiation in some cases and a steady increase in gene expression

was observed up to 96 h after irradiation. As we observed

substantial cell death at 96 h after irradiation, we performed all

further analyses at 72 h after irradiation. As radiotherapy can be

given as a single high dose (20 Gy) or as fractionated doses, we

irradiated selected cell lines (the breast cancer cell lines MDA-MB-

469 and MCF7, as well as the osteosarcoma cell lines Saos, HOS,

LM5 and 143B, with 2 Gy per day on 10 consecutive days. This

protocol resulted in similar change of CT-antigen and MHC-I

expression as observed with a single dose of 20 Gy (Figure S2A,
S2B). A single dose of 20 Gy was used in all further experiments.

In vitro c-radiation up-regulates CT-antigens and MHC-I
molecules at the protein level

To confirm the irradiation-induced expression of CT-antigens

on the protein level, we stained irradiated and non-irradiated

MDA-MB-469 cells with antibodies against NY-ESO-1 and CT7

and analyzed the expression of CT7 and NY-ESO-1 at different

time points after irradiation by immunofluorescence microscopy

and by Western blotting. The melanoma cell line SK-MEL-37

constitutively expresses NY-ESO-1 and CT7 and was used as

positive control. We observed the de novo expression of both the

Figure 1. c-radiation up-regulates CT-antigens and MHC-I molecules on the mRNA level. Established cancer cell lines were exposed to
single dose irradiation of 20 Gy and the mRNA expression of CT-antigens and MHC-I was determined 72 h later by RT-qPCR. (A) breast cancer cell
lines, (B) osteosarcoma cell lines, (C) lung cancer cell lines, (D) prostate cancer cell lines. All Ct values are normalized to 18S rRNA and the data are
presented as the fold increase of expression in irradiated compared to the corresponding untreated samples. Because fold expression can’t be
calculated for genes that are de novo expressed upon irradiation, we put the symbols in such cases above the thin horizontal line in (A).
doi:10.1371/journal.pone.0028217.g001
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Figure 2. c-radiation up-regulates CT-antigens and MHC-I molecules on the protein level. (A) Immunofluorescence of MDA-MB-469 and
SK-MEL-37 cells exposed to a single dose irradiation of 20 Gy and stained with antibodies against NY-ESO-1 and CT7 at different time points after
irradiation. (B) MDA-MB-469, SK-MEL-37 and MCF 10A cell lines were exposed to a single dose of 20 Gy and the expression of NY-ESO-1 and CT7 was
analyzed by Western blotting 72 h later. (C) breast cancer and (D) osteosarcoma cell lines were exposed to single dose irradiation of 20 Gy and the
expression of HLA-ABC and b2microglobulin was quantified at different time points after irradiation by flow cytometry. RAD: indicates c-radiation.
doi:10.1371/journal.pone.0028217.g002
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CT-antigens upon irradiation that increased with time

(Figure 2A, 2B), thus confirming the data obtained by RT-

qPCR. Irradiation of the normal breast cell line MCF10A did not

result in increased NY-ESO-1 or CT7 protein levels (Figure 2B).

To study the effect of c-radiation on the surface expression of

MHC-I at the protein level, we irradiated multiple cancer cell lines

(breast carcinoma and osteosarcoma) and normal primary cells of

different origins, followed by flowcytometric detection of surface

MHC-I, and observed that irradiation resulted in a time-

dependent increase of MHC-I surface expression on different

cancer cell lines (Figure 2C, 2D) but not in the normal primary

cells (Figure S1B).

Irradiation of cancer cells enhances T cell recognition in
vitro

In order to determine whether irradiation-induced up-regula-

tion of CT-antigens and MHC-I results in increased recognition

by antigen-specific CD8+ T cells, we measured degranulation [23–

24] of NY-ESO-1157-165/HLA-A2-specific cloned CD8+ T cells

upon incubation with irradiated and non-irradiated HLA-A2+

MDA-MB-469 breast cancer cells. MDA-MB-469 cells are

negative for NY-ESO-1, but become positive upon irradiation

(Figure 1A, 2A, 2B). We found that only irradiated MDA-MB-

469 cells induced degranulation of two independent NY-ESO-

1157-165-specific CD8+ T cell clones (2A7, 2B5) (Figure 3).

Irradiation did not further increase the degranulation when

peptide-loaded MDA-MB-469 cells were used (data not shown),

indicating that not the amount of MHC-I but the amount of NY-

ESO-1157-165 presented by MHC-I was the limiting factor in

unirradiated MDA-MB-469 cells, which fits the fact that

irradiation induced de novo expression of NY-ESO-1 in MDA-

MB-469 cells (Figure 1A, 2).

Ex vivo irradiation of fresh tumor biopsies induces up-
regulation of CT-antigens and MHC-I

To expand our findings to clinically relevant material, we

collected fresh tumor biopsies from 23 different cancer patients,

cut those into at least 50 small pieces, and randomized them into

two experimental groups. We irradiated one group of biopsies with

20 Gy, whereas the others served as control, and analyzed the

expression of CT-antigens and MHC-I 72 h later by RT-qPCR

and immunohistochemistry. These results confirmed the findings

we obtained with cancer cell lines, that c-radiation often induced

increased expression of CT-antigens and/or MHC-I (Figure 4A,
4B, Table S1). Importantly, our results suggest that heteroge-

neous expression of CT-antigens and/or MHC-I can become

more homogeneous upon radiotherapy, which obviously supports

immunological control of the tumor.

In vivo irradiation of human sarcoma results in increased
expression of CT-antigens and MHC-I and in lymphocyte
infiltration

Finally, we compared the expression of CT-antigens, MHC-I

and the infiltration by lymphocytes in 15 paired paraffin-sections

obtained from sarcoma patients before and after radiotherapy by

immunohistochemistry. We found that radiotherapy resulted in

Figure 3. Irradiation induced enhances T cell recognition of cancer cells.106 CFSE-labeled HLA-A2+ MDA-MB-469 breast cancer cells were
irradiated or not with a single dose of 20 Gy and were incubated 72 h later with 36105 NY-ESO-1157-165/HLA-A2-specific CD8+ T cell clones (clone 2A7
and clone 2B5) in the presence PE-labeled anti-CD107a-PE for 4 h at 37uC. The cells were then stained with pacific blue-labeled anti-CD8- for 30 min
at 4uC. Peptide-loaded MDA-MB-469 cells were used as positive control. All cultures were performed in duplicate. The degranulation was measured as
percentage CD107a+ cells of CD8+ cells after gating on CFSE-negative cells by flow cytometry.
doi:10.1371/journal.pone.0028217.g003
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substantial up-regulation or de novo expression of CT-antigens

and/or MHC-I molecules, which was accompanied by an

increased infiltration by lymphocytes and granzyme expression

in 7/15 and 12/15 samples, respectively (Figure 5A-D, Table
S2, S3).

Other forms of stress have no impact on the expression
of CT-antigens or MHC-I in vitro

Stress and environmental alterations induce changes in the

transcriptional profile in order to cope with those assaults

[25,26,27]. As irradiation induces DNA-damage, we investigated

whether the up-regulated expression of MHC-I and CT-antigens

would also occur after exposure of cell lines to other treatments

that induce DNA damage such as cisplatin, etoposide and the

radiomimetic drug bleomycin. MDA-MB-469 and SK-MEL-37

cells were treated separately with each of the DNA-damaging

agents and RNA levels were monitored at different time points

following treatment. Our results show that none of these agents

up-regulated the expression of CT-antigens and MHC-I (Figure
S3B-D). However, the hallmark genes pS15-p53 and FANC-D2

were up-regulated following treatment, indicating that these agents

induced stress at the concentration used (Figure S3A). Further-

more, we tested whether other types of cancer-related stress,

including elevated temperatures or low oxygen levels, induced

increased expression of CT-antigens and/or MHC-I. We found

that none of these treatments impacted on the expression of CT-

antigens and MHC-I whereas the signature gene CA9 was up-

regulated (Figure S4A, S4B). Together, these results suggest that

the increased expression of CT-antigens and MHC-I by cancer

cell lines is a specific response to c-radiation and does not occur

after exposition to other inducers of various stress response

pathways.

The ATM and DNA-PK signaling pathways are
dispensable for c-radiation-induced expression of CT-
antigens and MHC-I

The activation of DNA-damage repair checkpoint pathways as

a response to genotoxic insult helps to maintain the genomic

integrity in mammalian cells [28]. DNA damage triggers the

activation of various serine/threonine protein kinases, which

constitute the primary transducers in the signaling cascade and of

which, ataxia telangiectasia mutated (ATM) and DNA-dependent

Figure 4. Ex vivo irradiation up-regulates CT-antigens and MHC-I in fresh tumor biopsies. Fresh tumor explants from different cancer
patients (n = 23) were irradiated or not with single-dose of 20 Gy. The diagnosis of the individual patients is shown in supplementary Table S1. (A)
After 72 h, the irradiated and control explants were analyzed for the expression of NY-ESO-1 and MHC-I by RT-qPCR. (B) Representative sections
(patient number 9 and 20) depicting the expression of NY-ESO-1 and MHC-I by immunohistochemistry (20X magnification). NR indicates non-radiated
and RAD indicates corresponding irradiated sections.
doi:10.1371/journal.pone.0028217.g004

RT Promotes Immune Recognition of Cancer Cells

PLoS ONE | www.plosone.org 7 November 2011 | Volume 6 | Issue 11 | e28217



protein kinases (DNA-PKcs) are of utmost importance [29]. The

ATM protein kinase is a critical intermediate in a number of

cellular responses to c-radiation and other forms of stress [30]. We

thus investigated whether the up-regulation of CT-antigen and

MHC-I expression in response to c-radiation depends on the

activation of ATM and/or DNA-PKcs. We irradiated MDA-MB-

469 and SK-MEL-37 cells with a single dose of c-radiation (20 Gy)

in the presence or absence of specific inhibitors of ATM

(KU55933) and DNA-PK (NU7441). 10 mM of the inhibitor was

added 1 h before irradiation, and was left in the culture

throughout the experiment. We observed that ATM and DNA-

PK as well as p53 were phosphorylated in response to c-radiation,

Figure 5. Radiotherapy induced expression of CT-antigens and MHC-I and lymphocyte infiltration in sarcoma patients. Paraffin-
embedded paired tissue sections obtained from sarcoma patients (n = 15) before and after irradiation were analyzed by immunohistochemistry for
(A) presence of CD8+, CD4+ and granzyme+ cells, (B) expression of CT7, NY-ESO-1 and CT10 and (C) MHC-I expression. The CT-antigens were scored as
the mean percentage of live cells expressing the antigen to the total number of cells in five high power fields (40X objective). The infiltration by
lymphocytes was taken as the mean by counting the number of cells expressing CD4, CD8 and granzyme in five high power fields, and MHC-I was
scored based on the intensity of the staining. (D) Representative sections showing the expression of CT-antigens and MHC-I and infiltration of
lymphocytes before and after radiotherapy by immunohistochemistry. Depicted are: patient F for the expression of CT7, patient A for CT10, patient K
for NY-ESO-1, patient D for CD4 and MHC-I and patient E for CD8 expression. NR indicates non-radiated and RAD indicates corresponding irradiated
sections. Pt: indicates patient number. Patient information is listed in supplementary Table S2.
doi:10.1371/journal.pone.0028217.g005
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which was prevented by the specific inhibitors (Figure 6A, 6B).

However, neither ATM- nor DNA-PK inhibition prevented the

up-regulation of CT-antigen and MHC-I expression (Figure 6A,
6B, S5A, S5B). These results indicate that the ATM and DNA-

PK DNA-damage signaling pathways are not crucially involved in

the up-regulation of CT-antigen and MHC-I expression upon c-

radiation.

Discussion

Radiotherapy is one of the most widely used and successful

cancer treatments to date [31]. Recent studies described that c-

radiation leads to a plethora of alterations in the tumor cells [32],

including the de novo synthesis of particular proteins and the up-

regulation of MHC-I expression [1,32,33]. In addition, irradiated

tumors are often more infiltrated by leukocytes than the non-

irradiated tumors and studies using preclinical models showed that

the therapeutic success of high-dose irradiation depends on

adaptive immunity [34]. We therefore hypothesized that the

expression of a specific class of TAAs, the so-called CT-antigens, is

induced by irradiation, thus making tumors more susceptible to

recognition by effector T cells. In addition the de novo expression of

highly immunogenic CT-antigens may result in tumor-specific

immune responses that are not yet compromised by mechanisms

of central [35] or peripheral tolerance. Because cancer cells can

only be recognized by CD8+ T cells when they express MHC-I

and because tumors often express very low levels of MHC-I or are

even negative, radiation-induced up-regulation of MHC-I may

further support immune recognition. We observed that irradiation

induced de novo or up-regulated expression of various CT-antigens

and MHC-I in a randomized fashion and independent of the tissue

origin of the malignancy. We confirmed this effect using

established cancer cell lines, fresh ex vivo irradiated tumors and

paired biopsies from sarcoma patients before and after radiother-

apy. Studies have shown that the radiation-induced up-regulation

of MHC-I makes the tumor cells more susceptible to lysis by CTL

in vitro [1,36]. We confirm these data here and show that

irradiation of tumor cells not only up-regulates the expression of

CT-antigens and MHC-I but also increases their recognition by

CD8+ T cells. The up-regulated expression of CT-antigens and

MHC-I seems specific for c-radiation, as similar changes in gene

expression were not observed upon other treatments that induce

DNA-damage, upon hypoxia or hyperthermia. We could not

identify the molecular mechanism underlying radiation-induced

Figure 6. The ATM and DNA-PK signaling pathways are dispensable for c-radiation induced expression of CT-antigens and MHC-I.
SK-MEL-37 and MDA-MB-469 cells were irradiated or not in the presence or absence of inhibitors specific for ATM (ATMi) and DNA-PKcs (DNAPKi) and
whole cell extract was analyzed by Western blotting. (A) Detection of phosphorylated ATM, p53, CT7 and NY-ESO-1 and (B) phosphorylated DNA-PK,
CT7 and NY-ESO-1. Anti-b-actin specific antibodies served as loading controls.
doi:10.1371/journal.pone.0028217.g006
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up-regulation of CT-antigens and MHC-I expression, but we

excluded the involvement of the ATM or DNA-PK signaling

pathways. Previous studies have shown that the expression of CT-

antigens is regulated through demethylation of their promoter

CpGs [37]. In addition, all CT-antigen genes that are expressed in

tumors or testis can be induced in vitro by DNA demethylation

[38]. However, when we compared the methylation status of

CpGs in the promoter region of NY-ESO-1 of irradiated and non-

irradiated MDA-MB-469 and MCF 7 cells, we found no difference

(data not shown). This result suggests that the up-regulated

expression of CT- antigens and MHC-I upon c-radiation is

regulated through another pathway than demethylation of CpG

islands in the promoter region. However, as we performed this

experiment only with a limited number of cell lines and we

analyzed only one CpG region in the promoter of NY-ESO-1, we

can’t fully exclude that other CpG regions may have been

hypomethylated following irradiation.

Our data strongly suggests that irradiation supports immu-

nological control of tumors through the expression of novel

tumor-associated antigens to which the immune response

presumably is not compromised. In addition, the concomitant

up-regulation of MHC-I expression makes irradiated tumor cells

more susceptible to tumor-specific CTL. It is currently not

known whether the increased infiltration by CD8+ T cells

upon irradiation is a direct effect of increased local expres-

sion of cognate peptide/MHC-I complexes or whether other

factors such as local inflammation or changes in vasculature

contribute.

It may be interesting to combine radiotherapy with immuniza-

tion to maximally exploit the changes induced by irradiation.

However, the fact that it seems unpredictable as to which CT-

antigens will show de novo or up-regulated expression makes it

difficult to choose the correct antigen for immunization, at least in

those cases where tumor biopsies are not available. Nevertheless,

the combination of radiotherapy with treatments that generally

stimulate the immune system such as the blockade of co-inhibitory

interactions (CTLA-4, PD-1) or mediators (IL-10, TGF-b, IDO)

or activation of dendritic cells by innate stimuli may further

improve the efficacy of radiotherapy.

Supporting Information

Figure S1 c-radiation does not effect the expression of
CT-antigens and MHC-I molecules in vitro. Normal

primary cell cultures – HMEC-1, human foreskin keratinocytes,

MCF-10A, MRC-5, NHDF and ZT-812, were exposed to a single

dose irradiation of 20 Gy and the CT-antigen and MHC-I

expression was determined at the (A) mRNA level by RT-qPCR,

and (B) protein level by flow cytometry.

(TIF)

Figure S2 Fractionated c-radiation results in a time-
dependent up-regulation of CT-antigens and MHC-I
molecules in vitro. Established cancer cell lines were exposed

to fractionated irradiation of 2 Gy on 10 consecutive days to

obtain a cumulative dose of 20 Gy. (A) breast cancer cell lines, (B)

osteosarcoma cell lines. All Ct values are normalized to 18S rRNA

and the data are presented as the fold increase of expression in

irradiated (at 24 h, 48 h and 72 h from the last dose of irradiation)

compared to the corresponding untreated samples.

(TIF)

Figure S3 Genotoxic stress has no impact on the
expression of CT-antigens or MHC-I in vitro. The breast

cancer cell line MDA-MB-469 and the melanoma cell line SK-

MEL-37 and the normal breast cell line MCF 10A were exposed

to other forms of stress and gene expression was analyzed after

72 h treatment with DNA-damaging agents. (A) Treatment with

DNA-damaging agents followed by immunoblotting to detect the

activation of hallmark genes p53 and FANC-D2. The same

samples were also subjected to RT-qPCR analysis for the

expression of CT-antigens and MHC-I at different time points

following treatment with (B) bleomycin, (C) cisplatin and (D)

etoposide. All Ct values are normalized to 18S rRNA and the data

are presented as the fold increase of expression in treated

compared to the corresponding untreated samples.

(TIF)

Figure S4 Other forms of stress have no impact on the
expression of CT-antigens or MHC-I in vitro. MDA-MB-

469 and SK-MEL-37 cells were exposed to (A) hyperthermia and

(B) hypoxia and the gene expression following treatment was

monitored at different time points by RT-qPCR analysis. All Ct

values are normalized to 18S rRNA and the data are presented as

the fold increase of expression in treated compared to the

corresponding untreated samples.

(TIF)

Figure S5 c-radiation induced expression of CT-anti-
gens and MHC-I is not dependent on the activation of
ATM, DNA-PK signaling pathways. The breast cancer cell

line MDA-MB-469, the melanoma cell line SK-MEL-37 and the

normal cell line MCF 10A were exposed or not to a single dose c-

radiation of 20 Gy in the presence or absence of specific inhibitors

of the DNA-damage repair pathways (A) ATM or (B) DNA-PKcs,

followed by RT-qPCR analysis for gene expression 72 h following

irradiation. All Ct values are normalized to 18S rRNA and the

data are presented as the fold increase of expression in treated

compared to the corresponding untreated samples.

(TIF)

Table S1 CT-antigens and MHC-I expression in fresh
tumor biopsies following ex vivo radiation. Fold increase

in expression of CT-antigens and MHC-I in fresh tumor biopsies

following 20 Gy ex vivo c-radiation. All characters in bold represent

up-regulation following ex vivo c-radiation. ND: indicates non-

detected. All Ct values are normalized to 18S rRNA and the data

are presented as the fold increase of expression in treated

compared to the corresponding untreated samples.

(DOC)

Table S2 Increased expression of CT-antigens and
lymphocyte infiltration in sarcoma patients after radio-
therapy. (A) Information of sarcoma patients treated with

radiotherapy with immunohistochemical scores for T cell

infiltration and expression of CT-antigens. All characters in bold

represent up-regulation following radiotherapy. MPNST: malig-

nant peripheral nerve sheath tumour, NOS: not otherwise

specified. NR indicates non-radiated and RAD indicates corre-

sponding irradiated sections.

(DOC)

Table S3 Radiotherapy up-regulates the expression of
MHC-I in sarcoma patients. MHC-I expression in sarcoma

patients following radiotherapy. All characters in bold represent

up-regulation following radiotherapy. NR indicates non-radiated

and RAD indicates corresponding irradiated sections.

(DOC)

Table S4 Quantification of CT-antigen and MHC-I
expression in sarcoma patients.

(DOC)
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