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Arterial calcification refers to the abnormal deposition of calcium salts in the arterial wall,

which results in vessel lumen stenosis and vascular remodeling. Studies increasingly

show that arterial calcification is a cell mediated, reversible and active regulated process

similar to physiological bone mineralization. The osteoblasts and chondrocytes-like

cells are present in large numbers in the calcified lesions, and express osteogenic

transcription factor and bone matrix proteins that are known to initiate and promote

arterial calcification. In addition, osteoclast-like cells have also been detected in calcified

arterial walls wherein they possibly inhibit vascular calcification, similar to the catabolic

process of bone mineral resorption. Therefore, tilting the balance between osteoblast-

like and osteoclast-like cells to the latter maybe a promising therapeutic strategy against

vascular calcification. In this review, we have summarized the current findings on the

origin and functions of osteoblast-like and osteoclast-like cells in the development and

progression of vascular progression, and explored novel therapeutic possibilities.

Keywords: vascular calcification, osteoblast-like cells, osteoclast-like cells, origin, reversibe, cell therapy

INTRODUCTION

Vascular calcification, or the pathological accumulation of calcium phosphate crystals in the
intimal and medial layers of vessel walls, is the pathological basis of many cardiovascular diseases
(1, 2). It decreases blood vessel compliance and leads to lumen stenosis, eventually aggravating
the cardiovascular symptoms. More than 60% of the middle-aged and elderly individuals in the
40–75 years age group, and more than 70% of patients undergoing chronic dialysis exhibit aortic
calcification (3, 4). Furthermore, the prevalence of vascular calcification reaches as high as 80%
in the patients with atherosclerosis, aged 80 and above (5). Although the mechanisms underlying
vascular calcification have been elucidated to a large extent, there is still a dearth of effective
pharmacological therapies. Thus, there is an urgent need to further clarify its molecular and
cellular basis.

Vascular calcification was initially recognized as a passive and degenerative pathological process.
However, recent findings indicate a cell mediated, active and reversible process that is similar
to physiological bone mineralization (6). For instance, chondroblast-like cells, osteoblast-like
cells, and even complete lamellar bone and regenerated bone marrow have been observed in
the walls of calcified arteries (7–9). Furthermore, several bone-specific transcription factors and
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bone matrix proteins are overexpressed during vascular
calcification, and their inhibition blocks osteoblast-like
transdifferentiation and calcification (10, 11). In addition,
calcium salts released from osteoporotic bones are deposited
in the vascular lesions, which further points to a crosstalk
between the osteogenic and vascular systems (12–15). Therefore,
researchers are increasingly recognizing a novel bone-vascular
axis in the pathogenesis of vascular calcification (16, 17), wherein
osteoblast-like cells play a central role. Although there are no
osteoblast-like cells in the normal arterial walls, studies show
that vascular smooth muscle cells (VSMCs) can differentiate
into chondroblast/osteoblast-like cells in the presence of
high calcium levels (18, 19). In addition, endothelial cells,
fibroblasts, pericytes, mesenchymal stem cells, and progenitor
cells can also transdifferentiate into osteoblast-like cells (20–24).
Therefore, the exact origin of osteoblast-like cells in the calcified
arterial walls and the subsequent phenotypic remodeling are
largely unknown.

Interestingly, vascular calcification may be reversible. For
instance, calcification scores of both coronary and carotid artery
are significantly declined in several patients with end-stage renal
disease after they undergo subtotal parathyroidectomy (25).
Additionally, aortic calcification induced in uremic rats with
calcitriol and high phosphorus diet can be partially resolved
when reducing phosphorus intake or using calcimimetics or
phosphate binders, which may be involved in increase of
mineral phagocytes and urinary calcium excretion (26–29).
Rat medial elastocalcinosis that is induced by warfarin-rich
diet feeding would also be inhibited when they are feeding
with vitamin K-rich diet, with content in the aorta decreased
by 50% (30). Interesting, aortic mineral loss of rat with
medial elastocalcinosis is associated with activation of carbonic
anhydrase IV that plays an important role in bone resorption,
suggesting vascular mineral loss has a similar mechanism with
bone resorption (31). Medial artery calcification is induced
with calcitriol. It will regress rapidly, displaying a 75% decline
of aortic calcium and phosphorus in 9 weeks. Furthermore,
the reversibility of calcitriol induced vascular calcification may
be mediated by macrophages (32). Apart from these, the
phenotype of osteoblast-like VSMCs can be also reversed. It
is reported that the initial deposition of hydroxyapatite-like
mineral in medical arterial calcification occurs on degraded
elastin first and that causes VSMCs transdifferentiation into
osteogenic phenotype expressing bone related proteins and
contribute to VSMCs calcification in vitro, but these VSMCs
will return to original phenotype of VSMC after calcified
conditions are removed (33). These researches indicate vascular
calcification is reversible that is possibly involved in mineral
loss similar to bone resorption, but the reversal process is still
largely unknown.

Under physiological conditions, the osteoblasts and
osteoclasts maintain the balance between bone calcium
absorption and resorption, which is essential for proper
bone mineralization (34, 35). There is evidence showing the
involvement of osteoclast-like cells in vascular calcification (36).
Ge et al. reported the increased expression of TRAP, which
is a osteoclast phenotypic marker in the calcific vessels from

hypertensive patients (37). Qiao et al. also identify osteoclast-
like cells are present in carotid artery atheromatous lesions
containing calcified plaque based on cell morphology, TRAP-
positivity, and osteoclast-associated marker genes. Furthermore,
they think osteoclast-like cells absorb deposited minerals
preventing vascular calcification and counteract the effects of
osteoblasts (38). In addition, osteoclasts cultured in vitro with
calcified elastin reduced the extent of calcification and restored
the structural integrity of elastin, indicating that these cells
have an inhibitory role in vascular calcification as well (39, 40).
Therefore, enhancing the proportion of osteoclast-like cells in
the calcified arteries might be a suitable therapeutic intervention.
However, the origin, phenotypic transformation and functions of
the osteoclast-like cells during vascular calcification also remain
to be elucidated.

Therefore, we have summarized the current knowledge
regarding the osteoblast/osteoclast-like cells in vascular
calcification, and discussed their potential as therapeutic targets.

MOLECULAR MECHANISM UNDERLYING
OSTEOBLAST-LIKE CELLS-MEDIATED
VASCULAR CALCIFICATION

Studies show that the initiation and progression of vascular
calcification likely involve both active and passive mechanisms
(41–43). Passive calcification depends on the natural affinity
of elastin and collagen in the extracellular matrix (ECM) for
calcium ions. These proteins bind to calcium ions and increase
their deposition in the ECM, resulting in extracellular calcium
and phosphorus imbalance. The positively charged calcium ions
adsorb the negatively charged phosphoric acid or carbonate ions
to form amorphous calcium salt, which continuously adsorbs
more mineral ions to form large mineral deposits and eventually
lead to vascular calcification (41, 44, 45). Active vascular
calcification resembles physiological bone mineralization. The
cells in the vessel walls differentiate or transdifferentiate into
chondroblast/osteoblast-like cells in the pro-calcific milieu of
diabetes, chronic kidney disease, aging, and atherosclerosis.
The osteoblast-like cells express osteogenic transcription factors
and genes, such as runt-related transcription factor 2 (Runx2),
osterix, Msh homeobox (Msx), SRY-box transcription factor 9
(SOX9), and alkaline phosphatase (ALP), bone sialoprotein (BSP)
and osteocalcin (OC), all of which play a central role in bone
mineralization. Knocking down RUNX2, osterix, SOX9, MSX1,
or MSX2 suppressed osteogenic differentiation and subsequent
vascular calcification (10, 46–49). The osteoblast/chondroblast-
like cells initiate vascular calcification by releasing matrix vesicles
(MV) (50) that are loaded with mineral crystals and are
deposited in the ECM. Mineralized MVs have been detected in
the calcified lesions of chronic kidney disease, atherosclerosis
and diabetes. Furthermore, VSMCs cultured with high levels
of phosphorus, calcium synthesize and secrete MVs harboring
calcium, and phosphorus crystal-like structures (51, 52). MVs
from osteoclast-like VSMCs and osteoblasts and hypertrophic
chondrocytes have similar morphology and proteomics, which
bind to collagen and induce apatite nucleation, resulting
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in endochondral and membranous osteogenesis (53–55). A
recent study showed that hydroxyapatite nanocrystals reversibly
induced osteogenic differentiation and calcification of VSMCs
in vitro, and removal of the nanocrystals restored the original
phenotype of the VSMCs and prevented calcification (33, 56).
In a CKD rat model, inhibition of hydroxyapatite growth by
sevelamer or pyrophosphate also slowed the progression of
moderate to severe aortic calcification (57). Thus, osteoblast-
like cells may also initiate vascular calcification through
hydroxyapatite. Interestingly, the MVs from osteoblast-like cells
express lower levels of calcification inhibitors like matrix gla
protein (MGP) and fetuin A compared to normal VSMCs-
derived MVs, whereas ALP, biomineralization-associated TNAP
and phosphatidylserine (PS) are overexpressed in the former.
TNAP hydrolyzes pyrophosphate, an inhibitor of vascular
calcification, to produce inorganic phosphorus and PS that
adhere to MV surface and adsorb calcium and phosphorus
ions. Furthermore, the MVs secreted by osteoblast-like cells
also express the annexins 2, 5, and 6, which function as
calcium channels and allow ion influx (51, 58). Since MVs
and exosomes aid intercellular communication, osteoblast-like
cells may promote vascular calcification by secreting MVs
that express aberrantly high levels of pro-calcification factors.
Indeed, normal VSMCs co-cultured with osteoblast-like cell-
derived MVs internalize the latter and undergo phenotypic
transition characterized by the loss of contractile markers
like smooth muscle 22 alpha (SM22a), and acquisition of the
osteogenic markers (59). Microarray and bioinformatics analysis
have identified significantly dysregulated non-coding RNAs in
these MVs, which are enriched in signaling pathways closely
related to osteogenic differentiation and calcification (60). Taken
together, osteoblast-like cells in the vascular wall synthesize and
secrete calcified MVs, which not only provide a site for calcium
salt deposition but also initiate the phenotypic transition and
calcification of adjacent cells in a paracrine manner.

ORIGIN OF OSTEOBLAST-LIKE CELLS IN
VASCULAR CALCIFICATION

Although there are no osteoblast-like cells in the normal artery
wall, several resident cells like VSMCs, vascular endothelial cells
(VECs), pericytes, fibroblasts, calcified vascular cells (CVCs),
mesenchymal stem cells (MSCs), or progenitor cells have the
potential to differentiate or transdifferentiate into osteoblast-like
cells in response to pathological stimuli (61).

VSMCs AND OSTEOBLAST-LIKE CELLS IN
VASCULAR CALCIFICATION

VSMCs are the main cell type in the arterial wall, and
maintain vascular elasticity and contractility. Although VSMCs
are terminally differentiated cells, they exhibit highly plastic
phenotypes (62). The contractile VSMCs in the normal arterial
wall are characterized by low growth, migration and protein
synthesis, and express contractile markers such as SM22a,
SMA, and SMM-HC. They can transdifferentiate into the

synthetic phenotype that exhibits higher growth and migrations
rates, produces more proteins, and expresses osteoblast and
chondroblast markers (63). The calcified arterial lesions from
humans and animal models also overexpress osteogenic and
chondrogenic genes as a function of calcification degree,
and have low levels of contractile markers. Furthermore, the
osteogenic or chondrogenic markers are co-expressed with the
VSMC contractile proteins, which indicates that VSMC can
differentiate into osteogenic and chondrogenic cells as well (64–
66). Consistent with this, osteoblast genes were upregulated and
VSMC contractile genes were downregulated in human and
animal VSMCs exposed to high levels calcium or phosphorus,
which also formedmassive alizarin red-staining calcium nodules.
Likewise, hydroxyapatite and calcified elastin induced cultured
VSMCs to lose the contractile phenotype and transdifferentiate
into osteogenic cells, and removal of both restored the contractile
phenotype and down-regulated bone-related genes, indicating
that transdifferentiation of VSMCs is a reversible process (33).
VSMCs expressing SM22α-Cre recombinase and Rosa26-LacZ
Cre reporter alleles transdifferentiated into osteochondrogenic
precursors and chondrocytes in MGP–/– or LDLr–/– and
ApoE–/– mice, resulting in atherosclerotic medial and intimal
calcification (67). Furthermore, calcium deposition and vascular
calcification occur prior to the osteogenic phenotypic switch
of VSMCs (42), and blocking the latter can inhibit or even
reverse vascular calcification both in vitro and in vivo. There
is evidence indicating that the different phenotypes of VSMCs
have distinct embryonic origins (68, 69). It is possible that the
contractile VSMCs first transdifferentiate into stem cells or other
intermediate phenotypes prior to the osteoblast-like stage rather
than differentiate directly. Thus, phenotypic reprogramming of
VSMCs is a complex process and the regulatory pathways are
largely unknown.

VECs AND OSTEOBLAST-LIKE CELLS IN
VASCULAR CALCIFICATION

VECs are derived from the mesoderm, and are the main cell
type in the vascular intima. Under physiological conditions,
VECs form a vascular barrier through tight junctions with
endothelial-specific proteins. However, pathological stimuli can
trigger endothelial-mesenchymal transition (EndMT) in the
VECs, resulting in the acquisition of MSC-like multipotent
differentiation capacity. Human aortic ECs cultured in
hyperglycemic conditions express low levels of EC marker
genes like CD31, and gain MSC markers like CD44 and CD10.
Furthermore, the chondrocyte genes SOX9 and type II collagen,
cartilage proteoglycan and calcium nodules are induced in VECs
cultured in osteogenic media (70). Calcium nodules are also
formed in MGP–/– human aortic ECs induced with high glucose
and bone morphogenetic protein (BMP), as well as in human
and bovine aortic ECs stimulated with BMP6 and oxidized low-
density lipoprotein (LDL), or tumor necrosis factor-a (TNF-a)
and interleukin-β (IL-β) (22, 71, 72). Furtherly, the research of
Malhotra et al. shows EndMT and vascular calcification in vitro
and in vivo are dependent upon BMP signaling in MGP-deficient
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mice, while the other hand, also suggests that activation of BMP
signaling inhibits atherosclerosis in MGP-deficient mice fed
a standard diet when compared to LDLR–/– mice fed a high
fat diet, a murine model of atherosclerosis (73). These results
indicate that VECs can transdifferentiate into osteoblast-like
cells and promote vascular calcification. Mechanistically, BMP
signal activation induces the phenotypic switch of VECs via
EndMT. Consistent with this, calcified arteries fromMgp–/– and
Ins2Akita/+ mice express CD31, multipotent markers like SOX2,
Nanog and Oct3/4, and Runx2 and Osterix (74, 75). Interestingly,
MGP–/– human VECs cultured with osteogenic medium or
BMP2 show upregulation of SOX2, Nanog and Oct3/4 prior to
that of Runx2 and Osterix, indicating that multipotent marker
appear earlier in the endothelium. Lineage tracing in the Mgp–/–
and Tie2-Gfp transgenic mice confirmed the localization of
GFP-labeled ECs in calcified lesions, along with increased
expression of Runx2 and Osterix, which further demonstrated
that osteogenic cells can originate from VECs (74). In addition,
VECs can also regulate vascular calcification in a paracrine
manner by activating the VSMCs, MSCs, and fibroblasts. VSMCs
and MSCs co-cultured with RANKL-expressing ECs or their
conditioned medium transdifferentiated into osteoblast-like cells
expressing Runx2 and ALP (76). Likewise, fibroblasts co-cultured
with mechanically stimulated ECs or the conditioned medium
also underwent calcification (77). Furthermore, the conditioned
medium from inorganic phosphorus or indoxyl sulfate-induced
umbilical vein ECs inhibited expression of osteopontin in MSCs
and induced calcification in the presence of IL-8 (78). Finally,
the MVs and exosomes secreted by aging or inflammatory
factor-stimulated ECs express high amounts of calcium, BMP2,
annexin and Notch3, and promote calcification of recipient cells
following internalization (79).

PERICYTES AND OSTEOBLAST-LIKE
CELLS IN VASCULAR CALCIFICATION

Pericytes are part of the microvascular system and closely
related to endothelial cells. Recent studies show that pericytes
or pericyte-like cells are abundant in the intima, media
and adventitia of large, medium and small arteries, and
can differentiate into osteoblasts, chondroblast-like cells and
adipocytes. Furthermore, atherosclerotic calcified plaques of
carotid and femoral arteries have significantly more pericytes
compared to the non-calcified lesions, suggesting that these
cells are involved in the formation of calcified plaques (80, 81).
Consistent with the above, pericytes cultured with high content
of advanced glycation end products, beta- glycerophosphate or
glucocorticoid differentiate into osteoblast-like cells expressing
Runx2, ALP, OC and other bone-related genes, and form
calcium nodules. The latter may block MGP, an inhibitor of
BMP4 and OPN, and activate the Axl signaling pathway (82–
84). In addition, collagen glycosaminoglycan scaffolds loaded
with pericytes gave rise to bone-like tissues in mice at the
site of implantation, indicating that pericytes have spontaneous
osteogenic potential (85, 86). Indeed, pericytes grown in normal
medium can form multicellular nodules with a mineralized

matrix containing extensive calcium salt deposits, and express
high levels of Runx2 and the other osteogenic genes (21,
85). Therefore, pericytes have the potential to differentiate
into osteoblast-like cells both spontaneously and in a stimuli-
responsive manner, and contribute to mineralization.

FIBROBLASTS AND OSTEOBLAST-LIKE
CELLS IN VASCULAR CALCIFICATION

Fibroblasts are the major cell type located in the outer arterial
membrane, and a potential source of osteoblast-like cells during
vascular calcification. This is supported by the significant
calcification seen in the aorta adventitia of high fat diet-fed
ApoE–/– mice and individuals older than 60 years of age (87).
Shao et al. found that transgenic mice expressing the osteoblast
gene Msx2 in the adventitial cells developed extensive vascular
calcification (88). Furthermore, primary fibroblasts cultured
in the presence of recombinant transforming growth factor-1
(TGF-β) and beta-glycerophosphoric acid transformed into
myofibroblasts and formed calcium nodules (89, 90). Lai et al.
also confirmed that MSX2 expression levels increased in the
myofibroblasts and subsequently contributed to calcification
(91). Simionescu et al. found rat fibroblasts induced by
elastin degradation products and/or TGF-β expressed high
levels of Runx2, ALP, OC, and other bone-related genes, and
formed calcium deposits that stained with the von Kossa
dye (89). Likewise, Runx2 and OC were upregulated and
calcium deposition was increased in the three dimensional
cultures of Wistar rat fibroblasts after 2 weeks of exposure
to high levels of inorganic phosphate or β-glycerophosphate
(92). Therefore, adventitial fibroblasts are likely to transform
into myofibroblasts and osteoblast-like cells to regulate
vascular calcification.

MSCs AND OSTEOBLAST-LIKE CELLS IN
VASCULAR CALCIFICATION

MSCs are adult stem cells derived from the early mesoderm, and
are characterized by high proliferation rates, self-renewal ability,
multipotent differentiation potential, and immunosuppressive
ability. Therefore, MSCs are the ideal biological tool for
tissue repair and regeneration. The bone marrow-derived
MSCs (BMSCs) differentiate into multiple cell types that
are involved in cardiovascular pathologies, including vascular
calcification. BMSCs transplanted into high cholesterol diet-fed
rats with balloon injury in the abdominal aorta migrated to the
BMP2-overexpressing arterial intima, and resulted in extensive
calcification. Thus, MSCs can promote vascular calcification via
the BMP2 signaling pathway (93). Kramann et al. implanted
MSC-loaded collagen gels in the peritoneal cavity of rats
with 5/6th nephrectomy or HFD-induced CKD, and detected
Runx2, ALP, and sclerostin in the circulating MSCs, indicating
osteogenic differentiation. Furthermore, a similar degree of
calcification was observed after 8 weeks in the MSC-loaded
gels as well as the arteries, both in terms of X-ray images
and calcium content, indicating that MSCs contributed to
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vascular calcification after phenotypic conversion to osteoblast-
like cells (94). Leszczynska et al. also confirmed the subcutaneous
implantation of MSCs pretreated with chondrogenic medium
gave rise to bone tissue in ApoE-/- and wild-type mice, and the
extent of calcification was greater in the former (95). In addition,
MSCs cultured in osteogenesis medium express osteogenic
transcription factors and form calcium deposits in vitro. The
MSCs isolated from ApoE–/– mice have greater osteogenic
and chondrogenic capacity compared to wild-type cells, and is
likely associated with the activation of uPAR-C5aR/Erk1/2/NF-
kB axis (23). Wang et al. found that fluorescently labeled
MSCs migrated to the calcified lesions in the HFD-fed LDLr–/–
mice, and expressed osteogenic genes via TGF-β/SMAD2/4
signal activation (96). Interestingly, several groups have reported
an inhibitory effect of MSCs on vascular calcification. For
instance, intravenously injected MSCs significantly inhibited
calcium and phosphorus deposition in the aortic walls, and
also decreased serum phosphorus levels in the adenine-fed rat
model of CKD (97). Similarly, conditioned medium from MSCs
inhibited the osteogenic phenotypic switch and calcification of
VSMCs even in the presence of β-glycerophosphate, and this
effect was reversed by recombinant BMP2 via activation of the
SMAD1/5/8 pathway. In addition, MSCs reduced calcification of
co-cultured VSMCs in the osteogenic medium by inactivating the
Wnt5a/β-catenin pathway (98). Therefore, the role of MSCs in
vascular calcification is highly complex, and may depend on the
environmental cues.

PROGENITOR CELLS AND
OSTEOBLAST-LIKE CELLS IN VASCULAR
CALCIFICATION

Progenitor cells are precursors with multipotent differentiation
potential. Studies increasingly show that both endothelial and
VSMC progenitors are closely related to arterial calcification.
For instance, circulating endothelial progenitor cells expressing
the late osteoblast differentiation marker osteocalcin (OC)
are abundant in patients with diabetes, CKD and coronary
atherosclerosis. Furthermore, the number of OC+ circulating
endothelial progenitor cells correlates positively with the
calcium score and spotty calcification in coronary artery disease
and hemodialysis patients (99, 100). Endothelial progenitors
isolated from the peripheral blood of hemodialysis patients
showed significantly increased calcium deposition in vitro.
However, adding vitamin D receptor activator into medium
of serum from uremia patients would inhibit calcification of
endothelial progenitor cells (99). Similarly, the number of
circulating OC+ endothelial progenitor cells in postmenopausal
women and hemodialysis patients decreased significantly
by administering bisphosphonates and vitamin D receptor
activator, which also reduced vascular calcification (20). Taken
together, OC+ endothelial progenitor cells can differentiate
into osteoblast-like cells and promote vascular calcification.
The CD10+ human perivascular progenitor cells, also known
as adventitial cells due to their anatomical location, also show
osteogenic potential. CD10 is significantly upregulated in the

calcified vs. normal arteries. The CD10+ progenitor cells isolated
from human abdominal white adipose tissue and placenta
expressed osteoblastic transcription factors and other proteins
in an NF-κB-dependent manner when cultured in osteogenic
medium for 28 days, and formed mineralized nodules. Silencing
the CD10 gene significantly decreased the bone forming
ability of these progenitors (101). Kramann et al. detected
abundant Gli1+ VSMC progenitors in the arterial adventitia,
media and intima of mice with acute femoral artery injury
or CKD, which promoted tissue repair (102). Furthermore,
genetic fate tracing indicated that Gli1+ progenitor cells
migrated from the adventitia into the intima and media of
ApoE–/– mice with CKD, and expressed osteogenic genes
that promoted arterial calcification. Furthermore, knocking
down Gli1 inhibited arterial calcification (102). Cho et al.
discovered Sca-1+/PDGFRα- progenitor cells in the bone
marrow and blood vessel walls that differentiated into both
osteoblasts and osteoclasts. Subcutaneous transplantation of
Sca-1+/PDGFRα- progenitor cells and bone matrix in C57
mice resulted in a highly mineralized bone-like structure
after 8 weeks. However, simultaneous injection of PPARγ

significantly decreased calcification volume and calcium
scores by inducing the differentiation of Sca-1+/PDGFRα-
progenitor cells into osteoclasts. Consistent with the above,
Sca-1+/PDGFRα- progenitor cells also aggravated arterial
calcification in atherosclerotic ApoE–/– mice, which was
reversed by PPARγ (39, 103).

CVCs AND OSTEOBLAST-LIKE CELLS IN
VASCULAR CALCIFICATION

CVCs are a subset of VSMCs that characteristically express
a modified form of ganglioside sialyllactose ceramide, along
with osteogenic and chondrogenic markers. The CVCs can
form calcium nodules following stimulation with transforming
growth factor-β or 25-hydroxycholesterol. Similarly, mechanical
stimulation or cAMP treatment also promotes osteogenic
differentiation and mineralization of the CVCs. Overexpression
of liver X receptor enhanced CVC mineralization by increasing
fatty acid synthesis and lipid accumulation. In addition,
subcutaneously transplanted CVCs formed calcium nodules akin
to calcified atherosclerotic plaques in the Apoe–/– mice (104).
Mechanistically, osteogenic differentiation and calcification of
CVCs is mediated by the heat shock protein (HSP) 70,
which binds to MGP and activates the BMP2/P-SMAD1/3/5
pathway (105). In addition, macrophages stimulated with
ultrafine particles or their conditioned media induced osteogenic
differentiation andmineralization of CVCs by partially activating
the NF-κB signaling pathway (106). Conversely, the spontaneous
differentiation and calcification of CVCs were inhibited by
the protein kinase A-specific inhibitor KT5720, or insulin-
like growth factor I, which are known to activate the
ERK and PI3K pathways (107). Abedin et al. found that
activation of p38-MAPK and PPARγ pathways decreased both
spontaneous and IL-6-mediated osteogenesis of CVCs (108).
These results indicate that CVCs can not only form calcium
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nodules spontaneously, but also be induced to exacerbate
vascular calcification.

ORIGIN AND FUNCTION OF
OSTEOCLAST-LIKE CELLS IN VASCULAR
CALCIFICATION

Bone formation depends on the balance between the osteoblasts
and osteoclasts. The osteoclasts mediate bone mineral matrix
resorption and prevent excessive bone mineralization by
producing various enzymes. While excessive bone resorption by
osteoclast activity leads to osteoporosis, aberrant bone formation
by hyperactive osteoblasts result in osteopetrosis. Osteoblast-
like cells are abundant in calcified blood vessels and promotes
vascular calcification, although the role of osteoclast-like cells are
poorly understood.

Osteoclast-like cells have been detected in both atherosclerotic

plaques and calcified medial layer, although the number is small
and mainly concentrated in the heavily calcified lesions. Qiao

et al. found osteoclast-like cells in human carotid plaques

(38). Han et al. analyzed the calcified media and intima of 282
lower extremity artery samples, and detected bone tissue and

osteoclasts in some heavily calcified regions (109). Similarly,

tartrate-resistant acid phosphatase (TRAP), an osteoclast-
specific marker gene, was also detected in the calcified vessels of

hypertensive patients (37). Carbonic anhydrase, the key enzyme

involved in osteoclast-mediated bone resorption, is significantly
up-regulated in the atherosclerotic plaques of carotid, femoral

and aortic vessels, and co-expressed with TRAP (110). These
findings indicate that osteoclast-like cells regulate atherosclerosis
and vascular calcification, although the mechanisms remain
unknown. Monocytes and macrophages can differentiate into
osteoclasts in the presence of inflammatory cytokines such
as IL-6, IL-1, and TNF-α via activation of the RANKL/Akt
signaling pathway. Osteoclastogenic differentiation of these
cells is inhibited by oxidized low density lipoprotein or high
levels of inorganic phosphate (111, 112). In the atherogenic
ApoE–/– mice as well, macrophages transdifferentiate into
osteoclasts via the Runx2/RANKL axis. Consistent with
this, macrophages derived from human peripheral blood
mononuclear cells differentiate into osteoclasts expressing
cathepsin K and TRAP, and their calcium resorption activity
is controlled by N-acetylglucosamine-1-phosphate transferase
alpha and beta subunits (113). In addition, macrophages
can effectively decalcify ectopic deposits by overexpressing
carbonic anhydrase 2, which is silenced in mice with medial
calcification in small arteries (114). Vascular progenitor cells
also differentiate into osteoclast-like cells in the calcified
lesions. The Sca-1+/PDGFRa- progenitor cells from mouse
aorta differentiate into functional osteoclast-like cells in vitro
in the presence of suitable factors, indicating their bipotent
differentiation potential. In addition, Sca-1+/PDGFRa- cells
implanted subcutaneously in C57 mice and atherogenic
ApoE–/– mice differentiated into osteoclast-like cells in the
presence of PPARγ, resulting in reduced calcium scores and

calcification volume, suggesting a suitable therapeutic strategy
for vascular calcification (39). Co-culture of calcified elastin
and bone-marrow-derived osteoclast-like cells decreased
significantly calcium content of the calcified elastin without
elastin degradation and subcutaneous transplantation in rat of
the mixture containing pure aortic elastin and osteoclast-like
cells limited elastin calcification compared to control group
(40). Bas et al. and Qiao et al. also found that osteoclast-like
cells and macrophages inhibited and reversed calcification
through mineral resorption (32, 38). However, the exact
role of osteoclast-like cells in vascular calcification is largely
ambiguous. RNA-seq analysis of rabbit atherosclerotic plaques
showed enrichment of genes and KEGG pathways related to
osteoclast differentiation, which have a bidirectional impact
on osteoblast differentiation (115). In another study, knocking
out Runx2 in VSMCs decreased RANKL expression, osteoclast
numbers and the severity of calcification. Furthermore,
VSMCs co-cultured with RANKL-overexpressing bone
marrow-derived macrophages differentiated into osteoclast-
like cells and increased vascular calcification (116). Thus,
the role of osteoclast-like cells in vascular calcification needs
further clarification.

THE POTENTIAL OF CELL-BASED
THERAPEUTIC STRATEGIES FOR
VASCULAR CALCIFICATION

Over the years, great progress has been obtained about
the pathogenesis of vascular calcification, but the treatment
strategies for vascular calcification are limited. As discussion
above, osteoblast-like cells play an important role in vascular
calcification. Owning the role of osteoblast-like cells, many
researches showed inhibition of osteogenic differentiation of
VSMCs or recovery of contractile phenotype of VSMCs
ameliorated vascular calcification both in vitro and in vivo
(117–119). Lin et al. also reported SMC-specific Runx2
knockout significantly reduced vascular osteochondrogenesis
and calcification inmouse (10). These results suggest it is possible
to treat vascular calcification at cellular level by regulating
phenotype changes of VSMCs. In addition, owing mineral
resorption capacity of osteoclast-like cells, osteoclasts efficiently
remove depositedminerals from calcified elastin both in vitro and
in vivo (40). Co-culture of macrophages and VSMCs, inhibition
of macrophages differentiated into osteoclasts contributed to
VSMCs calcification. Furthermore, Barinda et al. found also
macrophages reversed ectopic calcification in extracellularmatrix
through overexpressing carbonic anhydrase 2, which mediates
hydrogen ions formation inducing mineral dissolution (114).
In a mouse model of ectopic calcification, promoting the
differentiation of Sca-1(+)/PDGFRα (-) progenitor cells with
a PPARγ agonist into osteoclast-like cells attenuated ectopic
calcification severity (39). These studies indicate osteoclast-
like cells—and macrophage-based vascular calcification cell
therapy has potential. However, Gbaguidi et al. reported
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macrophages near calcium deposits were deficient in RANKL-
RANK axis and cathepsin K hindering their ability to reabsorb
minerals in human atherosclerotic plaques (120). Recently,
MSC therapy has been developed in many areas, which is a
new strategy for treatment of vascular calcification. Calcified
VSMCs induced with β-GP were cultured with conditioned
media from MSCs and mineral deposition in VSMCs was
inhibited, which was associated with inactivation of the BMP2–
Smad1/5/8 signaling pathway and suppression of osteogenic
phenotype, inflammation, and apoptosis (97, 98). Exosomes
from MSCs were used to culture VSMCs and inhibited high
phosphorus-induced VSMCs calcification (121). To similar these
studies, indirect co-culture of VSMCs and MSCs in a transwell
system reduced also VSMCs calcification involving in inhibiting
of wnt signaling pathways (122). These researches suggest
MSCs regulate vascular calcification in a paracrine manner.
In vivo, adipose-derived MSCs were injected into a rat model
of chronic kidney disease, which inhibited the progression
of vascular calcification (123). However, some studies also
reported MSCs have the potential of osteogenic differentiation
(124). BMSCs transplantation promoted vascular calcification
in hyperlipidemic rats subjected balloon injury and MSCs were
implanted in c57BL/6 mice and Apoe–/– mice can form bone
(93, 95). Taken together, cell treatment for vascular calcification
based on osteoclast-like cells or macrophages and even MSCs is
possible, but there are still some controversies and more research
is needed.

FUTURE RESEARCH

Although the potential sources of osteoblast-like cells in calcified
lesions have been identified, the transdifferentiation of vascular
cells into osteoblast-like cells is more complex and needs
further research. Different subsets of VSMCs and ECs had been
identified in vascular walls, and the VSMCs located in different
segments of the aorta originate from different embryo layers.
The obvious question herein is whether specific VSMC and
ECs subsets are wired to differentiate into osteoblast-like cells.
Both VSMCs and ECs undergo a phenotypic trajectory during
transdifferentiation into osteoblast-like cells. The underlying
molecular mechanisms remain to be elucidated, especially during
early phenotypic transition. Limited number of osteoclast-like
cells have also been identified in calcified arteries, especially
in areas of severe calcification. Recent studies show that
osteoclast-like cells promote atherosclerotic calcification in
Apoe–/– mice and rabbits, although others have correlated
increased number of osteoclast-like cells with atherosclerotic
decalcification. Therefore, the exact role and origin of these cells
are ambiguous, and have to be elucidated. Osteoclasts have bone
resorptive activity, and an imbalance between osteoblastogenesis
and osteoclastogenesis is present in vascular calcification. It
remains to be seen whether osteoclasts or osteoclast-like cells
are a promising therapeutic strategy for vascular calcification,
and the most pressing question in this regard is to optimize the
differentiation of vascular wall cells into osteoclast-like cells.

FIGURE 1 | Summary of the origin and role of osteoblast-like cells and osteoclast-like-cells in vascular calcification. Vascular calcification is common in older adults,

patients with chronic kidney disease, diabetes, and atherosclerosis. During the formation of vascular calcification, many cells differentiated into osteoblast-like cells or

chondrocytes-like cells, including VSMCs, ECs, fibroblasts, pericytes, MSCs and progenitors. They express osteoblastic differentiation transcription factors and bone

matrix proteins as well as secrete exosomes and matrix vesicles contributing to the development and progression of vascular calcification. Some cells can also

differentiate into osteoclast—like cells, including some MSCs or progenitors, macrophages. They play a role in demineralization of the vascular calcification. The

reduction of osteogenic phenotype cells and the increase of mineral reabsorption cells may be a strategy for vascular calcification cell therapy. VSMCs, vascular

smooth muscle cells; ECs, endothelial cells; MSCs, mesenchymal stem cells; MV, matrix vesicles; RUNX2, RUNX family transcription factor 2; MSX, msh homeobox;

SOX9, SRY-related high mobility group-box gene9; OSX, Sp7 transcription factor; ALP, alkaline phosphatase; OC, osteocalcin; BSP, bone sialoprotein; OPN,

osteopontin; TRAP, acid phosphatase 5, tartrate resistant; CA2, carbonic anhydrase 2.
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CONCLUSIONS

Vascular calcification is a cell-mediated, reversible and active
regulated process resembled to bone mineralization. Osteoblast-
like cells and limited number of osteoclast-like cells have been
identified in calcified lesions (Figure 1). While the former
promote calcification of the arterial walls, the latter have a
demineralizing effect. Therefore, tracing the origin of these
cells and the trajectory of their phenotypic remodeling, along
with identification of core regulatory molecules, can further
elucidate the mechanism of vascular calcification and reveal new
therapeutic targets.
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