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Vegetation history in tropical Africa is still to date hardly known and the drivers
of population differentiation and speciation processes are little documented. It has
often been postulated that population fragmentations following climate changes have
played a key role in shaping the geographic distribution patterns of genetic diversity
and in driving speciation. Here we analyzed phylogeographic patterns (chloroplast-DNA
sequences) within and between eight (sister) species of widespread rainforest herbs
and lianas from four genera of Marantaceae (Halopegia, Haumania, Marantochloa,
Megaphrynium), searching for concordant patterns across species and concordance with
the Pleistocene refuge hypothesis. Using 1146 plastid DNA sequences sampled across
African tropical lowland rainforest, particularly in the Lower Guinean (LG) phytogeographic
region, we analyzed intra- and interspecific patterns of genetic diversity, endemism and
distinctiveness. Intraspecific patterns of haplotype diversity were concordant among most
species as well as with the species-level diversity pattern of Marantaceae. Highest values
were found in the hilly areas of Cameroon and Gabon. However, the spatial distribution of
endemic haplotypes, an indicator for refuge areas in general, was not congruent across
species. Each proposed refuge exhibited high values of endemism for one or a few species
indicating their potential role as area of retraction for the respective species only. Thus,
evolutionary histories seem to be diverse across species. In fact, areas of high diversity
might have been both refuge and/or crossing zone of recolonization routes i.e., secondary
contact zone. We hypothesize that retraction of species into one or the other refuge
happened by chance depending on the species’ distribution range at the time of climate
deterioration. The idiosyncratic patterns found in Marantaceae species are similar to those
found among tropical tree species, especially in southern LG.
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INTRODUCTION
Vegetation history in tropical Africa is still to date hardly known
and the drivers of speciation and population differentiation pro-
cesses are little documented. Hypotheses on the diversification of
the Afrotropical flora include allopatric differentiation/speciation
driven by population fragmentation following Pleistocene climate
changes (Robbrecht, 1994; Sosef, 1994; Maley, 1996) and para-
patric differentiation/speciation across ecological gradients (e.g.,
temperature and precipitation gradients; Fjeldsa and Lovett, 1997;
Vande Weghe, 2004; Heuertz et al., 2013). Phylogeographic stud-
ies within and between closely related species might shed new
light on this matter as indicated by similar studies in temperate
regions (Taberlet et al., 1998; Schönswetter et al., 2005).

Palynological studies (Maley and Brenac, 1998; Dupont et al.,
2000; Bonnefille, 2007; Ngomanda et al., 2009; Dupont, 2011)
and palaeo-environmental reconstructions (Anhuf et al., 2006)
suggest a repeated fragmentation of the tropical forest in Africa
due to (glacial-interglacial) climate oscillations for the last million
years. For example, during the African Humid Holocene period

(c. 6000–9000 years BP) a single forest block extended from West
to Central Africa beyond the current forest cover limit, while
the forest was presumably highly fragmented and reduced in
size during the last glacial maximum (c. 19000–26000 years BP).
This might have led to population fragmentation followed by
the independent evolution of the isolated populations through
mutation and drift and ultimately the establishment of species.
Alternatively, and/or simultaneously, isolated populations might
have adapted to different climatic conditions ultimately form-
ing ecologically different species. Indeed, within Lower Guinea
(LG, i.e., the western part of the Central African rainforest block,
identified as a phytochorion by White, 1979, Figure 1), climatic
heterogeneity is characterized by a marked W-E precipitation
gradient from the Coast to the inland and a North-South sea-
sonal inversion at a latitude c. 2◦N (Leroux, 1983; Vande Weghe,
2004).

Recently, comparative phylogeographic studies of central
African trees revealed a partial congruence of phylogeographic
patterns with postulated refugia (Hardy et al., 2013; Heuertz et al.,
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FIGURE 1 | Pattern of species diversity of Marantaceae in tropical Africa

based on Schnell (1957), Dhetchuvi (1996), Jongkind (2008) and Ley and

Claßen-Bockhoff (2012). Postulated refugia after (Maley, 1996); DRCongo,

Democratic Republic of Congo; RCongo, Republic of the Congo. Inset shows
phytochoria after (White, 1979): UG, Upper Guinea; LG, Lower Guinea; C,
Congolia.

2013; Dauby et al., 2014a). However, despite the occurrence of
some common phylogeographic features, each species displayed
an original pattern, especially in Gabon, suggesting idiosyncratic
evolutionary histories. It has been hypothesized that this is due to
less severe changes in forest cover reduction in this area during
climate oscillations (Dupont et al., 2000; see also Holstein and
Renner, 2011).

Here we investigate whether similar genetic patterns as so far
detected in tropical African trees might also be found in peren-
nial herbs and lianas from the forest understorey. We might
expect that, compared to trees, phylogeographic patterns of herbs
and lianas mirror younger historical events due to presumably
shorter life cycles (Putz, 1990; Gerwing, 2004; Brandes et al.,
2011). Furthermore, general patterns might be more structured
in herbs than in trees (see e.g., GST in nuclear markers in Nybom,
2004) due to a more patchy community structure and potentially
smaller dispersal distances of pollinators and dispersers in the
tropical understorey (for trees: <14 km, Ward et al., 2005; 100 m–
100 km, Carbone et al., 1999; for understorey shrub: 10–20 m,
Zeng et al., 2012).

More specifically, we perform in Lower Guinea a compara-
tive phylogeographic study of eight perennial herbs and lianas
of the family Marantaceae. We search for (1) congruent patterns
across species that might have been driven by a common vegeta-
tion history, and (2) congruence of these patterns with postulated
rainforest refugia that might support the importance of these
areas for species survival and population differentiation.

MATERIALS AND METHODS
SPECIES STUDIED AND SAMPLING
The Marantaceae (30 genera) are a pantropical family of peren-
nial herbs and lianas of the understorey and gaps of lowland

rainforest (0–1500 m) with highest species diversity found in
America (∼450 spp.) followed by Asia (∼50 spp.) and Africa
(∼40 spp.) (Dhetchuvi, 1996; Andersson, 1998; Kennedy, 2000;
Suksathan et al., 2009; Ley and Claßen-Bockhoff, 2011). Each
genus of the family is endemic to one continent except Halopegia
and Thalia (Andersson, 1998). Phylogenetic investigations sug-
gest a split of this family from its sister family Cannaceae some 95
± 5 Ma ago. The family then started to diversify ca. 63 ± 5 Ma ago
(Kress and Specht, 2005) in the late cretaceous with the establish-
ment of the first tropical everwet habitats in the current tropics
(Willis and McElwain, 2002). The Marantaceae are thus proba-
bly not a Gondwanan group, i.e., Marantaceae are not distributed
pantropically due to vicariant events ca. 110 Ma ago (Kearey and
Vine, 1996). Biogeographic analyses suggest instead the occur-
rence of several independent dispersal events between continents
followed each time by intra-continental speciation resulting in
several independent species clades per continent (Prince and
Kress, 2006). In continental Africa the current distribution of the
Marantaceae family ranges from Senegal in the West to Tanzania
in the East following today’s limits of the tropical rainforest.
Highest species numbers are found in Gabon and Cameroon
(Figure 1). Distribution ranges of individual species vary from
widespread (equaling the distribution of the whole Marantaceae
family in Africa) to restricted, either to the West or East of the
Dahomey gap and/or to Cameroon and/or Gabon (Dhetchuvi,
1996).

The Marantaceae species differ from their sister family
Cannaceae by a pulvinus and an explosive pollination mechanism
(Claßen-Bockhoff, 1991; Kennedy, 2000). It is a highly diverse
family with regard to species number and adaptations to differ-
ent pollinators and dispersal agents (Kennedy, 2000; Clausager
and Borchsenius, 2003; Locatelli et al., 2004; Ley, 2008; Ley and
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Claßen-Bockhoff, 2009). The species of Marantaceae show typi-
cal characteristics of plants from the tropical understory such as
self-compatibility (Halopegia azurea even autogamous, Ley and
Claßen-Bockhoff, 2013), clonality via rhizomes (Marantochloa
congensis additionally via vivipary (bulbils), Kennedy, 2000) and
animal pollination and dispersal (Ley, 2008; Ley and Claßen-
Bockhoff, 2009).

For the current study eight species from four different genera
with different growth forms, distribution ranges and pollinators
were chosen (Table 1). Sampling of leaf material for genetic anal-
yses was envisioned to cover the whole distribution area of each
species. However, for all species sampling was better in Cameroon
and Gabon and only fragmentary in West Africa (i.e., Upper
Guinean phytochorion) and the Congo Basin (i.e., Congolian
phytochorion). We thus here used the entire dataset including
West Africa and the Congo Basin for the description of the phy-
logeographic pattern of each species and then limited the dataset
to Lower Guinea, when comparing the phylogeographic pattern
qualitatively and quantitatively among species.

DNA EXTRACTION AND AMPLIFICATION
For the eight species we used sequences from the chloroplast
(cp) inter-genic spacer trnC-petN1r using the primers trnC
5′-CCAGTTCAAATCTGGGTGTC-3′ (modified from Demesure
et al., 1995) and petN1r 5′-CCCAAGCAAGACTTACTATATCC-
3′ (Lee and Wen, 2004). For Marantochloa congensis an addi-
tional marker (psbA-trnH) was amplified to increase resolution,
using the primers psbA 5′-GTTATGCATGAACGTAATGCTC-3′
and trnH2 5′-CGCGCATGGTGGATTCACAATCC-3′ (Sang et al.,
1997; Tate and Simpson, 2003). The genetic data for the gen-
era Haumania and Marantochloa was updated from Ley and
Hardy (2010, 2014). For the third species of the genus Haumania
(H. leonardiana) only sequences from six individuals from the
Democratic Republic of Congo (DRCongo) could so far be
obtained and were added to the haplotype network to show intra-
genus relationships but were not analyzed any further due to the
scarcity of available sequences. The phylogeographic patterns of
three species from the genera Halopegia and Megaphrynium were
characterized here for the first time. The production of sequences
for these species followed the protocol of DNA extraction,
amplification and sequencing described in Ley and Hardy (2010).

GEOGRAPHIC DISTRIBUTION OF CHLOROPLAST HAPLOTYPES AND
PHYLOGENETIC NETWORKS
For each species chloroplast haplotypes were analyzed in DnaSP
Version 5.10 (Librado and Rozas, 2009) and their geographic dis-
tribution mapped. DNA haplotypes were submitted to Genbank
(for accession numbers see Supplementary Table 1). To obtain
the minimum number of mutations between haplotypes, a net-
work was established with the software Network 4.5.1.0 (www.

fluxus-engineering.com; Bandelt et al., 1999) using a maximum
parsimony method based on a median joining algorithm (MJ).
Networks were established per species and for entire genera to
identify possible plastid captures between closely related species
(Ley and Hardy, 2010, 2014). Nucleotide diversity, which rep-
resents the average number of nucleotide differences per site
between two sequences, was calculated in Arlequin (Excoffier
et al., 2009).

GRID-BASED STANDARDIZED MEASURES OF GENETIC DIVERSITY,
ENDEMISM AND DISTINCTIVENESS
For the comparison of geographic patterns of genetic diversity
between species at different scales in Lower Guinea we subdi-
vided the region into three different grid systems with cell sizes
of 0.75◦-, 1.5◦- and 3◦-sides (Supplementary Figure 1 for 0.75◦
and 1.5◦; 3◦ not shown). Given that a minimum of three sam-
ples was necessary per species and grid cell to compute diversity
indices (see below), smaller cells allowed higher spatial resolution
but at the cost of lower precision and higher loss of data in areas
were sampling was less dense (for numbers of individuals per grid
cell 0.75◦ and 1.5◦ see Supplementary Tables 2, 3).

Within cell diversity, endemism and distinctiveness
We computed several statistics quantifying genetic diversity for
each species within each cell: Nielsen’s estimator of the effec-
tive number of haplotypes NAe (Nielsen et al., 2003), the gene
diversity corrected for sample size He (Nei, 1978) and the mean
phylogenetic distance between individuals v (gene diversity with
ordered alleles, Pons and Petit, 1996). The different statistics
were computed with SPAGeDi Version 1.4 (Hardy and Vekemans,
2002). The degree of endemism of each haplotype was assessed
by the maximal distance between individuals carrying that hap-
lotype. We quantified the degree of haplotypic endemism, End,

Table 1 | Ecological information on the eight study species from the family Marantaceae.

Genera Species Abbr. N of species

studied (total per

genus◦+#)

Distribution Growth Pollinator* Dispersal

range+ form+ agent1◦

Halopegia azurea HaloAzu 1(1) GC herb Bee (Halictidae) no data

Haumania danckelmaniana
liebrechtsiana

HauDanck HauLieb 2(3) C, LG liana Bee (Xylocopa) gravity

Marantochloa congensis incertifolia
monophylla

MarCong MarIncert
MarMono

3(16) GC, LG, C, LG herb Bee (Amegilla) water, monkeys

Megaphrynium macrostachyum
trichogynum

MegaMacro
MegaTrich

2(4) GC, LG herb Bee + Bird monkeys

Abbr., Abbreviation; N, number; #Schnell, 1957; 1Tutin and Fernandez, 1993; +Dhetchuvi, 1996; ◦Ley, 2008; *Ley and Claßen-Bockhoff, 2009. Phytochoria after

White, 1979: C, Congolia; GC, Guineo-Congolian; LG, Lower Guinea; UG, Upper Guinea.
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per cell and species as the proportion of individuals carrying hap-
lotypes with a maximal geographic extension of 200 km. Finally,
for each species, the level of phylogenetic distinctiveness of each
cell with respect to the other ones was computed following Dauby
et al. (2014a). To this end, for each pair of cells (i and j), the mean
phylogenetic distance between individuals drawn from i and j (vij)
was computed, as well as the spatial distance between the cen-
troids of individuals belonging to i and j (dij). S’ij, the residuals
of the regression of vij on ln(dij), or the centered vij values them-
selves if there was no significant positive correlation between vij

and ln(dij) according to a Mantel test, were then averaged over
all pairs involving one particular cell, S’i, providing a measure of
the phylogenetic distinctiveness of that cell above or below the
average across all cells (Petit et al., 2003; Dauby et al., 2014a).

Differentiation statistics
Global differentiation statistics GST and NST among cells (for
cells with at least three individuals) were computed for each
species. GST accounts for differences in haplotype frequencies
while NST additionally accounts for the phylogenetic distances
between haplotypes. To test if there was a phylogeographic signal,
characterized by NST > GST, permutation tests were performed
in SPAGeDi Version 1.4 (Hardy and Vekemans, 2002).

CONGRUENCE OF PHYLOGEOGRAPHIC PATTERNS AMONG SPECIES
Congruence of phylogeographic patterns for each pair of
species was evaluated (i) by comparing within cell diversity
and endemism metrics using Pearson correlation tests, and (ii)
by comparing matrices of pairwise standardized distinctiveness
among grid cells (S’ij) using Mantel tests (see Dauby et al.,
2014a). To obtain a multispecies test of overall geographic con-
gruence of local diversity, endemism or distinctiveness, these
metrics were first centered (i.e., minus their mean value) and
reduced (i.e., divided by their standard deviation) within species,
and then differences among grid cells were tested using a

One-Way ANOVA where grid cells were used as factor (due
to missing data, species could not be added as another fac-
tor). To represent diversity patterns on a map, centered and
reduced diversity and endemism metrics were shown per cell and
species, or were averaged over species to represent multi-species
trends.

RESULTS
GENETIC POLYMORPHISM
The numbers of individuals sequenced per species ranged from 75
to 166, totaling 1046 individuals (991 in Lower Guinea, Table 2)
sequenced for trnC-petN1r and 110 for psbA-trnH (Lower Guinea
only, Table 2).

The trnC-petN1r region had an average length of about
800 bp (including indels). The number of SNPs (counting
indels as single mutations) per species varied between 11
(Halopegia azurea) and 27 (Marantochloa monophylla) and
the number of haplotypes per species varied between seven
(Megaphrynium trichogynum) and 19 (Marantochloa mono-
phylla, see Table 2). Overall nucleotide diversity ranged from
0.000846 ± 0.000690 in Halopegia azurea to 0.007289 ± 0.003925
in Marantochloa monophylla (Table 2). Average genetic diver-
sity per grid cell measured as He was highest in Haumania
danckelmaniana (Table 3). Genetic diversity measured as v tak-
ing genetic distance between haplotypes into account was
highest in Marantochloa monophylla and endemism per grid
cell (End) was highest in M. incertifolia. Measures of genetic
diversity were independent of grid cell size (Supplementary
Table 4).

For M. congensis psbA-trnH sequences reached a length of
about 900 bp (including indels and reverse mutations). Reverse
mutations were excluded in the following analyses leaving nine
mutations, seven haplotypes (Table 2) and a network without
loops with a maximum of two mutations between adjacent
haplotypes (Supplementary Figure 2).

Table 2 | Sample sizes and genetic diversity at the trnC-petN1r and psbA-trnH2 region in the eight study species from the Marantaceae.

Species N (whole tropical

Africa/Lower

Guinea)

SNP (incl. Nucleotide N of haplotypes

indels) diversity × 103

whole tropical Africa (total/private) Lower Guinea (total/private)

trnC-petN1r

HaloAzu 121/115 11 0.846 ± 0.690 11 8

HauDanck 121/121 16 1.575 ± 1.060 14/10 14/10

HauLieb 110/110 20 3.268 ± 1.894 10/6 10/6

MarCong 194/169 61 3.619 ± 2.149 15/11 15/9

MarIncert 81/81 22 6.901 ± 3.755 13/6 13/6

MarMono 118/109 60 7.289 ± 3.925 19/16 19/15

MegaMacro 162/162 22 4.897 ± 2.852 16/15 16/15

MegaTrich 131/131 13 1.022 ± 0.900 7/6 7/6

Total 1038/998

psbA-trnH2 110/110 9 5.754 ± 3.152 7 7

MarCong

For abbreviations of species names see Table 1. N, number of individuals; SNP, number of single nucleotide polymorphisms. Haplotypes (total/private): “total”

includes haplotypes shared between sister species from the same genus. “Private” considers only haplotypes found in the respective species.
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Table 3 | Within cell diversity pattern at the trnC-petN1r region in eight Marantaceae species in Lower Guinea for grid cell size 0.75◦ (average

across grid cells, [range]).

Species Total sample size N cells with >2 individuals Mean [range] per cell of

N individuals NAe He v End

HalAzu 91 18 5.06 [3,11] 1.41 [1,3.13] 0.19 [0,0.71] 0.26 [0,0.86] 0.09 [0,1]

HauDanck 115 19 6.05 [3,15] 1.92 [1,10] 0.37 [0,1] 0.63 [0,2.2] 0.16 [0,0.8]

HauLieb 98 15 6.53 [3,16] 1.36 [1,3.04] 0.21 [0,0.67] 0.81 [0,5] 0.11 [0,0.54]

MarCong 141 21 6.71 [3,15] 1.61 [1,5.05] 0.30 [0,1] 0.84 [0,7.33] 0.10 [0,1]

MarIncert 73 9 8.11 [3,20] 1.61 [1,3.57] 0.24 [0,0.8] 1.04 [0,3.69] 0.55 [0,1]

MarMono 95 18 5.28 [3,12] 1.76 [1,4.61] 0.27 [0,1] 1.29 [0,8] 0.12 [0,0.78]

MegaMacro 140 22 6.36 [3,22] 1.72 [1,4.61] 0.34 [0,1] 0.99 [0,4] 0.17 [0,1]

MegaTrich 113 21 5.38 [3,11] 1.50 [1,2.27] 0.29 [0,0.67] 0.38 [0,2.16] 0.02 [0,0.2]

N, number; NAe, Effective N of alleles (Nielsen et al., 2003); He, gene diversity corrected for sample size (Nei, 1978); v, mean phylogenetic distance between

individuals (Pons and Petit, 1996); End, mean proportion of individuals carrying endemic alleles (haplotype range < 200 km). For abbreviations of species names see

Table 1.

Haplotype networks based on trnC-petN1r required 11–27(32)
mutations (without torso) within species and 11–38(56) muta-
tions within genera. Haplotypes did never show a high divergence
neither within nor between congeneric species (Figures 2, 3).
Within species haplotypes differed from the closest other haplo-
type generally by one mutation. Only few exceptions presented
a distance of up to three mutations between closest haplotypes
within species. All species networks included loops except for
Halopegia azurea, Haumania liebrechtsiana and Marantochloa
incertifolia. Marantochloa monophylla was the only species that
showed two intraspecific divergent lineages. Between species,
maximum distances between nearest haplotypes ranged between
two to three mutations. In all networks we found a few individ-
uals that belonged to one morphological species but exhibited
the same haplotypes as individuals from the other morphological
species.

PHYLOGEOGRAPHIC PATTERNS WITHIN EACH GENUS AND SPECIES
Halopegia azurea was the species with the lowest haplotype
diversity (11 haplotypes) resulting in a simple network with-
out loops (Figure 2B). The only frequent haplotype was dis-
tributed over the whole Lower Guinean-Congolian range of the
species (Figure 2A). Localities with additional one to several rare
geographically restricted haplotypes divergent by one mutation
from the single widespread haplotype were found around the
Cameroonian Volcanic Line and the Chaillu Massif in Gabon. In
West Africa three divergent haplotypes were found. They were
most closely related (different by three mutations) to the rare
haplotype of the Cameroonian Volcanic Line.

The two species from the genus Megaphrynium presented
very different phylogeographic patterns. In Mega. trichogy-
num (Figure 2D) there was one widespread haplotype cover-
ing the whole distribution area of the species and another
frequent haplotype restricted to Gabon. The diversity cen-
ter in this species was found in the North of Gabon where
the frequent haplotypes overlapped in their distribution and
three rare haplotypes also occurred. Mega. macrostachyum pre-
sented four haplotypes (H1, 2, 9, 16) exclusive to different,
large geographic areas (Southwest Cameroon, Southwest Gabon

to DRCongo (Bas Congo), North to Northwest Gabon, East
Gabon/East Cameroon/Congos, Figure 2C). Each widespread
haplotype was co-occurring with closely related and geographi-
cally restricted haplotypes. This resulted in five areas of increased
haplotype diversity: the Cameroonian volcanic line, western
DRCongo, northern Gabon, coastal northwestern Gabon (near
Libreville) and the Cristal Mountains area in Gabon. Only five
Megaphrynium individuals out of 282 carried a haplotype typical
of the other species.

The spatial genetic structure of species from the genera
Haumania and Marantochloa were already discussed in previ-
ous publications (Ley and Hardy, 2010, 2014) but updated here
(Figure 3). Haumania danckelmaniana (Figure 3A) exhibited
three haplotypes each covering a different large geographic area
(Cameroon + northern Gabon, eastern Gabon, western Gabon).
Additionally, there were several geographically very restricted
haplotypes in localities found almost all over the species’ dis-
tribution range. H. liebrechtsiana (Figure 3B) carried the same
haplotypes as H. danckelmaniana in Gabon where both species
occur in sympatry. In the Congo basin H. liebrechtsiana carried
specific haplotypes: one widespread haplotype occurring from the
Atlantic coast in DRCongo to the Center of the Congo Basin and
several rare haplotypes being concentrated at the middle course
of the Congo river.

In the genus Marantochloa there were two distinct patterns
when comparing species. M. congensis (Figure 3D), the most
widespread species, had two widespread haplotypes found across
its entire distribution range and a few rare (locally restricted)
haplotypes concentrated along the coast of Ivory Coast, in the
Cameroonian Volcanic Line, in East DRCongo and in a cor-
ridor from the southern Chaillu Massif in Gabon to eastern
Cameroon. M. monophylla (Figure 3E) in contrast exhibited a
strong geographic pattern of two genetically distinct haplogroups,
one distributed along the Atlantic coast, the other one east of
that toward the Congo Basin. Major diversity centers were found
in mountain ranges: Cameroonian Volcanic Line and Ngovayang
(Cameroon); Cristal Mountains and the southern Chaillu Massif
(Gabon); and in the Albertine Rift Valley (Uganda) (for localities
compare Figure 1). Whereas, M. congensis and M. monophylla

www.frontiersin.org November 2014 | Volume 5 | Article 403 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Ley et al. Comparative phylogeography of Marantaceae in tropical Africa

FIGURE 2 | Geographic distribution of chloroplast haplotypes and

generic haplotype networks based on trnC-petN1r for the following

Marantaceae species. Halopegia azurea (A,B), Megaphrynium
macrostachyum (C,E), Mega. trichogynum, (D,E). Gray hatched line: species
distribution range. Sizes of circles are proportional to sample sizes at each
locality in the geographic maps and proportional to haplotype frequency in

the haplotype network. Frequent haplotypes are color-coded, rare haplotypes
are number-coded. Stippled lines throughout the networks delineate groups
of haplotypes according to the species in which they are usually found, but
haplotypes can also be shared among species. Red numbers along branches
are IDs of mutations, mv1 to mv2 indicate median vectors (Bandelt et al.,
1999).

did hardly share any haplotypes (only one at Mount Cameroon),
M. incertifolia (Figure 3F) shared half of its haplotypes with either
one or the other sister species, M. congensis and M. monophylla.
In western Cameroon and the Cristal Mountains there was one
haplotype (H10) shared between all three Marantochloa species
occurring there.

The fixation indices (GST: 0.15–0.77 and NST: 0.14–0.83,
Table 4) were higher in Haumania liebrechtsiana, Marantochloa
incertifolia and Megaphrynium macrostachyum and rather low in
Megaphrynium trichogynum. Fixation indices varied somewhat
according to grid cell size but the ranking of species was generally
fairly consistent. There was always a marked difference in GST and
NST between congeners: Mega. macrostachyum > Mega. trichogy-
num; H. liebrechtsiana > H. danckelmaniana; M. incertifolia > M.
monophylla > M. congensis. In most species a marginally signifi-
cant to very significant phylogeographic signal (NST > GST) could
be detected at least at one scale (0.75◦, 1.5◦, and/or 3◦) (Table 4).
The signal was most clear in M. congensis and M. monophylla.
No phylogeographic signal could be detected in Halopegia azurea,
Haumania liebrechtsiana and Megaphrynium trichogynum.

CONGRUENCE OF GENETIC DIVERSITY PATTERN AMONG SPECIES
As general geographic patterns of diversity were independent of
grid cell size, only results based on 0.75◦ grid cells are reported
here. Standardized effective numbers of alleles, gene diversity
and phylogenetic diversity per grid cell and species revealed a
significant geographic effect according to the ANOVA analyses
(NAe: F = 1.79, P = 0.01; He: F = 2.59, P < 0.001; v: F = 12.64,
P < 0.001). By contrast, the ANOVA test was non-significant for

the mean frequency of endemic haplotypes (End; F = 0.99, P =
0.49) and the genetic distinctiveness per grid cell (S’i; F = 0.86,
P = 0.69; for 1.5◦: F = 1.47, P = 0.12). Averaged standardized
effective numbers of haplotypes per cell across species showed
that diversity is highest in Cristal Mountains (Gabon) followed
by northern and southern Gabon and Cameroonian volcanic line
(Supplementary Figure 3, 4). By contrast south-western and east-
ern Gabon and coastal western and eastern Cameroon displayed
below-average diversity values. South-western Cameroon and the
DRCongo displayed close to average values. The multi-species
pattern for phylogenetic diversity (v) was similar (Supplementary
Figures 3, 4).

Comparing diversity patterns pairwise between species, the
Pearson correlation tests revealed congruence between Halopegia
azurea, Haumania danckelmaniana, M. incertifolia, M. congen-
sis and M. monophylla (Table 5, Supplementary Table 5) with
two main common centers of diversity in Gabon: the west-
ern Cristal Mountains area close to Libreville and the northern
Chaillu Massif (Figure 4, Supplementary Tables 6, 7). Diversity
centers of M. congensis are beside the Cameroonian volcanic line
in Cameroon, the Cristal Mountains area, the northern Gabon
and only observed in this species: the southern Chaillu Massif
of Gabon and the northern part of the RCongo (see Figure 4,
Supplementary Tables 6, 7). Furthermore, Mega. macrostachyum
and Mega. trichogynum were inter-correlated for NAe. These two
species showed many centers of genetic diversity well distributed
across Cameroon and Gabon. They shared the center of diversity
in the southwest of Gabon with H. liebrechtsiana and M. con-
gensis. Concerning pattern of endemism there is congruence
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FIGURE 3 | Geographic distribution of chloroplast haplotypes and

generic haplotype networks based on trnC-petN1r updated from Ley

and Hardy (2010, 2014). Haumania danckelmaniana (A, C), H. liebrechtsiana
(B, C), Marantochloa congensis (D, G), M. monophylla (E, G), M. incertifolia
(F, G). Gray hatched line: species distribution range. Sizes of circles are
proportional to sample sizes at each locality in the geographic maps and

proportional to haplotype frequency in the haplotype network. Frequent
haplotypes are color-coded, rare haplotypes are number-coded. Stippled lines
throughout the networks delineate groups of haplotypes according to the
species in which they are usually found, but haplotypes can also be shared
among species. Red numbers along branches are IDs of mutations, mv
indicate median vectors (Bandelt et al., 1999).

Table 4 | Global GST and NST for the eight study species in Lower Guinea.

Species Total Number of grid cells 0.75◦ 1.5◦ 3◦

0.75◦ all(>3indiv) 1.5◦ all(>3indiv) 3◦ all(>3indiv) GST NST GST NST GST NST

HalAzu 39 (18) 24 (16) 12 (10) 0.66 0.60 0.53 0.45 0.47 0.34

HauDanck 25 (19) 15 (12) 7 (7) 0.54 0.60 0.54 0.65* 0.58 0.60

HauLieb 24 (15) 12 (9) 9 (6) 0.67 0.70 0.58 0.65 0.59 0.67

MarCong 42 (21) 24 (18) 11 (10) 0.52 0.64* 0.57 0.83** 0.42 0.71*

MarIncert 16 (9) 9 (8) 9 (7) 0.75 0.82(*) 0.72 0.77(*) 0.77 0.83

MarMono 32 (18) 19 (12) 11 (7) 0.58 0.70(*) 0.54 0.71** 0.42 0.47

MegaMacro 39 (22) 23 (17) 11 (11) 0.60 0.69* 0.58 0.68* 0.62 0.68

MegaTrich 33 (21) 15 (12) 9 (8) 0.33 0.26 0.26 0.24 0.15 0.14

Test of significance for NST > GST : (*), marginally significant (p < 0.1); *, significant (p < 0.05); **, highly significant (p < 0.01). All the GST values were significantly

higher than 0 (p < 0.001). For abbreviations of species names see Table 1.
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Table 5 | Pearson correlation of the effective number of haplotypes (NAe, lower diagonal) and within-cell phylogenetic diversity (v, upper

diagonal) between species for grid cell size of 0.75◦.

HaloAzu HauDanck HauLieb MarCong MarIncert MarMono MegaMacro MegaTrich

HaloAzu 0.93** 0.63 0.42 0.18 0.69* 0.04 0.05

HauDanck 0.95** −0.07 0.85** 0.97** 0.62(*) 0.30 0.04

HauLieb 0.13 −0.30 −0.12 0.44 0.45 −0.33 −0.04

MarCong 0.51(*) 0.47 0.43 0.34 0.76* 0.30 −0.09

MarIncert 0.79* 0.95* 0.17 −0.05 0.71 0.52 0.03

MarMono 0.76* 0.55 −0.15 0.59(*) 0.81(*) 0.01 −0.33

MegaMacro 0.20 0.25 0.06 0.01 0.17 −0.03 0.39

MegaTrich −0.12 0.05 0.14 −0.10 0.32 −0.25 0.53(*)

(*), marginally significant (p < 0.1); *, significant (p < 0.05); **, highly significant (p < 0.01). For abbreviations of species names see Table 1.

FIGURE 4 | Geographic distribution of standardized (i.e., centered and

reduced) genetic diversity and endemism for eight Marantaceae species

in Lower Guinea for grid cell size 0.75◦◦◦. Effective number of haplotypes
(NAe) (A); mean phylogenetic distance between individuals (v ) (B); haplotypic
endemism (haplotype range <200 km, End ) (C); Genetic distinctiveness of
each grid cell (S’i ) (D). Distinctiveness above or below average is based on

standardized pairwise genetic distance (S’kij computed for each species)
among populations where genetic distance is estimated as the number of
mutational steps between two individuals drawn from two populations (vij ).
Species along barplots from left to right are: Halopegia azurea, Haumania
danckelmaniana, H. liebrechtsiana, Marantochloa congensis, M. incertifolia,
M. monophylla, Megaphrynium macrostachyum and Mega. trichogynum.
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between Marantochloa monophylla and Haumania liebrechtsiana
and between M. monophylla and M. incertifolia (the latter only at
0.75◦) as well as between Halopegia azurea and M. congensis and
between Halopegia azurea and H. danckelmaniana (but the lat-
ter only detectable at 1.5◦ grid because not enough shared cells at
0.75◦). Interestingly, there was no congruence in the patterns of
haplotypic endemism across species (Supplementary Table 8).

CONGRUENCE OF GENETIC DISTINCTIVENESS PATTERNS AMONG
SPECIES
The genetic distinctiveness per grid cell for each species is pre-
sented in Figure 4D. Above average levels of population distinc-
tiveness for three or more species are reached in the Cameroonian
volcanic line and in north-western Gabon (Libreville/coastal
Gabon and western Cristal Mountains). In contrast, South and
East Gabon, East Cameroon and DRCongo displayed always low
levels of distinctiveness for most species.

There were only very few species pairs that showed statis-
tically significant congruent patterns of genetic distinctiveness
among grid cells (S’ij); there were three at grid cell size 0.75◦
(Table 6, Megaphrynium macrostachyum with Marantochloa con-
gensis and Marantochloa monophylla, and Marantochloa mono-
phylla with Marantochloa congensis) and three at grid cell size 1.5◦
(Supplementary Table 9).

DISCUSSION
In this study, phylogeographic patterns of the plastid genome of
eight herb and liana species from the family Marantaceae were
compared in Lower Guinea. We expected that profound vegeta-
tion changes might have left their imprints in the distribution
pattern of genetic diversity of species, and that similar species
responses would lead to congruent phylogeographic patterns. In
our study, however, we did not find overall congruence in the pat-
tern of genetic diversity, endemism and distinctiveness across all
study species but rather multiple patterns characteristic for one
or a few species. Thus, there was not a uniform congruence of
genetic pattern with the putative rainforest refugia proposed by
Maley (1996). Our results indicate either idiosyncratic histories
of the chosen taxa, or that once congruent genetic patterns result-
ing from similar species responses to particular climatic changes
are already overlain by younger historical events (Alexandre et al.,

1998; Maley and Brenac, 1998; Maley, 2002) leaving new individ-
ual imprints in the genetic patterns of species. Here, compared
to tree species, phylogeographic patterns in herbs might reflect
younger evolutionary events due to their shorter life cycles (for
life cycles in perennial herbs/lianas see Putz, 1990; Gerwing, 2004;
Brandes et al., 2011).

GENETIC DIVERSITY AND DIFFERENTIATION BETWEEN SISTER
SPECIES IN LOWER GUINEA
In the eight Marantaceae species studied, the level of genetic
diversity at the plastid gene sequenced (7–19 haplotypes per
species, see also nucleotide diversity) was similar to that found for
the same plastid marker in tree species from Lower Guinea (6–
24 haplotypes per species, (Dauby et al., 2014a); for nucleotide
diversity see Heuertz et al., 2013). The high molecular diver-
sity found in Marantochloa monophylla was congruent with its
high morphological diversity – an exceptional morphological and
genetic diversity (NAe, v) was found in Ngovayang Mountain in
Cameroon. By contrast, genetic diversity was especially low in
Halopegia azurea, a selfing species (Ley and Claßen-Bockhoff,
2013). Although selfing should not per se affect the diversity of
maternally inherited genomes, it might enhance selective sweeps
by generating a global linkage between nuclear and cytoplasmic
genomes (Glemin et al., 2006), a possible explanation for the low
diversity observed in the plastid genome.

The divergence of haplotypes within and between Marantaceae
sister species was rather low (1–2 mutations) indicating a low
degree of interspecific molecular divergence, potentially due to
relatively recent speciation events. Species seem not to have yet
established strong species boundaries which was probably the
reason for the observation of recurrent hybridization events in
sympatric regions in almost all sister species pairs considered here
(see also Ley and Hardy, 2014).

SPATIAL GENETIC STRUCTURE AND PHYLOGEOGRAPHIC SIGNAL
WITHIN SPECIES
A spatial genetic structure was found in all species (see significant
GST values) indicating intra-specific population differentiation.
In addition, a significant phylogeographic pattern (NST > GST)
could be detected in five of the eight Marantaceae species. This

Table 6 | Results of Mantel test comparing pairwise standardized distinctiveness among grid cells (S’ij ) between species pairs for grid cell size

of 0.75◦.

HaloAzu HauDanck HauLieb MarCong MarIncert MarMono MegaMacro MegaTrich

HaloAzu 7 7 12 7 9 14 9

HauDanck 0.15 6 10 5 9 9 12

HauLieb −0.23 0 9 4 5 7 10

MarCong 0.4 −0.22 −0.39 7 10 12 9

MarIncert −0.31 −0.02 −0.05 −0.23 5 6 6

MarMono 0.08 0.14 0.02 0.35* −0.44 12 11

MegaMacro −0.03 −0.21 −0.11 0.6** 0.26 0.4* 14

MegaTrich 0.17 0.09 −0.07 −0.1 0.21 0.1 0.1

Upper diagonal: number of grid cells shared between species; lower diagonal: correlation coefficient. Significant values (p < 0.05) and highly significant values (p <

0.01) are written in bold and indicated by * and **, respectively. For abbreviations of species names see Table 1.
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implies that, for these species at least, some of their popu-
lations have evolved in isolation for long enough to generate
related haplotypes that tend to co-occur locally. Such phylo-
geographic pattern is expected if species survived in multiple
isolated refugia. Only Halopegia azurea, Haumania liebrechtsiana
and Megaphrynium trichogynum do not show such a signal. In
all three species the low number of haplotypes (<10) prevents
sufficient testing power.

Genetic differentiation between areas (GST) in the eight
Marantaceae species were comparable to values found in mater-
nally inherited markers in many other angiosperm taxa, including
tropical African trees (see Duminil et al., 2007; Dauby et al.,
2014a). This is in contrast to our expectation of more sub-
structuring in (perennial) herbs/lianas than in trees and may
indicate rather similar dispersal and population structure in both
growth form groups.

Within the Marantaceae, GST values seem to correlate super-
ficially with dispersal ability (see also Petit et al., 2003): the
GST was lowest in Megaphrynium trichogynum whose red fleshy
fruits are ape/monkey dispersed (Williamson et al., 1990; Tutin
and Fernandez, 1993; White and Abernethy, 1997), in Halopegia
azurea (dispersal mode still unknown) and in M. congensis
(see interpretation below), while it was highest in species of
Haumania liebrechtsiana with large, probably gravity dispersed
fruits, and in Marantochloa incertifolia with rather isolated occur-
rences and an extremely low production of flowers and fruits
(5–15 flowers per inflorescence flowering sparsely over a month
with a fruit set of 3–6%, see Ley, 2008; Ley and Claßen-
Bockhoff, 2013). Fruits are here dispersed by small birds and/or
water (Tutin, 1998; Ley, 2008). A rather low GST value in the
Marantaceae is presented by Mega. trichogynum (GST = 0.33).
However, there is no indication that its fruits are better dis-
persed than the ones of its sister species Mega. macrostachyum
(fruit morphology compare in Dhetchuvi, 1996) which presents
a much higher GST value. There are other contrasting GST val-
ues between sister species pairs (Table 4). However, we see a
possible explanation in terms of dispersal ability difference only
for the lower GST value found in M. congensis compared to
its sister species. The three investigated Marantochloa species
produce rather small amounts of fruits (see Ley and Claßen-
Bockhoff, 2013). M. congensis is the only species which addi-
tionally frequently propagates by vegetative means, producing
large quantities of bulbils which might be dispersed by water
and animals, potentially contributing to an efficient gene flow
between populations and a rapid clonal expansion of the species
distribution range (Kennedy, 2000; Ley, 2008). M. congensis is
the species with the largest current distribution range of the
three investigated Marantochloa species, occurring from West
Africa to eastern DRCongo (Dhetchuvi, 1996). The observation
of a shared, possibly ancestral haplotype in the Cameroonian
Volcanic Line and Cristal Mountains might suggest that the
three species originated there. We favor ancestral haplotype
over chloroplast capture, as we are dealing here with a haplo-
type in the center of the haplotype network between the three
species. Under this assumption, the much larger distribution
range of M. congensis might be explained by better dispersal
capacities.

CONCORDANCE OF OBSERVED GENETIC PATTERNS ACROSS SPECIES
AND WITH POSTULATED PLEISTOCENE REFUGIA IN LOWER GUINEA
We demonstrated congruent geographic patterns of diversity
across species: local genetic diversity is congruently high for six
out of eight study species in the Cristal Mountains area and low
for seven out of eight study species in eastern Cameroon, east-
ern and southern coastal Gabon, and Bas Congo (Mayumbe)
in DRCongo. By contrast, values of above-average frequency of
endemic haplotypes can almost be found in every grid cell when
taking all species together. However, few species pairs display
correlated patterns of endemic haplotype frequencies. Similarly,
there is no general correlation in distinctiveness indices among
Marantaceae species, while such a correlation was reported
among five of eight tree species for Lower Guinea (Dauby et al.,
2014a).

To interpret these patterns, it is worth noting that endemic
haplotypes are potentially the best indicators for refuge areas in
general (stable populations are expected to accumulate endemic
haplotypes that have not the opportunity to emigrate), and dis-
tinctiveness indices might be best indicators of refuge areas that
are not source of adjacent areas. High diversity is expected in
refuge areas with historically large population sizes (but not
under small but stable population size), but also in areas recol-
onized from multiple differentiated populations (secondary con-
tact zones), a situation where phylogenetic diversity (v) should
peak (Petit et al., 2003). As we found interspecific congru-
ence in genetic diversity but not in endemism and distinctive-
ness, the data do not support a hypothesis whereby the dif-
ferent Marantaceae species would have primarily survived in
the same set of refugia during periods of climate deterioration.
Nevertheless, the correlation in diversity indices might indicate
that there are some shared secondary contact and/or refuge areas.
In fact, some high diversity areas, like the Cristal Mountains,
might have been both a refuge for some species and a secondary
contact zone for other species, or even the two for some species (if
we imagine that a refuge area becomes “invaded” by an expanding
population from another origin).

Overall, we found marked differences in patterns of haplo-
type distribution across species: (i) Some species are characterized
by mostly parapatric distributions of their frequent haplotypes
(H. danckelmaniana, Mega. macrostachyum and M. monophylla;
plus H. liebrechtsiana though in this case the pattern may be due
to plastid capture). Here a common pattern becomes apparent
distinguishing Cameroon from south-western Gabon and eastern
Gabon. Frequent haplotypes often overlap in their distribution
range in the Mount Cristal area. Each of these individual dis-
tribution ranges overlaps with a different postulated refugium
allowing two different scenarios: either an expansion of each of
the frequent haplotypes from a central refugium in the Cristal
Mountains area into different directions to Cameroon, south-
western Gabon and eastern Gabon, or the other way round with
an expansion from three different refugia with an overlap today
in the Cristal Mountains area. A similar pattern of restricted hap-
lotype distribution ranges was also found in some tree species
and has here been attributed to the retraction of these species
to different refugia. In trees it might additionally have been cou-
pled with an adaptation to different climatic conditions evoked
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by the East-West rainfall gradient and the North-South seasonal
gradient in Lower Guinea (Duminil et al., 2013; Heuertz et al.,
2013). (ii) A second haplotype distribution pattern is character-
ized by a wide distribution of one or a few frequent haplotypes
over the entire distribution range of a species (Halopegia azurea,
M. congensis, Mega. trichogynum). These species might have a sin-
gle locality of origin from where an expansion took place across
the current distribution range (though a second refugium but
without visible expansion would explain the endemic haplotypes
found in the Cameroonian Volcanic Line for M. congensis). So
far the detected diversity and endemism pattern in these three
species suggest a refugium within Lower Guinea based on high
diversity and endemism e.g., Cristal Mountains with or with-
out Chaillu Massif and/or Cameroonian Volcanic Line and/or
eastern Cameroon depending on species. The only study species
so far showing evidence of a refugium outside Lower Guinea
in DRCongo is H. liebrechtsiana (see also Ley and Hardy, 2010,
2014). As already found in trees (see Hardy et al., 2013) major
rivers seem not to play an important role as barriers to gene flow
in Marantaceae in contrast to evidence found in animals (e.g.,
Gonder and Disotell, 2006; Anthony et al., 2007; Nicolas et al.,
2011).

There is repeatedly genetic evidence in species for the Cristal
Mountains being a refuge area (see Koffi et al., 2011; Dauby et al.,
2014b). The fact that in the Marantaceae the high diversity of the
Cristal Mountains area is not associated with high endemism for
at least half of the species suggests that the high diversity is best
explained by a recolonization from several sources, rather than
by a refuge effect, at least for these species. Note however that an
area might be a refuge and at the same time have been “invaded”
by other sources.

The Cameroonian volcanic line is a locality well-known for its
high species diversity and endemism level, which has been inter-
preted as a signature of a past forest refuge (see Sosef, 1994; Maley,
1996). In the Marantaceae, only species with large distribution
ranges from Lower Guinea to West Africa present high genetic
diversity and/or distinctiveness and/or endemism values here.
This is in accordance with patterns found in widespread trees
(see also Lowe et al., 2010) and might be due to a refuge effect,
i.e., accumulation of mutations in stable populations, and/or to
a topographical effect, i.e., differentiation between geographi-
cally close populations isolated by mountainous barriers (see also
Dauby et al., 2014a).

Assuming that the limited concordance between phylogeo-
graphic patterns of Marantaceae species in Lower Guinea reflects
their idiosyncratic histories of past population fragmentation,
one may question the relative importance of chance (species
survived by chance in one or several refugia following forest
fragmentation) and ecological adaptations (e.g., species survived
only in refugia reflecting the optimum of their climatic toler-
ance). As all species are currently co-occurring in all potential
refugia without a marked adaptation to different habitats and/or
climate regimes (see Dhetchuvi, 1996) we favor the hypothesis
that demographic stochasticity affecting population survival as
well as rare long distance dispersal driving recolonization routes
played a major role in the resulting phylogeographic patterns.
For tree species, congruence of genetic distinctiveness patterns

was observed in northern Lower Guinea but not in southern
Lower Guinea (Dauby et al., 2014a). This pattern was tentatively
explained by a less drastic forest cover reduction in southern
Lower Guinea where multiple micro-refugia (e.g., gallery forests)
would have remained (see Kingdon, 1980; Dupont et al., 2000;
Leal, 2001). The high ecological drift associated with these micro-
refugia would imply that each one would have hosted a limited
number of typical rainforest species, which might have led to
the observed idiosyncratic demographic histories of species. This
hypothesis might also hold for our Marantaceae species.

A current limitation for the interpretation of our data is the
difficulty to date population divergence or admixture and provide
a confirmation that such events are concomitant with Pleistocene
climate changes and not earlier or later events of climate change.
Plastid markers are not ideal for this purpose due to their rel-
atively low mutation rate. Additional studies based on nuclear
sequencing should bring new insights.

BEYOND LOWER GUINEA—THE ROLE OF UPPER GUINEA AND
CONGOLIA
Assessing the importance of the areas adjacent to the East and the
West of Lower Guinea (Congolia and Upper Guinea, respectively)
for speciation and population differentiation is still difficult due
to a lack of sufficient data. Patterns so far documented indicate
that these areas have widespread haplotypes but also endemic
haplotypes. In Upper Guinea several refugia were postulated by
Maley (1996, see Figure 1) and the dry Dahomey gap in Benin
might play an important role in isolating Upper and Lower
Guinea (see Hardy et al., 2013), although the two forest blocks
were probably connected during the Humid Holocene period
(c. 6–9 kr BP). This can explain why several species are still
restricted to Western Africa today (White, 1979; for Marantaceae
see Schnell, 1957; Jongkind, 2008) and endemic haplotypes are
found there (e.g., Halopegia azurea, see also Duminil et al., 2013)
advocating the uniqueness of this area. Similarly, the Congo Basin
and the adjacent eastern mountain range are interesting areas.
Preliminary data suggest overall genetic diversity to be low in this
area for most species, defining this region rather as an area of
expansion. Some authors have suggested that Marantaceae species
could have been spread to east Cameroon/RCongo due to human
activities (Maley, 2001; Brncic et al., 2009). However, despite a
rather fragmentary sampling, endemic haplotypes have also been
detected in the Congo Basin and in the Albertine Rift Valley (see
M. monophylla). This suggests a rather long existence of those
species in that area.
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