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SUMMARY

The induction of limb repair in adult vertebrates is a pressing, unsolved problem. Here, we 

characterize the effects of an integrated device that delivers drugs to severed hindlimbs of adult 

Xenopus laevis, which normally regenerate cartilaginous spikes after amputation. A wearable 

bioreactor containing a silk protein-based hydrogel that delivered progesterone to the wound site 

immediately after hindlimb amputation for only 24 hr induced the regeneration of paddle-like 

structures in adult frogs. Molecular markers, morphometric analysis, X-ray imaging, 

immunofluorescence, and behavioral assays were used to characterize the differences between the 

paddle-like structures of successful regenerates and hypomorphic spikes that grew in untreated 

animals. Our experiments establish a model for testing therapeutic cocktails in vertebrate hindlimb 

regeneration, identify pro-regenerative activities of progesterone-containing bioreactors, and 

provide proof of principle of brief use of integrated device-based delivery of small-molecule drugs 

as a viable strategy to induce and maintain a long-term regenerative response.
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Graphical Abstract

In Brief

The complexity of vertebrate limbs drives the search for regenerative treatments that trigger 

endogenous processes of repair. Herrera-Rincon et al. show that a wearable bioreactor containing 

progesterone, applied for only 24 hr, induces months of regenerative growth and patterning of 

amputated hindlimbs in the frog Xenopus laevis.

INTRODUCTION

The repair of damaged limbs and organs in humans is of paramount importance, as 2 million 

Americans are living with limb amputations (Ziegler-Graham et al., 2008). An ideal solution 

would trigger the native limb-building pathways in vivo, to restore a functional limb from 

the patient’s own cells. Despite concerted efforts on the mechanisms of regeneration 

(Kawakami et al., 2006; Leppik et al., 2015), there are few reports of rebuilding and/or 

repairing damaged or lost limbs in non-regenerative animals, and there is a pressing need for 

a tractable vertebrate model in which to test potential interventions.

Many animals possess a remarkable capacity for appendage regeneration, which is not found 

in humans despite a high degree of gene homology (Brockes and Kumar, 2008). Xenopus 
laevis exhibits a regeneration response similar to that of urodele axolotls, which can reform a 

functional limb after amputation. However, this capability declines markedly throughout 

development, and in later tadpole and post-metamorphic animals, the resultant regenerate is 

a hypomorphic cartilage ‘‘spike’’ (Dent, 1962). We have previously shown the induction of 

tail regeneration in non-regenerative Xenopus stages by targeting the bioelectric state with 

small-molecule drugs (Adams et al., 2007, 2013; Tseng et al., 2010); however, those studies 

involved juvenile frogs and used whole-animal exposure to inductive cocktails, a strategy 

that is limiting because of the extensive use of bioelectric signaling throughout the body. We 

thus sought to develop a methodology to test targeted delivery of small-molecule 
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electroceuticals in adult animals to overcome their lack of regenerative response with an 

early, local, and brief intervention.

We recently showed that a wearable bioreactor (Hechavarria et al., 2010) positively affects 

regenerative capabilities (Golding et al., 2016). Progesterone (Prog) is a potent neurosteroid 

that showed promise for peripheral nerve regeneration (promoting nerve repair) (Koenig et 

al., 2000) and bridging in severed rabbit facial nerves (Chávez-Delgado et al., 2003), canine 

sciatic nerves (Rosales-Cortes et al., 2003), and non-neural tissue remodeling by modulating 

the inflammatory response to drive wound healing, angiogenesis (McEwen, 1991; Routley 

and Ashcroft, 2009), and bone remodeling (Hennighausen and Robinson, 2001). In addition, 

Prog can regulate bioelectric cell state via changes in ion flux (Luoma et al., 2012; Patrat et 

al., 2002), and bioelectric signaling has been proved to drive regeneration and patterning in 

multiple assays in Xenopus and other model systems (Herrera-Rincon and Levin, 2016; 

Levin, 2011, 2014; Lobikin et al., 2015; McLaughlin and Levin, 2018; Tseng and Levin, 

2013; Tseng et al., 2007, 2010). Due to its potent and broad actions on neural and non-

neural tissue remodeling, as well as its ability to influence bioelectric signaling, we asked 

whether treatment with a Prog-containing silk device immediately after amputation would 

improve cellular dynamics and regenerative potential after hindlimb amputation in adult 

Xenopus.

We report a comprehensive multifactor analysis of the regenerative effects of a compound 

treatment: cocktail + delivery methodology on adult hindlimb regeneration in Xenopus. We 

show that a brief exposure—only 24 hr—to this intervention modifies transcriptional 

networks within the blastema and induces sustained changes in the regenerative capacity 

over time. Our data establish a platform to test ‘‘master regulator’’ therapeutics, in which a 

very brief treatment ‘‘kick-starts’’ a long program of growth and remodeling. These findings 

reveal that the adult Xenopus limb is capable of considerable growth and morphogenesis and 

illustrates a road map for interventions that can be used to probe and improve the 

mechanisms of complex appendage regeneration in vertebrate models.

RESULTS

Prog Receptor Is Present in Xenopus Adult Limbs, and Prog Levels at the Amputation Site 
Are Significantly Increased after 24 hr of Prog-Containing Bioreactor Treatment

Hindlimb-amputated animals were either treated with silk-hydrogel devices loaded with 

Prog (Prog-device group) or an untreated control group (control or Ctrl; Figure 1A). 

Additional amputated animals treated with a silk-hydrogel device but no drug (Sham group) 

were also evaluated 24 hr after device attachment. We first sought to confirm that the 

receptor was present in adult Xenopus limb tissue. The X. laevis classical Prog receptor 

(xPR-1) participates in the rapid events that mediate oocyte maturation (Bayaa et al., 2000; 

Martinez et al., 2006; Tian et al., 2000). A fluorescent ligand for PR (Prog 3-[O-

carboxymethyl]oxime:BSA-fluorescein isothiocyanate conjugate [PFITC]) and hormone 

displacement assays revealed PR expression in intact limbs of adult Xenopus. On cross-

sections, we detected a high density of labeled cells on the lamellar bone of the limb, 

especially in the bone marrow (Figure 1B). Other low-positive areas for PR included parts of 

the epithelial tissue, the connective tissue under the epithelium, and a reduced number of 
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muscle cells. Co-staining with DAPI showed that most of the binding sites were in the nuclei 

of the bone marrow mesenchymal cells (Figure 1C). Co-incubation with a saturating 

concentration of Prog (Figure 1D) demonstrated that the hormone displaced the fluorescent 

ligand from binding to the PR; no labeled cells were detected on parallel sections. 

Conversely, co-incubation with PFITC in the presence of the non-specific hormone 

hydrocortisone (physiological ligand of glucocorticoid receptor; Figure 1E) led to a pattern 

of positive cells that was similar to what was observed after incubation with PFITC in the 

absence of hydro-cortisone. We conclude that the Prog receptor is present in the limbs of 

adult frogs.

Next, we evaluated the local release (versus a systemic wider effect) of the drug contained in 

the bioreactor. We used ELISA for Prog quantification on two remote tissues (brain and 

blood) and on the amputation site (proximal blastema) after 24 hr of device exposure, in 

animals belonging to the Ctrl, Sham, and Prog-device groups. The analysis of blood and 

brain showed no significant differences in Prog levels among Ctrl, Sham, and Prog-device 

treated amputated animals (one-way ANOVA for blood: F = 2.52, p = 0.16; for brain: F = 

0.89, p = 0.46; Figures S1A and S1B). Conversely, levels of Prog at the blastema were 

significantly different among three experimental groups 24 hr after device exposure (one-

way ANOVA, F = 182.9, p < 0.01; Figure S1C). While Ctrl and Sham expressed similar 

Prog levels in the blastema, without significant differences, the hormone levels were clearly 

higher for Prog-device animals, resulting in significant differences with respect to both Ctrl 

(p < 0.01 after Bonferroni’s post hoc test) and Sham (p < 0.01 after Bonferroni’s post hoc 

test) groups. These results demonstrate that the levels of Prog are significantly increased at 

the injury site (where the composite bioreactor is applied) only for the animals treated with 

24 hr of composite drug device. We conclude that the increased presence of Prog is not itself 

an outcome of injury and that our device delivers Prog effectively to the local area, but does 

not disperse it widely throughout the animal.

Prog-Containing Bioreactor Modifies Cell Response and Tissue Remodeling during Early 
Phases of Regeneration

To characterize the effects of Prog-loaded bioreactor on early stages of regeneration, we 

surveyed the growing fibroblastema region above the amputation plane with a panel of 

cellular markers (Figures 1F–1Q and S1D–S1I). Early in the regenerative process, at 0.5 

months post-amputation (mpa), coinciding with the wound epidermis and early blastema 

stage in the adult regenerative salamander (Young et al., 1985), hematoxylin and eosin 

(H&E) staining of untreated Ctrl animals revealed the early formation of a cartilage callus 

around the bone, covered by a thin wound epithelium. Conversely, examination of treated 

animals showed that groups of irregularly oriented cells frequently occupied part of the 

subepithelial area, rather than the typical fibrous scar detected in the untreated group 

(Figures 1F–1H). Proliferation was not significantly increased at this stage after Prog-device 

treatment, as detected by phosphorylated histone H3 (H3P) immunostaining (Figures S1D–

S1F). However, we observed a clear difference in the distribution of the immune cells 

throughout the anteroposterior axis of the regenerate (from amputation plane to wound 

epithelium). Close to the amputation plane (or proximal region, first quarter), the number of 

XL2+ cells was significantly higher in the treated group (with an average of 239 ± 54 
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leukocytes for Ctrl versus 367 ± 22 cells for the Prog-device group; t test p < 0.05). 

Conversely, the number of XL2+ cells in the blastema core (or distal from the amputation 

plane, third posterior quarters) was clearly lower in the treated animals (with an average of 

846 ± 319 leukocytes for Ctrl versus 404 ± 101 cells for the Prog-device group; Mann-

Whitney test p < 0.05; Figures 1I–1K).

Next, we assessed the cellular populations and responses in each condition at the bud-

outgrowth stage (2.5–3 mpa). The proliferation index was calculated as the percentage of 

H3P+ cells relative to the total number of cells (H3P+ cells/DAPI+ cells * 100). The 

normalized percentage of proliferative cells expressing H3P in Prog-device animals was not 

significantly different from the untreated Ctrl group (0.4% ± 0.2% versus 0.3% ± 0.3%, t test 

p = 0.65; Figures 1L–1N). Then, considering the key role of the vascular system in 

supplying the actively growing regions of the bud (Tschumi, 1957), we examined the 

organization of blood vessels in regenerating structures. Lacking suitable anti-bodies against 

Xenopus endothelial cells, we stained for smooth muscle cells (which line the arteries) as a 

means of detecting vascularization (Di Rosa et al., 1995). a-Smooth muscle actin (SMA; 

Figures S1G–S1I) staining revealed that although non-statistically significant, there 

appeared to be considerably more major blood vessels in the appendages of treated animals 

following the longitudinal axis, while the vascularization pattern in the Ctrl group was 

predominantly formed by minor arteries (the mean area of SMA+ vessels in the Prog-device 

group was 91.2 ± 48.2 compared to 45.3 ± 160.8 in Ctrl, t test p = 0.1). Because successful 

limb regeneration in Amphibia is intimately linked to an adequate innervation of the 

regenerating tissues (Tanaka and Reddien, 2011), we next evaluated the degree and 

localization of innervation in the regenerate growth by means of anti-acetylated a-tubulin 

(Tub) immunofluorescence (Figures 1O–1Q). Nerve patterning in the Ctrl group was 

characterized by irregular single nerve fibers. An extensive and organized innervation was 

detected after Prog-device treatment, with the presence of specialized groups or large-

diameter bundles of nerve fibers (mean area of Tub+ units or fibers was 6.8 ± 4.6 in Prog-

device animals versus 2.6 ± 1.2 in Ctrl, Mann-Whitney test p < 0.05).

Our results suggest that the Prog-device intervention decreases immune infiltration toward 

the apical region of the blastema area and induces a scar-free wound healing with the robust 

presence of regenerating nerves, which are key markers of specialized tissue organization.

Prog-Containing Bioreactor Alters Anatomical Outcome and Bone Remodeling during the 
Different Regeneration Stages

To determine whether the effects of the combined treatment of the hydrogel device plus Prog 

led to differences in anatomical outcome, animals were allowed to regenerate during a 9.5-

month period (similar to the time required for post-metamorphic adult land-phase 

Ambystoma to regenerate completely [Young et al., 1985], but shorter than the time needed 

to develop a full-length limb in Xenopus, which can take ~ 2 years).

We analyzed different macroscopic parameters for soft-tissue growth and bone patterning 

(Figures 2A–2E, S2, S3, and S4; Table S1) at representative stages of the whole regenerative 

process: 0.5 and 1 mpa (early stages: wound healing and blastema formation), 2.5 and 5 mpa 
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(middle stages: bud outgrowth and shape formation), and 7.5 and 9.5 mpa (late stages and 

complete regenerate stage).

Macroscopic differences between untreated Ctrl (Figure 2A, top) and Prog-device treated 

(Figure 2A, bottom) animals were detected from the onset of regeneration. Wound and 

epidermis closure occurred during the first 2 weeks for Ctrl animals. Wound healing in Prog-

device animals was delayed, being completed after 1 mpa. At 2.5 mpa, corresponding to the 

proliferative phase and bud outgrowth, noticeable differences were present between groups. 

While Ctrl regenerates displayed a typical thin-rod shape (Figure 2A, insert in top right 

panel), Prog-device treated regenerates with their increased outgrowth became more 

symmetrically cone-shaped (Figure 2A, insert in bottom right panel). As they progress 

through regeneration and as previously shown (Dent, 1962), untreated animals formed 

hypomorphic regenerates, consisting of an invariable single and long cartilaginous spike-like 

structure. In sharp contrast, a common morphological event for Prog-device animals was the 

progressive flattening (along the dorsoventral axis) of the pyramidal cone shape, growing a 

variety of altered patterned shapes during the 9.5-month period.

We quantitatively analyzed several parameters of gross anatomy: maximal length of growth 

(Figure 2B, top), percentage of width change between the amputation plane (W1) and the 

base of the regenerate (W2; Figure 2B, middle) and the percentage of unpigmented area 

(Figure 2B, bottom; diagrams and additional details of these measurements are provided in 

Figure S2A and Table S1). The rate of growth of regenerate tissue was similar in both 

groups, reaching a plateau between 5 and 7.5 mpa. The percentage of width change was one 

of the most characteristic differences between groups, with the largest difference at 2.5 mpa 

(Figure 2A inserts). The pigmentation pattern of the epidermis covering the incipient bud 

defined clear differences in the regenerative phenotype. At the onset of the regeneration, 

wounds in the untreated Ctrl group were almost fully covered within 1 or 2 weeks by a 

pigmented epithelium close to the normal body and stump epidermis. However, the 

epithelium covering the regenerate edge in Prog-device animals remained with a differential 

aspect and was unpigmented during the course of the regeneration. A comparative analysis 

of the percentage of unpigmented skin-covered area of regenerate revealed a significant 

increase in treated animals, particularly at 2.5 and 9.5 mpa (p < 0.01 after Bonferroni’s post 

hoc test).

Next, we assayed the extent and pattern of regeneration of new skeletal structures. X-ray 

analysis revealed several parameters of bone outgrowth at the different phases during the 

9.5-month period (Figures 2C–2E, S3, and S4). Differences between groups started at 2.5 

months, both for size (maximal length of bone from the amputation plane [BLEN] and 

maximal area occupied by new bone growth, mostly non-ossified bone or regenerated 

cartilage [BAREA]) and growth orientation. Considering the recent findings that bone 

degradation is a key step of regeneration occurring spontaneously after amputation 

(Sammarco et al., 2015), we next examined the effect that our treatment had on this process. 

As new bone regrows from above the amputation plane (Figure S4, red asterisk), which 

started earlier in the Prog-device group, the total area occupied by new or non-ossified bone 

was higher for most of the treated animals (Figure S4). As expected, given the variability of 

genetic background (as this population of Xenopus is not isogenic), many of the individual 
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Prog-device animals responded actively to the treatment (responders), reaching values that 

were clearly higher than Ctrl values, while other treated animals did not (non-responders). 

The bimodal response between regenerative indicators was consistent across regeneration 

metrics for most individual frogs (see also Regeneration Index [RI]). For the seven Prog-

device animals (PD1–PD7) that were grown up to 9.5 months, a total of five individuals 

were classified as responders (PD1, PD2, PD4, PD5, and PD7; 71% of the population), and 

two of them were clearly non-responders (PD3 and PD6; 29% of the population). The 

highest responders displayed profound differences with respect to Ctrl animals for most of 

the assays (e.g., morphological, molecular, anatomical, behavioral), while the lowest 

responders were similar to the Ctrl group for most of the parameters (see Tables S2 and S3 

for values reached for each independent frog for each independent criterion of the RI).

At 5 mpa, differences in bone orientation were also visible. New bone in Ctrl animals grew 

following the same angle and axis as the remaining old bone. However, the newly formed 

bone in Prog-device animals typically widened at its distal end and deviated from the 

midline of the intact tibiofibula. Considering the impact of the reintegration mechanism on 

the joint formation during regeneration (Tsutsumi et al., 2015), we decided to analyze in 

depth this reorganization of the regenerated bone and remaining tissues for both 

experimental groups at 7.5 mpa and compare it to the naturally occurring joint formation 

between the femur and tibiofibula bones (Figures 2C–2E and S3B). The deviation angle (α, 

90 in Uncut animals) created by the new bone growth with the remaining old femur for 

Prog-device animals is significantly more open than the one for regular spikes in Ctrl 

(untreated amputated; t test p < 0.05), with low deviation from the middle axis. The 

geometric displacement (d) of the old bone from the longitudinal axis (0) to the medial edge 

of the soft tissue (−0.5) showed substantial differences between groups. Months after 

amputation, the old bone in most of the Prog-device animals was displaced toward the 

medial edge of the soft tissue. This was not seen in Ctrl animals, where the old bone (femur) 

remained at the middle axis, as it did when the amputation was done (magenta asterisk in 

A). This trajectory displacement occurs at the most distal part of the femur in Uncut animal 

limbs to create the joint with tibiofibula bones.

Our macroscopic analyses indicate that the 24-hr treatment with the Prog-containing 

bioreactor triggers long-term reorganization of both soft tissue and bone outgrowth in most 

of the treated animals, promoting the formation of significant wider structures covered by a 

differential unpigmented epithelium and new bone patterning that suggest reorganization 

that is consistent with joint formation.

Prog-Containing Bioreactor Induces the Formation of Complex, Patterned Structures

Considering the timing for regeneration in adult salamanders and the clear plateau reached 

after 7.5 mpa, we set the end of the test period at 9.5 mpa. At this stage, untreated Ctrl 

regenerates displayed cartilaginous spikes, as expected, with a modest level of bone beyond 

the amputation plane (Figure 3A). In contrast, complex, patterned structures were observed 

in the treated animals, including broad paddle-like regenerates (Figure 3B), spur-like 

deviations (Figure 3C), and thick regenerate spikes (Figure 3D). The unpigmented 

appearance of the epithelium in treated animals was still present, allowing direct 
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visualization of the vascularization pattern, expanding toward the most distal edge of the 

regenerates. Their unique anatomical outcome was accompanied by a robust bone outgrowth 

(Figures 3B–3D, X-ray images at right). The skeletal patterning was characterized by two 

distinct regions: proximal, or nearest the amputation site and extending approximately one-

third the length of the regenerate, a swelling of weakly ossified bone, and distal, with non-

ossified bone or regenerated cartilage traveling toward the most posterior end. The close 

correspondence between external morphology and X-ray images revealed that the area of 

bone swelling was coincident with the pigmented portion of the epidermal layer, and the 

section occupied by immature bone remained under unpigmented epithelium.

To characterize and quantitatively compare the regenerate shapes between groups, we used 

morphometric analysis (Figure S2B). Compilation of the resultant ‘‘average shape’’ (Figure 

3E) for each group clearly showed that untreated animals developed shapes with drastic 

narrowing as the structure grew, forming a typical curvature at the tip. Conversely, the Prog-

device treated group developed, on average, broader regenerates with less curvature at the 

end. Quantification and statistical analysis of these shape states showed significant 

differences in the Mahalanobis distance (p < 0.05) for the profile of the shape of the 

regenerate.

To facilitate a wholistic analysis of the complex, multifaceted response among the cohorts, 

we next integrated all of the observed and quantifiable differences between untreated Ctrl 

and Prog-device treated animals into a composite regenerative index (RI; ranging from 0, a 

typical hypomorphic spike, to 10, a patterned paddle-like regenerate; see STAR Methods and 

Tables S3 and S4). We calculated the RI of both experimental groups at two different time 

points, based on our previous findings of strong differences emerging at 2.5 and 9.5 mpa 

(Figure 3F; Tables S2 and S3). Our findings clearly revealed a significant difference between 

untreated and treated groups (two-way ANOVA, p < 0.01 for ‘‘group’’ factor). At 2.5 mpa, 

the mean RI for the Ctrl group was 1.4 ± 0.4 versus 6.9 ± 1.1 for the Prog-device animals. At 

9.5 mpa, Ctrl animals displayed a mean RI of 1.0 ± 0.6, while Prog-device animals showed 

an average RI of 6.7 ± 1.1. The application of the RI confirmed a bimodal response to the 

treatment in the Prog-device treated group. The responder individuals reached the highest 

index scores (PD7 and PD5 in Figures 3B and 3D, respectively, with RI = 10), while non-

responders (PD1 in Figure 3D) had low RI scores.

Having observed that regenerates stop growing after ~ 5–7.5 mpa (Figure 1B, top), we asked 

whether the endpoint corresponded to any specific anatomical level (position), as gauged by 

the contralateral (uncut) limb. Quantification of the regenerated limb length (from the knee 

to the tip of the regenerate) relative to the contralateral uncut limb revealed that the 

regenerating hindlimb stops growing at a point at which, under normal growth conditions, 

the animal’s digits would appear (Figures 3G and 3H; when it reaches the length of 

tibiofibula + tarsus).

Our findings demonstrate that the shape of the regenerate long after amputation can be 

drastically improved and that long-term repatterning can be induced by an intervention 

applied for 24 hr at the amputation site.
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Repatterning Induced by 24-hr Prog-Device Treatment Is Accompanied by Cellular and 
Tissue Changes in the Most Distal Part of the 9.5-mpa Regenerates

To further characterize the long-term effects of the Prog-containing bioreactor, we asked 

whether cellular and tissue differences were present along with the differences in external 

morphology.

The most distal part of the regenerates (tip) was immunostained to detect innervation (Tub) 

and vascularization (SMA) pattern (Figures 4A–4F and S5A). Overall, untreated spikes 

displayed a less differentiated surface for nerves and vessels, being limited to the peripheral 

edges (Figures 4A and 4C, magenta arrows). Treated regenerates showed a larger specialized 

surface (Figures 4B and 4D, turquoise arrows), projected toward the internal part of the 

tissue or cartilage core. Similar to organization detected at the early blastema stages (Figures 

1O–1Q), both nerves and vessels showed a higher number and degree of organization after 

treatment, forming nerve compact units such as bundles and elongated vessels. Control 

animals expressed an average of 44 ± 19 Tub+ fibers per square millimeter, with a mean 

fiber area of 351 ± 168 μm2. Prog-device animals had an average of 95 ± 41 Tub+ fibers per 

square millimeter (t test p < 0.01, with respect to Ctrl), with a mean bundle size of 972 ± 515 

μm2 (Mann-Whitney test p < 0.01). Quantification for SMA immunostaining revealed that 

while Ctrl animals expressed SMA in 10 ± 4 cells per square millimeter (with an average 

area of 451 ± 206 μm2), Prog-device treatment increased significantly both the number (31 

± 15 SMA+ cells per square millimeter; Mann-Whitney test p < 0.01) and the grouping of 

nerve fibers (mean area of SMA+ vessels of 695 ± 327 μm2; t test p < 0.01).

Next, we compared the neurovascular patterning of the tips to the patterns present in uncut 

or intact limbs. Morphological comparison to cross-sections of uncut limbs (belonging to 

two different regions: proximal or distal with respect to the plane for the amputation; Figure 

S5B) revealed that both innervation and vascularization patterns of Prog-device treated 

regenerates are closer to those in the uncut limb (Figures 4G–4N; Table S4). Individual and 

disorganized nerve fibers defined the typical Ctrl innervation pattern (Figure 4G, magenta 

arrows), while Tub+ axons in Prog-device treated animals showed a clear tendency toward 

organization and bundle formation (Figure 4H, turquoise dashed-line circles), similar to the 

innervation detected in uncut limbs (Figures 4I and 4J, turquoise dashed-line circles). 

Additional comparisons between Prog-device treated tips and the two different levels of an 

uncut limb revealed that innervation of Prog-device tips was more similar to the one in the 

distal region of the hindlimb. Likewise, both the number and morphology and area of the 

SMA+ vessels for Prog-device tips were clearly closer to the intact limb (Figures 4L–4N, 

turquoise arrow and asterisks) than to the Ctrl untreated limbs (small vessels indicated by 

magenta arrows in Figure 4K). Our results show that the Prog-containing bioreactor initiates 

a long-lasting positive impact on regeneration, detectable more than 9 months later, leading 

to structures that are morphologically similar to an intact or uncut limb.

Use of the Regenerates in Prog-Device Treated Animals Reveals More Complex Swimming 
Activity than in Spike-Regenerating Animals

Having quantified anatomically and morphologically the degree to which our composite 

treatment improves regeneration, we next investigated the locomotor patterns, asking 
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whether the animals used these appendages more effectively than a spike. To accomplish 

this, movies were taken of individuals from control, treated, and unamputated groups, and 

behavioral observations, typically used to study locomotion in Xenopus (Archard, 2012; 

Burghardt, 2013; Ihmied and Taylor, 1995), were quantified (Figures 5 and S6; Table S1).

First, we evaluated the general activity (number of ‘‘effective’’ movements; Figure 5A). 

When compared to non-amputated animals, the amputated Ctrl with spike-like regenerates 

were significantly less active when assessed during a 3-min period. Despite also having been 

amputated, treated animals were far more active, showing activity levels significantly 

increased from untreated and indistinguishable from uncut or intact populations (one-way 

ANOVA p < 0.01). Second, we quantified the surfacing frequency and percentage of time 

spent in each quadrant of the tank per animal and experimental group, classical indicators 

used to differentiate stationary or motionless versus active swimming in amphibians 

(Burghardt, 2013; Holmes et al., 2016). Prog-device animals scored closer to the Uncut 

group (non-amputated) for both parameters, resulting in clear significant differences with 

respect to Ctrl (one-way ANOVA p < 0.01 for surfacing and χ2
(0.05,9) p < 0.01 for time 

distribution; Figures 5B, 5C, and S6A).

To isolate the functionalization of the regenerate or how the regenerate limbs were used in 

motion, we next evaluated speed during movement (Figure 5D). Although not statistically 

significant (one-way ANOVA p > 0.05), Ctrl animals showed homogeneity in the speed 

values (SD ±0.3; possibly related to remaining in one exclusive quadrant), while Prog-device 

animals displayed a broad range of values (SD ±2.1), similar to those obtained for the Uncut 

group (SD ±1.7).

These findings suggest that treatment not only improves the overall morphology of 

amputated regenerates but also that these patterned structures or ‘‘paddles’’ could be 

recognized and used by the animals in swimming and/or active behaviors similar to the 

original limb.

Transcriptome Analysis Identifies Unique Key Genes and Cell Processes Exclusively 
Regulated by the Prog-Containing Bioreactor

Given the long-term anatomical and functional outcomes obtained after only 24 hr of 

treatment, we sought downstream mechanisms underlying the response. To characterize the 

molecular events taking place between device exposure and sub-sequent responses, we 

conducted RNA sequencing (RNA-seq) and compared the transcriptome analysis of the 

blastema for Ctrl (amputated and untreated), Sham (amputated and treated with only 

hydrogel device, no drug) and Prog-device (amputated and treated with hydrogel device 

filled with drug) animals. Read counts, mapping metrics, and alignment percentages of 

samples to the Xenopus genome are provided in Table S5. The alignment percentages for the 

9 samples ranged between 54.91% and 68.34% (mean 0.69%, SD 4.99%). The number of 

differentially expressed genes (DEGs) was determined after multiple testing corrected the p 

value. The Q value was set at a false discovery rate (FDR) of 0.05, and differentially 

expressed genes were considered to be those transcripts passing this FDR and those showing 

a log2 fold change of 2. When comparing blastema (BL) of Sham versus Ctrl groups, there 

was a total of 66 differentially expressed genes. This number was dramatically increased 
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when comparing the blastema of Prog-device versus Ctrl animals, with a total of 531 

differentially expressed genes (Figure 6A; all differentially expressed transcripts are 

provided in Data S1). Considering the highest response (more than log2 = 4.0), amputation 

followed by only hydrogel device attachment, Sham, when compared to Ctrl, induced a 

significant downregulation of nicotinamide adenine dinucleotide (NADH) dehydrogenase 

(ubiquinone) 1 beta sub-complex subunit 10-like, zinc-finger protein 850-like, and enhancer 

of polycomb homolog 1-like transcripts, among others. Transcripts that were highly 

upregulated after Sham intervention, when compared to Ctrl, included SMAD family 

member 4, olfactory receptor 51L1-like, and capZ-interacting protein-like transcripts (for the 

complete list of genes that show more than log2 = 4.0, see Table S6). The combined 

treatment after amputation (hydrogel device filled with drug, Prog-device group), when 

compared to Ctrl, resulted in the downregulation in the blastema of neuropeptides and 

signaling molecules such as prolactin, arginine vasopressin, somatostatin, cholinergic 

receptor nicotinic alpha 7 subunit, RAS-like family 12, engulfment and motility (ELMO) 

domain containing 1, and olfactory receptor family 52 subfamily D member 1, among 

others. Examples of transcripts that were upregulated after Prog-device treatment included 

histone H2B 1.2, superoxide dismutase 3, multiple inositol-polyphosphate phosphatase 1 L 

homolog, nuclear pore complex protein Nup214-like, transmembrane protein 256, and 

selenoprotein F (for a complete list of genes with more than log2 = 4.0, see Table S6).

The differences between Sham and Prog-device groups were also clearly notable in the 

subnetwork enrichment analysis (SNEA; Figure 6B). There were 18,718 (Sham) and 18,762 

(Prog-device) entities (or transcripts) that were mapped successfully to Pathway Studio 

(Elsevier), depending on the treatment. There were 150 networks that were enriched and 

altered in the blastema after the Sham intervention, while the combined Prog-device 

approach led to the enrichment of up to 190 different and specific pathways (both cases 

when compared to Ctrl group; Figure 6B).

To reveal the types of processes regulated by our intervention, we grouped the enriched 

pathways considering ‘‘large-scale functions.’’ We identified and quantified (with respect to 

total) several large-scale function gene clusters within the blastema dataset for Sham (Figure 

6C, top) and Prog-device (Figure 6C, bottom) treatments. The percentage of some categories 

such as bone related, carbohydrate/lipid metabolism related, or muscle related were more 

prevalent in the Sham dataset compared to the Prog-device group. Conversely, large-scale 

functions detected in the Prog-device dataset (but not the Sham group) were related to organ 

function and physiology, blood and cardiovascular system, immune system and infection, 

and vision and sensory system. A principal-component analysis was conducted in JMP 

Genomics (version 8) to visualize the biological replicates within the ‘‘no device’’ (Ctrl), 

‘‘Sham,’’ and ‘‘Prog-device’’ treatments. Normalized counts of differentially expressed 

genes were used in the principal-component analysis (PCA) for each biological replicate, 

and both Sham (yellow circles) and Progdevice (green circles) animals separated strongly 

from the Ctrl or No-device group (red circles). This suggests that the device can have a 

profound effect on the blastema transcriptome and that the use of Prog can alter the core 

transcriptional response when compared to the silk device alone with no added Prog.
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Next, to gain further mechanistic insight, we identified cell processes that were either shared 

by both Sham and Prog-device treatment or unique for each intervention (complete data are 

presented in Data S1). Common downregulated cell processes included those that regulate 

membrane potential and elements of the dopaminergic system and muscle physiology 

(Figure S7; complete data are presented in Data S1). Most of the transcripts regulated 

exclusively by the complex intervention (Prog + de-vice) were related to hormone signaling 

in reproductive, osmoregulatory, and circulatory systems (Figure 7B). Significant cell 

processes exclusively upregulated after Prog-device treatment included a list of key genes 

that are involved in redox stress, serotonergic transmission, or leukocyte proliferation 

(Figure 7C), while important downregulated processes included genes responsible for 

neurotransmission signaling and dynamic changes in Ca2+ and K+ (Figure 7D). All of the 

genes within a differentially expressed pathway are provided in Data S2. Thus, our analysis 

reveals profound transcriptional remodeling of the regeneration blastema in Xenopus 
induced by a Prog-containing bioreactor and suggests numerous pathway targets for 

subsequent study and therapeutic interventions.

DISCUSSION

The treatment described herein induced large, paddle-shaped regenerates, demonstrating a 

clear improvement over the wellknown cartilaginous spike. The treatment appears to 

reactivate the early regenerative response, because transcriptional networks are specifically 

suppressed or enriched as soon as 24 hr after treatment, and morphological differences are 

already visible at 2 weeks post-amputation. We previously demonstrated that that body-wide 

pharmacological modulation of Vmem can induce functional regeneration of the froglet leg at 

a non-regenerative stage (Tseng and Levin, 2013). To achieve localized delivery (essential 

for broadening the class of treatments that can be used without toxicity), we designed a 

wearable bioengineered bioreactor: the wearable bioreactor (Golding et al., 2016; 

Hechavarria et al., 2010). The silk-hydrogel-based device, even though present very briefly, 

created a pro-regenerative environment, enhancing bone remodeling. Micro-computed 

tomography (CT) quantifications revealed that animals with devices had a significant 

increase in bone volume, surface area, and density. Qualitative observations on 

immunostained sections also detected the presence of nerve tissue or SMA+ vessels in 

treated animals. Although morphologically regenerates from treated animals tended to be 

longer than those from no-device animals, no pattern or complex structures or shapes were 

detected, which differs from the rod-shaped spike. Our data suggest the brief application of a 

Prog-containing bioreactor as a promising modality for initiating complex, longlasting, pro-

regenerative outcomes.

Transcriptome analysis of the blastema of treated animals revealed that the genes with the 

highest response (more than log2 = 4.0; Table S6) were related to the nuclear signaling of 

the PR (e.g., histone H2B, inositol-polyphosphate phosphatase, and nuclear pore complex 

protein Nup214-like). The upregulation of these transcripts strongly suggests the activation 

of the PR by device-supplied Prog, initiating transcriptional-related signaling that implies a 

net increase in phosphorylation, nuclear internalization, and nucleosome remodeling with 

displacement of histone H1 and H2A/H2B dimers (Grimm et al., 2016). These transcripts 

were specifically upregulated in the Prog-device group and they did not appear in the 
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blastema of the Ctrl and Sham groups. In addition, ELISA analysis (Figures S1A–S1C) 

demonstrated that the Prog contained in the wearable bioreactor was released only to the 

amputation site, validating the strategy of drug device: a compound targeting different 

pathways can be applied locally to an injury site.

Our results suggest the formation of a partial blastema in an adult frog, which is consistent 

with the idea that the regenerative ability is an intrinsic property of limb cells in adult non-

regenerative animals (Sessions and Bryant, 1988), susceptible to reactivation by appropriate 

master regulators. Functional analysis of locomotor activity demonstrated that animals 

regenerating complex patterned structures use them differently than untreated animals use 

their cartilaginous spikes (Figure 5). Future studies will determine whether this is due to 

mechanophysical properties (passive consequences) or whether brain recognition of the new 

structure could be enhancing the regenerative process.

The main limitation of this model, in contrast to tadpole or froglet studies, is the long 

periods of time needed to observe effects and the significant effort in surgeries and 

subsequent animal husbandry for months. Also, molecular and/or histology analyses cannot 

be performed on the same animals in which regenerative outcomes are to be assayed, 

significantly limiting the overall number of animals. Future improvements of in vivo 

imaging technology, transgenic Xenopus, and antibodies that work well in amphibian tissues 

will further expand the range of analysis in this assay. We do not claim to dissect the 

contribution of every possible factor in this treatment (e.g., stitches, mechanical aspects of 

protection of the blastema from fluid flows in the tank, oxygen levels, trapping of wound 

exudate) that result from having a biodome attached to the combined (device + drug) 

therapy. It would be impractical to test each of the components of this treatment 

independently; for this reason, while the RNA-seq data do distinguish between the effects of 

silk device versus Prog specifically, we focused mainly on the regenerative outcomes of the 

complete intervention. Future large-scale work motivated by this study could probe all of the 

individual aspects.

While the wearable bioreactor provides the capability of addressing the wound site directly 

without side effects on other tissues (as demonstrated with the increased levels of Prog only 

at the injury site and not at other distant tissues; Figures S1A–S1C), it is important to note 

that other important inputs (and, indeed, downstream consequences of Prog signaling) may 

be systemic. Recent work on the bioelectrics of brain patterning (Pai et al., 2015), cancer 

normalization (Chernet et al., 2015; Chernet and Levin, 2014), and the role of the brain in 

muscle patterning (Herrera-Rincon et al., 2017) reveals that important morphogenetic cues 

come from distant regions that may need to be addressed by future therapies. Especially 

important are recent data revealing that information on injury is available throughout the 

organism (Rodgers et al., 2017).

The anatomical pattern of the treated regenerates was variable, as revealed by the 

regeneration index (Figure 3F), containing highly responsive individuals (remarkable 

paddle-like structures) compared with animals that scored similarly to untreated animals. 

Xenopus are not isogenic, and it is likely that the genetic background diversity of the 

animals contributes to the difference in response. It is also likely that future improvements in 
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technique, such as more reliable contact between stump and hydrogel-drug device, will 

improve the consistency of the results. It is an important part of our ongoing analyses to 

identify genetic, epigenetic, microbiological, and biophysical factors that would be 

predictive of regenerative response or can be targeted to in-crease consistency.

The combined Prog-device treatment induces the differential regulation of 531 elements or 

genes and 190 pathways, with respect to amputated but untreated animals (Figures 6A and 

6B; for a complete list of differentially regulated transcripts and pathways, see Table S6 and 

Data S1 and S2). Large-scale functions most differentially altered in Prog-device blastema 

are related to blood and osmoregulation, neural signaling, and leukocyte or immune 

response (Figure 6C, bottom). The overall downregulation of numerous transcripts related to 

the modulation of resting potential (Figure S7A) is consistent with a strategy in which cells 

tighten their physiological state to focus on repair; by reducing the normally diverse 

electrogenic machinery (containing many channels and pumps with opposing effects on 

Vmem, depending on various ligands and other conditions), cells can use a few key 

electrogenic components that are needed to maintain a consistent pro-regenerative 

bioelectric profile (Adams et al., 2007; Levin, 2007, 2014).

One possible explanation for the ontogenetic decline in regenerative ability in frogs is that 

the wound epidermis becomes nonfunctional after metamorphosis (Tassava and Olsen, 

1982). The wound epidermis is necessary for maintaining dedifferentiated cells of the 

amputated limb stump in the cell cycle. Our results showing that treated animals maintain a 

differential and unpigmented epithelium, similar to regenerating animals, during the course 

of the regeneration (Figures 2A, bottom; 2B, bottom; and 3B–3D) could indicate that this is 

a key target for the combined treatment.

The treated regenerates have more innervation and ‘‘functional’’ nerve organization (in 

bundles) from the earlier stages of regeneration (Figure 1Q) to the complete stage (Figure 4), 

which is consistent with the well-known importance of innervation in regeneration (Kumar 

and Brockes, 2012; Singer, 1952). Failure to regenerate in the wild-type case could be due to 

regenerating nerves that cannot interact with the wound epithelium (WE), totally covered by 

scar tissue (similar to what has been suggested for mice [Miura et al., 2008; Tassava and 

Olsen, 1982]) (Figure 1P). Our Prog group exhibited more regenerating axons innervating 

into the WE and could be converting it to the regeneration-permissive WE, the apical 

epithelial cap. We found high expression of PR in bone marrow (Figures 1B–1E). Mature 

monocytes and macrophages are capable of differentiating into osteoclasts under a suitable 

microenvironment prepared by bone marrow-derived stromal cells (Udagawa et al., 1990). 

Increased osteoclast activity is consistent with our results for increased bone remodeling in 

the treated group (Figures 2C–2E and 3A–3D). Bone regeneration could perhaps be a 

template for patterning and regeneration.

In conclusion, evidence from the many diverse analyses reported here suggests that to 

enhance the regenerative response in non-regenerating animals, it is necessary to act on a 

broad and complex network of cell processes. Upregulation of pathways related to blood 

vessel supply and activity (e.g., blood vessel permeability), effects on neural growth and 

signaling (e.g., decreased dopaminergic transmission and increased serotoninergic and 

Celia et al. Page 14

Cell Rep. Author manuscript; available in PMC 2019 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adrenergic signaling, bundle organization of neuritis, inhibition of glial adhesion), alterations 

in immune cell activity (e.g., avoiding the accumulation of leukocytes at WE), inhibition of 

the import of Ca2+ and membrane depolarization, or decreased lipid and carbohydrate 

metabolism may be important mechanisms explaining our results and straightforward targets 

for further exploration. It is likely that progress in regenerative medicine will be greatly 

augmented by identifying master regulators or triggers that, like our Prog device, can induce 

this complex set of downstream events without needing to micromanage each one.

One of the main benefits of the wearable bioreactor is that it allows the establishment of a 

localized environment. For example, recent work showing that hypoxia (and O2 level in 

general) is an important regulator of regeneration (Nakada et al., 2017) suggests the need to 

instrumentalize the bioreactor in future versions to record bioelectric and physiological 

parameters. Microfluidic and optogenetic components to deliver spatio-temporal patterns of 

chemical factors and bioelectric states are also planned. Finally, studies to transition this 

strategy to mammalian models are under way.

One of the biggest open questions for the future of this field concerns how much 

micromanagement of the regenerative process will be needed besides the initial ‘‘kick-start’’ 

signal. It is likely that the eventually successful strategy will be a kind of guided self-

assembly, relying on endogenous morphogenetic modules with the occasional external 

manipulation to keep the growth on course to a proper restoration of function. Tractable 

models of complex appendage regeneration via techniques that facilitate the exploration of a 

highly diverse set of inputs and evaluation metrics are an essential step in the regenerative 

medicine road map. Such compound interventions will not only bring us closer to the repair 

of complex structures but also are likely to reveal profound aspects of the mechanisms 

regulating biological structure and function.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-
phospho-Histone H3

EMD Millipore Cat# 06–570; RRID: AB_310177

Mouse monoclonal anti- anti-
acetylated
alpha tubulin (clone 6–
11B-1)

Sigma-Aldrich Cat# T7451; RRID: AB_609894

Mouse monoclonal anti-XL2 This paper N/A

Mouse monoclonal anti-
alpha smooth
muscle alpha-actin (clone 
1A4)

Sigma-Aldrich Cat# A2547; RRID: AB_476701

Chemicals, Peptides, and Recombinant Proteins

Surgical Stitches ETHILON® Monofilament non-Absorbable 7–0

Device silicone rubber Smooth-On Dragon Skin Very Fast 10A

Silk hydrogel This paper N/A

Horseradish Peroxidase Sigma-Aldrich Cat# P8375

Prog Sigma-Aldrich Cat# P7556

Prog 3-(O-
carboxymethyl)oxime:BSA-
fluorescein
isothiocyanate conjugate; 
PFITC

Sigma-Aldrich Cat# P8779

Hydrocortisone Sigma-Aldrich Cat# 0888

Critical Commercial Assays

TRIzol™ Reagent Ambion, Invitrogen Cat# 15596018

Invitrogen Prog Competitive 
ELISA kit

ThermoFisher Scientific, Invitrogen Cat# EIAP4C21

Protein Quant-iT kit ThermoFisher Scientific, Invitrogen Cat# Q33210

Deposited Data

Raw data files for RNA 
sequencing

NCBI Gene Expression Omnibus GEO: GSE118454

Experimental Models: Organisms/Strains

X. laevis: Juvenile male and 
female

Nasco LM00453MX

Software and Algorithms

ImageJ (1.47v) Wayne Rasband, NIH https://imagej.nih.gov/ij

MorphoJ Klingenberg, 2011 http://www.flywings.org.uk/MorphoJ_page.htm

Photoshop CC 2015 Adobe https://www.adobe.com/products/photoshop.html

Pathway Studio (v10.0) Elsevier Life Science Solutions https://www.pathwaystudio.com/

GraphPad Prism (v 5.0c) GraphPad Software, Inc. https://www.graphpad.com/

Regeneration Index This paper N/A

Tracker (v 5.0.6) Open Source Physics https://physlets.org/tracker/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by, the 

Lead Contact Michael Levin (Michael. Levin@tufts.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Xenopus laevis—All experimental procedures involving adult Xenopus laevis were 

approved by the Institutional Animal Care and Use Committees and Tufts University 

Department of Laboratory Animal Medicine under protocols M2017–53.

One hundred and thirteen juvenile male and female Xenopus laevis frogs (Juvenile Xenopus 
laevis Frogs LM00453MX, Nasco, Fort Atkinson, WI) were used in this study. Frogs of the 

different sex were randomly assigned to experimental groups.

METHOD DETAILS

Surgery and regeneration period—Hind-limb amputation, followed by 24h device 

attachment, was performed as described previously (Golding et al., 2016). Briefly, animals 

were anesthetized by soaking in 0.05% benzocaine buffered solution and then injected with 

75 µg/kg of the analgesic buprenorphine. The right hindlimb was then amputated slightly 

below the middle of the tibiofibular bone with a sterile #10 scalpel blade. After recovery, 

animals were allowed to rest for approximately three hours before any further manipulation. 

Amputated animals were then randomly split in untreated (Control) or treated (Prog-device) 

groups. Randomized controlled trial conditions were maintained throughout the experiment. 

Control animals received no further manipulation, whereas the treated or experimental 

animals were followed by the attachment of a Prog-silk hydrogel contained within a 

wearable bioreactor device. Fifteen additional animals were treated as Sham for the 

wearable silk-hydrogel device (Sham or Silk group). Sham animals received equally device 

attachment immediately after amputation. Sham device contained only silk hydrogel, and no 

the combined therapy with drug. The method for device attachment included, first, a small 

rubber wrap secured around the hindlimb directly above the amputation plane, and second, 

surgical stitches (ETHILON® monofilament non-Absorbable 7–0 suture) between the outer 

layer of device and stump’s skin to position appropriately the device around the limb. After 

device attachment, animals were returned to their tanks and allowed to move normally. The 

devices were removed 24 hours (24 h) after attachment using forceps and surgical scissors. 

After device removal, animals were placed in 10-l tanks containing a maximum number of 

five animals. Frogs in all groups were monitored, individually tracked and assessed for 

regeneration for a maximum period of 9.5 months post-amputation (mpa) (see Figure 1A for 

schematic representation of the experimental design). At representative time points, animals 

were photographed and X-ray imaged for quantitative morphometric assessment of the soft 

tissue and bone patterning. After in vivo imaging, animals were again placed into tanks for 

normal recovery and some of them were sacrificed for further histological analysis. Uncut 

animals, without any limb manipulations but with the same anesthesia and handling 

procedures, were used to serve as the basal reference for some parameters.

Hydrogel Device Preparation and Drug loading—Hydrogel devices were prepared as 

described in (Golding et al., 2016). To summarize, the device consisted of a silicone rubber 
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outer protective cover and a silk hydrogel insert. The outer protective cover was fabricated 

by casting Dragonskin silicone rubber (Smooth-On, Harrisburg, PA) into a 3D printed 

acrylonitrile butadiene styrene (ABS) mold (Dimension Elite, Stratasys, Edina MN). The 

hydrogel inserts were fabricated with of an enzymatically crosslinked 3% (w/v) silk 

solution. The enzyme utilized for the gelation was horseradish peroxidase (Sigma-Aldrich, 

St. Louis, MO) at a final concentration of 20 U/mL silk solution. To induce gelation, 

hydrogen peroxide was added to the solution at a final concentration of 0.01% (v/v). After 

initiation, the solution was then pipetted into the silicone outer cover in a two-step process to 

create the base and sides of the hydrogel insert. This was then incubated in a 37 C oven for 

30 minutes to ensure solgel transition. For the drug-loaded device, water-soluble Prog 

(conjugated to dextran to increase solubility; #P7556 Sigma-Aldrich St. Louis, MO) was 

loaded into the silk solution before gelation at a final concentration of 500 µg/mL gelation 

solution.

In-vivo and X-ray Imaging—Animals were individually monitored with digital images 

and X-rays at 0.5, 1, 2.5, 5, 7.5 and 9.5 mpa. In vivo images were taken under low anesthesia 

dose (benzocaine 0.03%), with an Olympus Tough TG-4 camera. Special care was taken to 

ensure the same light conditions, background and position of the camera respect to the 

animals. A micrometric ruler was always placed in the frame for standardization. Limb X-

rays were then taken immediately using the Nomad Pro 2TM Handheld X-Ray device, 

applying the standard settings (60 kV, 2.5 mA) for 0.20 s. Progressive macroscopic 

parameters of the frogs’ hindlimb regrowth in both stump (soft tissue) morphology and bone 

patterning were quantified using ImageJ, MorphoJ, and Photoshop software.

Soft tissue patterning: scaled digital photographs for each time point were analyzed in 

ImageJ for: i) percentage of width change (WID) between amputation plane (W1) and the 

base of the regenerate (W2, most anterior plane, right above the narrowing), ii) percentage of 

unpigmented epithelium covering the regenerate (usually referred as unpigmented area, 

UNA) over the total (pigmented + unpigmented) regenerated area, and iii) maximal length of 

growth (LEN), or distance between amputation plane and the tip of the regenerate (most 

distal point), normalized to the total animal length (anterior-posterior axis, from snout to 

vent). Diagram and additional details of these measurements are given in Figure S2A and 

Table S1.

At the latest stages for the regeneration period (7.5 and 9.5 mpa, respectively) two additional 

parameters were evaluated. The shape characterization of the regenerate (SHAPE) was done 

at 7.5 mpa by using techniques of geometric morphometrics, as previously described in 

(Mondia et al., 2011). To this, 12 points or landmarks were selected and placed along the 

regenerate on digital images (two at the amputation plane, two at the base, two at the tip, and 

six semi-landmarks or midpoints between the previous ones). MorphoJ software 

(Klingenberg, 2011) performed the operations considering X and Y coordinates to create a 

wireframe determination of the average positions of the points relative to one another. 

Mahalanobis distance was used to compare statistically the differences in shape. A reference 

axis, at the middle point of the longitudinal axis, was placed to evaluate the curvature at the 

tip of the regenerate (CURVE at tip). Diagram and additional details of these measurements 

are given in Figure S2B and Table S1. At 9.5 mpa, the length of the regenerated structure (a’ 
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+ b’), from the knee to the tip of the regenerate (a’ = length from the knee to the amputation 

plane, b’ = LEN = length from the amputation plane to the tip) for each animal in Control 

and Prog-device groups was compared to the length of the respective contralateral uncut 

limb (specific length of the combined tibiofibula -a- and tarsus -b-) by using the formula 

LEN RATIO = (a’+b’)/(a+b) (Table S1).

Skeletal-element patterning: For each time point, pattern of residual (or intact ossified bone) 

and regenerated bone (mostly non-ossified cartilage, also referred as new bone) was assessed 

from X-ray images by using ImageJ. Length of non-ossified bone growth (BLEN) was 

measured as the maximal distance between amputation plane and the most distal plane set 

by the front of the bone growth. As new bone regrows from above the amputation plane, the 

total area occupied by non-ossified bone (BAREA) was chosen as integrative parameter for 

bone regeneration. At 7.5 mpa, the morphological reintegration of the non-mineralized 

cartilage respect to both remaining bone (tibiofibula) and soft tissue was characterized. To 

this, we evaluated the deviation angle (α) formed under the intersection between the middle 

line of the new bone growth and the middle line of the remaining bone (longitudinal axis of 

the tibiofibula). The geometric intersection between the middle line of the intact tibiofibula 

bone and the plane set by the base of the regenerate was taken for evaluating the bone 

displacement from the longitudinal axis to the medial edge of the soft tissue (d). Diagram 

and additional details of these measurements are given in Figure S3 and Table S1.

Next generation sequencing (NGS)

Sample preparation and Sequencing: Twenty-seven animals belonging, respectively, each 

group (Control, Sham and Prog-device; n = 9 per group) were used for RNA sequencing of 

blastema tissue. We performed three biological replicates (or surgery days) with three 

animals per condition. Twenty-four hours after treatment, animals were sacrificed and 

blastema (or proximal stump) tissue was removed and immediately frozen with liquid 

nitrogen. Total RNA for each sample was isolated by using TRIzol™ Reagent (Ambion, 

Invitrogen #15596018)– chloroform, following standard manufacturer’s protocol. Each 

sample was independently processed for total RNA extraction and purification. Before 

conducting NGS assays, RNAs from each condition and biological replicate were pooled. 

We analyzed 9 pooled samples in total: three biological replicates per three experimental 

conditions (each sample with RNA from three animals). NGS analyses were performed by 

The MIT BioMicro Center (Boston, MA). Samples were quality controlled on a Fragment 

Analyzer (Advanced Analytical) to determine DV200 scores. The mRNA from 1 µg of total 

RNA was isolated using Illumina human/mouse/ rat RiboZero Gold and prepared into 

Illumina libraries using the Kapa RNA HyperPrep kit and 10 cycles of amplification. Final 

libraries were pooled and quality controlled using qPCR (Roche LC480II) as well as the 

Fragment Analyzer and sequenced on HiSeq2000 for 40 nucleotides. Following sequencing, 

data processing was performed using the standard Illumina pipeline. Fastq files were 

generated for data processing and assembly. The accession number for the RNA-seq data 

reported in this paper is NCBI GEO: GSE118454.

The quality of the RNA-seq sequence data was first evaluated using FastQC (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) prior to further downstream analysis. 
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Low quality sequences were trimmed and poor quality reads were removed using 

Trimmomatic (Bolger et al., 2014). Differential gene (DE) expression analysis was 

conducted using The Star Aligner (Dobin et al., 2013) to map high quality single end reads 

to the genome, X. laevis v9.2 and the gene annotation was downloaded from Xenbase 

(http://www.xenbase.org/entry/). Gene expression was obtained using RSEM (Li and Dewey, 

2011). The expected read counts and Fragments Per Kilobase of transcript per Million 

mapped reads (FPKM), were extracted for further analysis. The estimated read counts were 

used as input for edgeR (Robinson et al., 2010) to perform DE analysis. A generalize linear 

regression model was developed to identify DE genes and the thresholds were set at FDR 

0.05 and fold change of greater than 2 or less than 0.5. Three comparisons were performed 

(comparing Control, Sham, and Prog-Device among each other). Prior to the DE analysis, 

PCA was performed to identify outlier samples. No outlier samples were detected with this 

approach.

Pathway analysis: Sub-network enrichment analysis (SNEA) was performed in Pathway 

Studio 10.0 (Elsevier Life Science Solutions) and ResNet 11.0 for constructing gene 

interaction network for transcripts showing differential expression. The option of ‘‘best p 

value, highest magnitude fold change’’ in Pathway Studio was used for duplicated probes. 

Transcripts were successfully mapped using Name and Alias. SNEA was performed to 

identify gene networks that were significantly different in the treatment samples compared 

to control. A Kolmogorov–Smirnov test with 1000 permutations was conducted to determine 

whether specific networks were preferentially regulated compared to the background 

reference probability distribution. Networks were constructed based on common regulators 

of expression and regulators of specific cell processes. The enrichment P-value for a gene 

seed was set at p < 0.05.

Enzyme-linked immunosorbent assay (ELISA)—Eighteen animals belonging, 

respectively, to each group (Control, Sham and Prog-device; n = 6 per group) were used to 

measure Prog levels in proximal (blastema or proximal stump) and remote (distal stump, 

systemic blood and brain) tissues. We performed three biological replicates (or surgery days) 

with two animals per condition. Twenty-four hours after treatment, animals were sacrificed 

and blastema, brain and serum were harvested and frozen with liquid nitrogen. The detection 

and quantification of Prog levels was performed using the Invitrogen Progesterone 

Competitive ELISA kit (ThermoFisher Scientific, Invitrogen # EIAP4C21), following 

standard protocols on pooled samples of blastema, brain, and serum from each condition and 

biological replicate. We analyzed 27 samples in total: three biological replicates per three 

experimental conditions per three different tissues (each sample with tissue from two 

animals). Additionally, from each pooled sample we did three technical replicates or plate 

readings at 450 nm. The optical density of Prog at 450 nm of the standards and the samples 

were then used to create a 5-parameters logistic equation (curve-fitting analysis) in 

MATLAB. Data were analyzed by one-way ANOVA followed by Bonferroni’s post-tests.

Sample preparation: Samples were prepared and homogenized following standard 

protocols described by the manufacturer (https://tools.thermofisher.com/content/sfs/

brochures/TR0065-ELISA-guide.pdf). For blastema samples, a 100 µg of pooled blastema 
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samples from each respective experimental group were homogenized with incrementally 8 

times the volume of cell extraction buffer with protease inhibitors (17 ul of 1mM PMSF and 

500 ul of protease inhibitor cocktail per 5 mL) while being homogenized using a handheld 

homogenizer. These respective pooled homogenized samples were then occasionally 

vortexed while they were kept on ice for 30 minutes. The lysate was then clarified by 

centrifugation at 13,000 x g at 4C for 10 minutes. The supernatant was then transferred to a 

clean microcentrifuge tube. The total protein concentration was then determined using a 

protein Quant-iT kit (ThermoFisher Scientific, Invitrogen # Q33210) to determine the 

relative dilution to use for the ELISA analysis and to also verify that protein was extracted 

from the sample. The supernatant was stored at −80C for storage until ELISA was 

performed. For brain samples, A 100 µg of pooled brain samples from each respective 

experimental group were homogenized with incrementally 8 times the volume of 5 M 

guanidine-HCl in 50 mM Tris while being homogenized using a handheld homogenizer. 

These respective pooled homogenized samples were then mixed on an orbital shaker at room 

temperature for 3 hours. Then samples were then stored at −80C until the day they were 

used for the ELISA assay. Right before the ELISA assay was performed the samples were 

diluted ten-fold with cold PBS with 1X protease inhibitor cocktail and then centrifuged at 

13,000 × g for 20 minutes at 4C and the supernatant was moved to a new tube. Additionally, 

blood samples were taken and processed according to standard protocols for serum 

extraction. To this, the blood was collected into respective test tubes and allowed to clot by 

leaving it undisturbed at room temperature for 15–30 minutes. The samples were then 

centrifuged at 1000–2000 × g for 10 minutes in a refrigerated centrifuge. The resultant 

supernatant/serum was immediately transferred into a clean polypropylene tube using a 

Pasteur pipette. The samples were stored at −20C until ready for ELISA assay.

Quantification of Prog levels: The Invitrogen Progesterone Competitive ELISA kit 

(ThermoFisher Scientific, Invitrogen # EIAP4C21) was used to analyze the concentration of 

Prog in pooled samples. The protocol was followed using procedural guidelines. The 

standards were diluted to consist of the following concentrations of Prog: Std1 = 3,200 

pg/mL, Std2 = 1,600 pg/mL, Std3 = 800 pg/mL, Std4 = 400 pg/mL, Std5 = 200 pg/mL, Std6 

= 100 pg/mL, Std7 = 50 pg/mL, and Std8 = 0 pg/mL. All the pooled samples were diluted 

1:30 (the Prog samples were also diluted incrementally up to the highest recommended 

dilution) with the same assay buffer that the standards were diluted with. Four wells were 

designated to be blanks to holds as a control for the plate and four wells were designated for 

the non-specific binding (NSB) negative control. The antigen was bound by first pipetting 50 

ul of standards or samples into the appropriate wells and 75 ul of 1X assay buffer into the 

wells for detecting NSB. Then adding 25 ul of Prog conjugate into each well except for the 

blank wells. Then adding 25 ul of Prog antibody to each well except for the blank wells and 

NSB wells. The side of the plate was tapped to mix the plate. The plate was covered with the 

plate sealer and incubated at room temperature for 2 hours with shaking. The solution was 

thoroughly aspirated and then 300 ul of 1x wash buffer was added to each well and this was 

repeated a total of four times. Chromatogen was added to the samples, where 100 ul TMB 

substrate was added and then plate incubated at room temperature for 30 minutes without 

shaking. The ELISA assay was ended by adding 50 ul stop solution to each well and the side 

of the plate was tapped to gently mix. Within ten minutes of adding the stop solution to each 
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well, the plate was read in three replicates at 450 nm by a plate reader using SoftMaxPro 

software in which the optical density at 450 nm was recorded.

Data Analysis: The optical density of Prog at 450 nm of the standards and the samples were 

then used to create a 5-parameters logistic equation in MATLAB to accordingly determine 

the concentration of Prog for each respective pooled sample. The 5-parameters logistic 

regression is a typical method for curve-fitting analysis in assays such as ELISAs. The 

averages across replicates and reads were then taken and the background of NSB was 

subtracted from the samples and the standards. The standards were used to create the 5-

parameter logistic regression (non-linear curve) and the samples were matched to this 5-

parameters logistic curve using MATLAB in order for the values of the Prog concentration 

to be generated. The dilution factor was implemented (which was 30), the average was 

taken, and the standard deviation per group was calculated. The average of the standard 

deviation of the standards was scaled and factored into each respective value and added to 

the final standard deviation per sample. The One-Way Anova was performed on the data by 

using Prism to calculate the P- and F-values.

Immunofluorescence and Histology—At early stages of regeneration (0.5 and 3 mpa), 

animals were deeply anesthetized with benzocaine overdose (0.2%) and buds were removed 

for histological analysis. Additionally, tips of regenerates from 9.5-mpa animals and uncut 

or intact limbs were removed and sectioned for late-stage histological evaluation (Figure S5 

for schematic representations). Samples were fixed overnight in a MEMFA fixative (1 part 

MEM salts, 1 part formaldehyde and 8 parts deionized water) at 4 C and carefully processed 

for cryostat sectioning. Briefly, after fixation, the bone was decalcified for two days in an 

EDTA based solution (0.4 M, pH 7.3). Once decalcified, tissues were gradually equilibrated 

up to 30% sucrose before embedding in OTC media and flash freezing in liquid Nitrogen. 

Limbs were serially sectioned at 14 μm onto glass slides, both at longitudinal and transversal 

axis, using a Leica CM1800 cryostat. Samples for immunohistological analysis were washed 

in phosphate-buffered saline (PBS) and then incubated for 30 min in PBS-Tr (PBS with 

0.01% Triton X-100; Sigma). Slides were then incubated in blocking solution (PBS-Tr with 

1% BSA and 10% Goat Serum) for 45 minutes. After blocking, samples were incubated in 

primary antibodies diluted in blocking solution overnight. Spatial patterns of proliferative 

cells, leukocytes, nerve fibers and vascular smooth muscle cells were detected by 

immunofluorescence for anti-phospho-Histone H3 (Ser10) (Tseng et al., 2007) (H3P at 

1:1000; EMD Millipore 06–570), anti-XL2 (Miyanaga et al., 1998) (XL2 at 1:1000; 

provided as a generous gift from Makoto Asashima’s lab at Tokyo University), anti-

acetylated alpha tubulin (Chu and Klym-kowsky, 1989) (Tub at 1:1000; Sigma T7451), and 

anti-alpha smooth muscle alpha-actin (Di Rosa et al., 1995) (SMA at 1:100; Sigma A2547) 

primary antibodies, respectively. Slides were washed in PBS and secondary antibodies 

(Alexa Fluor dye conjugated goat anti-mouse, or goat anti-rabbit, antibodies; Invitrogen) 

were used at 1:500 dilution. Slides were counterstained with DAPI before VectaShield 

mounting media. Particular care was taken to ensure that samples from the two different 

experimental groups were processed in the same batch at the same immunofluorescence 

session. Hematoxylin & Eosin (H&E) stain was done according to standard protocols 

(Suvarna et al., 2013). Immunofluorescence sections were imaged on an Olympus BX-61 
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microscope equipped with a Hamamatsu ORCA AG CCD camera, and controlled by 

Metamorph software.

Additionally, expression of Prog Receptor (PR) on frog limbs was revealed by a hormone 

assay employing a fluorescent ligand of PR (Gaetjens and Pertschuk, 1980; Weinstain et al., 

2013) (Prog 3-(O-carboxymethyl)oxime:BSA-fluorescein isothiocyanate conjugate; PFITC, 

Sigma P8779). 14-μm thick frozen sections of intact (uncut) frog limb were incubated in 50 

μM of PFITC ligand diluted in PBS, pH 7.3. After 2 h, sections were rinsed in buffer and 

counterstained with DAPI before VectaShield mounting media and confocal imaging. 

Specificity of the ligand was determined by concurrent competitive binding studies consisted 

of parallel sections co-incubated with 50 μM of PFITC plus a 200–500 fold excess molar 

concentration of water-soluble Prog (15 μM; physiological agonist for PR; Sigma P7556) or 

the steroid Hydrocortisone (15 μM; agonist for Glucocorticoid Receptor but not for PR; 

Sigma H0888) on adjacent limb sections.

Stock solution of PFITC was prepared by dissolving the compound in Millipore water (to a 

final concentration of 500 μM). Further dilution was made in normal media (PBS 0.1 M, pH 

7.3). Optimal working concentration of PFITC was determined by screening with different 

concentrations (0.5 μM, 10 μM and 50 μM). Additional control experiments were performed 

using 14-μm frozen sections of Xenopus oocytes at different stages (IV-VI), known to be 

PR-positive (Bayaa et al., 2000; Tian et al., 2000).

Cellular and Morphological Evaluation—0.5 mpa: Wound-healing stage. 

Quantification of H3P and XL2 was performed by analyzing 10x images, using ImageJ 

threshold and count positive cells. For XL2 measurements, two different regions were 

counted separately: proximal or distal respect to the amputation plane. Special care was 

taken in defining areas of the same size and anatomical characteristics. The total area 

between amputation plane and WE was split in four regions or quarters, along the 

anteroposterior axis. Proximal was considered the first quarter, immediately close to the 

amputation plane. Distal was considered as the area occupied by the following third 

quarters, or blastema core.

3 mpa: Bud-outgrowth stage. Images of H3P-, SMA- and Tub- immunofluorescence 

longitudinal sections (see Figure S5A for schematic representation) were taken at the same 

magnification, had the same brightness and contrast settings and were all transformed to 8-

bit images for analysis, using ImageJ software. The number of H3P-positive cells was 

counted along the longitudinal view, from the amputation plane to the bud edge, on three 

different sections per animal, corresponding to three different dorsoventral levels. To obtain 

the H3P labeling index (%), we normalized the number of H3P-labeled cells to the total 

number of cells in each section (quantified after DAPI staining on parallel sections), 

following the formulae: H3P+ cells/DAPI+ cells*100. For SMA and Tub counts, a blank 

mask of each longitudinal section was created. Individual signals from each image were 

hand traced and copied onto the blank mask. Once all the signals were fitted onto the mask, 

a program on ImageJ was run to fit ellipses around each tracing and take measurements. For 

Tub, we quantified the area of each bundle or group of axons. For SMA, we quantified the 
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area of each SMA-positive vessel. For all the measurements, only internal regenerate area, or 

core blastema-like, was considered, excluding epidermis from the counts.

9.5 mpa: End-point stage. Each 9.5-mpa tip was sampled using a systematic procedure in 

order to quantify the number and area of Tub-positive or SMA-positive units at different 

anatomical levels, along the proximodistal axis, on cross sections (see Figure S5A for 

schematic representation). The number total of Tub-positive or SMA-positive fibers or cells 

was normalized to the size of the tissue section. Per each animal, at least three different 

sections corresponding to three different levels of the sample, were measured. Then, on 10x 

images, a grid was superimposed to guide the random sampling of area for bundle or group 

of axons and the area of each SMA-positive vessel.

Special care was done to ensure comparison of sections at the same dorso-ventral (for 

longitudinal sections) or proximo-distal (for transverse sections) level across control and 

experimental animals. All samples ere carefully aligned, registered with respect to 

amputation plane relative to the joint, and embedded in the OCT in the same orientation and 

cryosectioned, to obtain six parallel series with the whole sample represented. Using a 

systematic labeling, parallel sections of controlled locations along the whole limb or 

regenerate can be analyzed to compare the different markers between experimental groups 

(confirmed by the fact that the organization/pattern of the innervation showed very little 

detectable variation across the control animal sections, indicating a consistency in the 

positional sampling procedure itself). All individuals among whom comparisons are being 

made were produced in the same batch, treated identically for processing and imaging – 

conditions were not changed.

Regeneration Index—A composite Regeneration Index (RI) was designed for scoring of 

regenerative limb phenotype, ranging from 0 (typical hypomorphic spike) to 10 (patterned 

paddle-like regenerates). The RI scoring system uses a 10-point scale, to evaluate six 

individual criteria on soft tissue (shape and macroscopic descriptors), bone growth, and 

functional response of the regenerates. Rating for each factor is bimodal, either 1 or 0, in 

function of quantitative (numerical threshold) or qualitative (presence/absence) description. 

We applied the RI to animals in both experimental groups at two different time points, early 

and late stages, after amputation (2.5 and 9.5 mpa, respectively; Tables S3 and S4).

The final RI is a weighted combination of six individual criteria, following the formulae:

RI = 3 ∗ x1 + 2 ∗ x2 + 2 ∗ x3 + 1 ∗ x4 + 1 ∗ x5 + 1 ∗ x6 .

The criterion scores (xi) and their values are:

• Percentage of width change (WID, x1, Figure S2A for diagram): 0 if x1 is 50%–

100%, 1 if x1 is 50%–100%

• Percentage of unpigmented area (UNA, x2, Figure S2A for diagram): This 

criterion is categorized (numerical threshold) differently depending on timing 

after amputation because of its natural difference, at the same magnitude order 

for both control and experimental groups, over the course of the regeneration 
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(see Results sections). Values for x2(2.5) are 0 if x2(2.5) is 0%–30%, 1 if x2(2.5) is 

30%–100%. Values for x2(9.5) are 0 if x2(9.5) is 0%–10%, 1 if x2(9.5) is 10%–

100%.

• Maximal width of the regenerate is greater than or equal to width of the 

amputation plane (MaxWID ≥ W1, x3): 0 if x3 is no, 1 if x3 is yes.

• Curvature of the tip (CURVE at tip, x4, deviation from the reference middle axis, 

Figure S2B for diagram): values are 0 for presence and 1 for absence of 

curvature at the tip of the regenerate.

• Area occupied by new bone growth (BAREA, x5, Figure S3A for diagram): This 

criterion is categorized differently depending on timing after amputation to 

reveal key biological events. At 2.5 mpa, x5(2.5), the RI scores the presence/

absence of non-ossified bone growth from above the amputation plane or 

endogenous second amputation (as described for digit tip regeneration in mice by 

Muneoka’s group (Fernando et al., 2011); red asterisk in Figure S3A). Values for 

x5(2.5) are 0 for absence and 1 for pres-ence of second amputation. At 9.5 mpa, 

x5(9.5), the RI scores the absolute area occupied by new bone: 0 if x5(9.5) is less 

than or equal to 30 μm2, 1 if x5(9.5) is greater than or equal 30 μm2.

• Mechanosensitive adaptation (ADPT, x6; Table S1) values are 0 if x6 is no, 1 if 

x6 is yes. This neurophysiological response is measured as presence/absence of 

response motor to one touch stimulus applied 30 s after the first one. Both 

stimuli were applied with toothless-smooth tip forceps in the same direction and 

with the same weak pressure. The adaptive behavior indicates presence of 

complex nerve endings (with rapidly adapting afferents) formed in the 

regenerate, which are able to integrate sensorial information rather than reflex 

responses to mechanical (non-noxious) stimuli (Lumpkin et al., 2010; Mearow 

and Diamond, 1988; Scott et al., 1981).

The components of the RI were chosen with the goal of reflecting the overall improvement 

in regeneration. Considering the large number of parameters evaluated in this study 

(anatomical, histological, behavioral etc.), we chose those that better represented each 

modality. We chose three anatomical parameters (x1, x2, x3) related to width and epithelium 

of the regenerate; one shape parameter (x4) describing the end of the regenerate; one about 

bone remodeling (x5; bone area is more indicative that length because measuring ‘area’ we 

are also evaluating other biological events, like secondary amputation); and one about 

functionality (x6), adaptation, that, in turn indicate presence of elaborated neural responses 

in the regenerated. Each component is given an individual weighting, with higher weights 

going toward metrics that are relevant to the main developmental sequence that produces a 

usable limb.

Effective Swimming Evaluation—At 7.5 mpa, videos of individual Uncut, untreated-cut 

(Control) and Prog-device treated animals were recorded and analyzed for active behavior 

and functional use of the regenerate. One animal at a time was placed in a fresh-water tank 

(to avoid potential noise from other animals or food) and allowed to swim freely while a 

camera mounted on a tripod recorded them for 3 minutes (min). We evaluated three 
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parameters of effective swimming per 3-min interval: i) activity level for each group was 

measured by counting the number of active movements (with trajectory displacement; MOV, 

Table S1); ii) frequency of surfacing or number of visits to the interface water-air of the 

tank, and iii) percentage of time frog spent in each quadrant of the tank. Additionally, 

functionalization of the regenerate was analyzed by means of i) the speed at which the 

animal swims, and ii) positional information (POS; Table S1) of the regenerate at passive 

and active movements. Speed was evaluated by using Tracker software (https://physlets.org/

tracker/). A one-inch measured engraving on the bottom of the tub was used as calibration 

stick for the videos, in order to have a reference measurement to know the speed traveled per 

coordinate movements that were tracked. Every single frame was used to track to increase 

the accuracy of the measurements. Continuous velocity data points per each ~3 minute video 

were obtained as final data. To extract positional information, videos were split into frames 

via QuickTime 7 and ten random frames per animal and per movement were used.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using GraphPad Prism (GraphPad Software, Inc., CA, 

US). First, data were tested for homogeneity of variances by Bartlett’s test. In case of equal 

variances, unifactorial (or one-variable) analysis was analyzed by unpaired and two-tailed 

Student’s t test (two independent groups), or one-way ANOVA test (multiple independent 

groups) followed by post hoc Bonferroni test (when p < 0.05). When variable ‘‘time’’ was 

considered, a bifactorial analysis was performed by two-way ANOVA. Statistically 

significant differences for Ctrl and Prog-device groups at each specific time point were 

determined by using unpaired and non-directional Student’s t test. In case of unequal 

variances (or non-normal distributions), two-tailed Mann-Whitney and Kruskal-Wallis test 

followed by pot-hoc Dunn test (when p < 0.05), respectively, were used. Statistical details of 

each experiment (test used, value of n, replicates, etc) can be found in the Results and 

Figure-Figure Legend sections. The significance level (α) was set to 0.05 in all cases. The 

statistical values are reported as mean ± Standard Deviation (SD). When appropriate, dot or 

scatterplots are used for highlighting the inter-individual variability within each 

experimental group.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Adult Xenopus laevis frogs are capable of induced increased regenerative 

response

• Improved limb regeneration is driven by a wearable bioreactor containing 

progesterone

• Improvements occur at molecular, anatomical, and behavioral (functional) 

levels

• A 24-hr treatment is sufficient to trigger many months of regenerative growth
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Figure 1. 24-Hr Combined Progesterone-Device Treatment Changes Early Cellular Response, 
Decreasing the Early Leukocyte Invasion and Leading to a Scar-free Wound Healing with 
Higher Nerve Supply at Later Stages
(A) Schematic showing the experimental design and integrative methodology for assessment 

of the regenerative potential. The orange dashed line indicates amputation plane. The black 

dashed lines delineate gross morphological outcomes for the two experimental groups.

(B–E) Expression of progesterone receptor (PR) on frog limbs revealed by fluorescent 

ligand binding assays and hormone displacement studies.
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(B) Low-magnification image of a cross-section of intact frog hindlimb after incubation with 

the fluorescent ligand for PR (progesterone 3-(O-carboxymethyl) oxime:BSA-fluorescein 

isothiocyanate conjugate [PFITC]) and counterstained with DAPI. In the center of the bone 

is the marrow containing PR+ mesenchymal cells (white arrowheads).

(C) High-magnification image through the bone marrow of an intact frog hindlimb showing 

nuclear colocation for PFITC and DAPI labeling (white arrowheads).

(D) Parallel section to (B) after PFITC co-incubation with a saturating concentration of the 

physiological agonist progesterone. No positive cells were detected.

(E) Cross-section of frog hindlimb after PFITC co-incubation with an unspecific hormone, 

hydrocortisone. Since no competitive binding occurs, the fluorescent ligand reaction showed 

a similar positive pattern to the single PFITC incubation, as detected when compared to (B). 

Scale bar, 100 μm.

(F–H) H&E staining at 0.5 months post-amputation (mpa), showing the overall organization 

of the soft tissue after no subsequent treatment (Ctrl group, F) and after treatment with the 

silk-hydrogel device loaded with progesterone (Prog-device group, G). Two weeks after 

amputation, differences in the fibroblastema region (asterisk) were present between the two 

groups—mostly collagen accumulation in untreated animals‒and frequent areas of irregular 

cells (asterisk) in Prog-device treated animals. In (H), a scheme with the main histological 

elements, as seen on sections along the longitudinal axis, is presented.

(I–K) Immune infiltration (after XL2 immunofluorescence) in the early fibroblastema of Ctrl 

(I) and Prog-device (J) animals. The number of leukocytes was significantly lower (K) in the 

apical region (or distal from the amputation plane, blue dashed line) of the blastema in the 

treated animals.

(L–N) The number of H3P-expressing proliferative cells (white arrows) normalized to the 

total number of cells (DAPI labeled, blue) between Ctrl (L) and Prog-device (M) animals at 

late-blastema stage (3 mpa) showed no significant differences (N).

(O–Q) The nerve patterning, as detected after tubulin (Tub) immunofluorescence on 

longitudinal sections, was less organized in Ctrl (O) group than after Prog-device treatment 

(P). The former was characterized by the presence of specialized groups or bundles of nerve 

fibers, with higher area per positive unit (Q).

(I, J, L, M, O, and P) Scale bars, 100 μm. (I and J) Amputation plane is right, medial is up. 

(L and M) Amputation plane is up, medial is left. (O and P) Amputation plane is left, lateral 

is up. (F–Q) Micrographs show longitudinal sections (see Figure S5A for scheme). (K, N, 

and Q) Values are represented with scatterplots, in which each dot represents one 

histological section and each dot style represents one animal (with at least three histological 

sections). Statistical analysis was performed on the pooled individual sections. Horizontal 

line indicates mean. p values after t test (equal variances; N) or Mann-Whitney test (unequal 

variances; K and Q) are indicated as *p < 0.05, **p < 0.01, ns, p > 0.05.

See also Figure S1.
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Figure 2. Gross Morphological Outcomes and Bone Reorganization Show Tendency to Pattern 
Formation in Animals Treated with the Combined Drug Device
(A and B) Soft-tissue patterning for Ctrl (top) and Prog-device treated (bottom) animals 

during a 9.5-month regeneration period.

(A) Amputation plane is indicated with an orange line. Lateral panels show the appearance 

of the regenerate at 2.5 mpa, when differences between groups become obvious. White 

arrows point out the typical unpigmented area covering wider regenerates. Scale bar, 1 cm.
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(B) Data represent the mean and SD (Ctrl group n > 6 animals for 0.5–2.5 mpa, n = 3 for 5–

9.5 mpa; Prog-device group n > 6 animals for 0.5–9.5 mpa). p values after two-way ANOVA 

are indicated as *p < 0.05, **p < 0.01, ns, no significant difference.

(C–E) Reorganization of the regenerated bone and remaining tissues after treatment and 

comparisons to the naturally occurring joint formation between femur and tibiofibula bones 

in intact limbs.

(C) Left: X-ray image of right leg of intact or uncut animals. Typical deviation angle (a, 

close to 90 ) for joint formation between femur and tibiofibula bones is indicated. An orange 

dashed line indicates the plane where amputation is performed. Right: X-ray images for Ctrl 

and Prog-device animals at 7.5 mpa, to evaluate the reintegration of the regenerated bone 

and remaining tissues (old bone and soft tissue) during limb regeneration (for schematic 

representation and axis explanation, see Figure S2B).

(D) Deviation angle created by the new bone growth for Prog-device animals is significantly 

more open than the one for regular spikes in Ctrl or no-device animals.

(E) Graph representing the old-bone displacement (d) during the course of the regeneration, 

from the longitudinal axis (0) to the medial edge of the soft tissue (−0.5). Values are 

represented with scatterplots, in which each dot represents one animal. p values after t test 

(D) or post hoc Bonferroni’s test (E, p < 0.01 for one-way ANOVA) are indicated as *p < 

0.05, **p < 0.01, ns, no significant difference.

See also Figures S2, S3, and S4.
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Figure 3. Instead of the Typical Spikes Formed in the Absence of Treatment, Combined Prog-
Device Treated Animals Regenerate Complex Patterned Paddle-like Structures
(A–D) Anatomical outcome (left) and X-ray images (right) of regenerates formed in adult 

Xenopus hindlimb amputation after no treatment (Ctrl, A) and after 24-hr combined 

treatment of drug-loaded device (Prog-device, B–D).

(A) Red arrow indicates the hypomorphic cartilaginous structure, spike, lacking specialized 

tissues.

(B–D) Green arrows on soft tissue images (left panels) indicate the dense and sprouted 

vascularization, easily visualized due to unpigmented epithelium covering the regenerates of 
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treated PD7 (B), PD5 (C), and PD1 (D) animals. X-ray images (right panels) show the new 

bone growth within the regenerates of treated PD7 (B), PD5 (C), and PD1 (D) animals 

(weakly ossified bone close to the amputation plane, green arrows; non-ossified bone or 

regenerated cartilage traveling toward the distal part, turquoise arrows in B–D; magenta 

arrow in A indicates the absence of bone regeneration in the distal spike). Individual 

identification of each animal is indicated in white (Ctrl: untreated control, PD: Prog-device 

treated, followed by the individual number).

(E) Shape profiles, as obtained after MorphoJ software measurements (see Figure S2B for 

details), for un-treated (red) and Prog-device treated animals (green). Each circle indicates 

the average position for each landmark, after computations for n = 3 and n = 7 animals in 

Ctrl and Prog-device groups, respectively. Quantification and statistical analysis of these 

shape states showed significant differences in the Mahalanobis distance (p < 0.05) for the 

profile of the shape of the regenerate.

(F) Application of RI to regenerates at both 2.5 and 9.5 mpa (two-way ANOVA, p < 0.01 for 

‘‘group’’ factor). Scatterplots are presented in which each dot represents one animal.

(G and H) Quantification of regenerated limb length (a′ + b′) relative to uncut limbs (a + b) 

revealed that the regenerating hindlimb stops growing at a point at which, under normal 

growth conditions, the animal’s digits appear (yellow arrows) (G). Values in (H) are 

represented with scatterplot, in which each dot represents one animal.

See also Tables S1 and S2.
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Figure 4. Prog-Device Treated Animals Show Significantly Greater Innervation and 
Vascularization than Untreated Animals at the Most Distal Part of the 9.5-mpa Regenerate, with 
Patterns Closer to Uncut (Intact) Limbs
(A–D) Low-magnification immunofluorescence images of DAPI-counterstained cross-

sections revealing innervation (anti-acetylated a-tubulin antibody [Tub]) and vascularization 

(anti-smooth-muscle actin antibody [SMA]) of amputated untreated (Ctrl) and amputated 

plus Prog-device (Prog-device) treated animals. The overall area occupied by Tub+ fibers is 

significantly greater in treated tips (turquoise double-headed arrow in B, compared to 

magenta double-headed arrow in A). Similarly, the density and extension of the blood 

Celia et al. Page 38

Cell Rep. Author manuscript; available in PMC 2019 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vessels for Prog-device treated animals (D, turquoise arrows) is higher when compared to 

untreated animals (C, magenta arrows). gl, SMA+ epidermal glands were not included in the 

analysis. Scale bars, 250 μm. The cartilage core of the 9.5-mpa regenerates is indicated in 

(A). For a schematic representation of the plane cut, see igure S5A.

(E and F) Quantitative results of number of positive units per square millimeter and area per 

unit for Tub (E) and SMA (F) immunofluorescence in Ctrl (red) and Prog-device groups 

(green). Values are represented with scatterplots, in which each dot represents one 

histological section, and each dot style represents one animal (with at least three histological 

sections). Statistical analysis was performed on the pooled individual sections. Horizontal 

line indicates mean. p values after Mann-Whitney test (unequal variances) or t test (equal 

variances; only for E, left) are indicated as **p < 0.01.

(G–N) High-magnification images revealed that while in untreated animals, the typical nerve 

patterning is composed of individual and unpatterned nerve fibers (magenta arrows in G), 

Tub+ axons in Prog-device animals show a tendency to group organization, forming bundles 

(turquoise line-encircled areas in H), similar to the nerve organization in intact or uncut 

limbs (turquoise line-encircled areas in I and J). Both the number and morphology and area 

of the SMA+ vessels for Prog-device tips were clearly closer to the intact limb (turquoise 

arrow and asterisks in L, M, and N) than to the Ctrl untreated limbs (small vessels indicated 

by magenta arrows in K). See Table S4 for quantitative data. Scale bars, 100 μm.

See also Figure S5 and Table S3.
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Figure 5. Locomotor Activity in Prog-Device Treated Animals Resembles More Closely that of 
Uncut Animals
(A) Quantifications of efficient activity levels, measured by counting the number of active 

movements (with trajectory displacement). Values are represented as mean ± SD (n = 4 

animals per group). One-way ANOVA p < 0.01. p values after Bonferroni’s post hoc 

analysis are indicated as *p < 0.05, **p < 0.01, ns, p > 0.05.

(B) Surfacing frequency or number of visits to the water-air surface performed by each 

experimental group per time unit (minute). Values are represented as mean ± SD (n = 4 

animals per group). One-way ANOVA p < 0.01. p values after Bonferroni’s post hoc 

analysis are indicated as *p < 0.05, **p < 0.01, ns, p > 0.05.
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(C) Graphic representation of the percentage of time spent in each quadrant of the tank per 

experimental group. Unbiased exploration (black line) is shown as reference (25% of time in 

each quadrant). Analysis of the time distributions within each experimental group showed 

clear significant differences (p < 0.01 for χ2
(0.05,9)). Data represent the pooled distribution 

of animals per group (see Figure S6A for contingency graph).

(D) Mean speed (expressed in centimeters per second) at which each animal (represented by 

individual dots) swims around the tank. Orange squares, uncut or intact animals; green 

circles, amputated animals followed by Prog-device combined treatment; red triangles, 

amputated animals without additional treatment.

See also Figure S6.
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Figure 6. Subnetwork Enrichment Analysis of All Three (Ctrl, Sham, and Prog-Device) Blastema 
Datasets Showing Quantitatively and Qualitatively Differences for Regulated Transcripts and 
Cell Processes after Combined Prog-Device Treatment
(A and B) Venn diagram comparing genes (A) and subnetworks (B) regulated in blastema 

for both Sham and Prog-device interventions.

(C) Pie chart of the functional classification of the pathways exclusively regulated after 

Sham intervention (top, amputation followed by only hydrogel device) or after the combined 

Prog-device treatment (bottom, amputation followed by hydrogel device + drug).

Complete data are presented in Data S1.
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Figure 7. Potential Targets (Gene Networks and Cell Processes) of the Combined Treatment 
(Device + Drug)
(A) Unweighted principal coordinate analysis (PCoA) demonstrated a clear separation of 

red, yellow, and green clusters representing Ctrl (or ‘‘no device’’), Sham (or ‘‘only device’’) 

and Prog-device (or ‘‘device + drug’’), respectively.

(B–D) Gene networks exclusively regulated in the blastema by the combined Prog-device 

treatment showing (B) enrichment of reproduction and osmoregulation processes, (C) 

upregulation of genes involved in, among others, tissue remodeling (compared to Sham), 
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and (D) downregulation of genes involved in, among others, neurotransmission signaling 

and ionic flow (compared to Sham). Green, down gene; red, up gene.

See also Figure S7. Complete data are presented in Data S1. All of the measured genes 

found in a pathway are located in Data S2.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-phospho-Histone H3 EMD Millipore Cat# 06–570; RRID: AB_310177

Mouse monoclonal anti- anti-acetylated
alpha tubulin (clone 6–11B-1)

Sigma-Aldrich Cat# T7451; RRID: AB_609894

Mouse monoclonal anti-XL2 This paper N/A

Mouse monoclonal anti-alpha smooth
muscle alpha-actin (clone 1A4)

Sigma-Aldrich Cat# A2547; RRID: AB_476701

Chemicals, Peptides, and Recombinant Proteins

Surgical Stitches ETHILON® Monofilament non-Absorbable 7–0

Device silicone rubber Smooth-On Dragon Skin Very Fast 10A

Silk hydrogel This paper N/A

Horseradish Peroxidase Sigma-Aldrich Cat# P8375

Prog Sigma-Aldrich Cat# P7556

Prog 3-(O-carboxymethyl)oxime:BSA-fluorescein
isothiocyanate conjugate; PFITC

Sigma-Aldrich Cat# P8779

Hydrocortisone Sigma-Aldrich Cat# 0888

Critical Commercial Assays

TRIzol™ Reagent Ambion, Invitrogen Cat# 15596018

Invitrogen Prog Competitive ELISA kit ThermoFisher Scientific, Invitrogen Cat# EIAP4C21

Protein Quant-iT kit ThermoFisher Scientific, Invitrogen Cat# Q33210

Deposited Data

Raw data files for RNA sequencing NCBI Gene Expression Omnibus GEO: GSE118454

Experimental Models: Organisms/Strains

X. laevis: Juvenile male and female Nasco LM00453MX

Software and Algorithms

ImageJ (1.47v) Wayne Rasband, NIH https://imagej.nih.gov/ij

MorphoJ Klingenberg, 2011 http://www.flywings.org.uk/MorphoJ_page.htm

Photoshop CC 2015 Adobe https://www.adobe.com/products/photoshop.html

Pathway Studio (v10.0) Elsevier Life Science Solutions https://www.pathwaystudio.com/

GraphPad Prism (v 5.0c) GraphPad Software, Inc. https://www.graphpad.com/

Regeneration Index This paper N/A

Tracker (v 5.0.6) Open Source Physics https://physlets.org/tracker/
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