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a b s t r a c t 

Red blood cell (RBC) deformability is a vital biophysical prop- 

erty that dictates the ability of these cells to repeatedly 

squeeze through small capillaries in the microvasculature. 

This capability is known to differ between individuals and 

degrades due to natural aging, pathology, and cold storage. 

There is great interest in measuring RBC deformability be- 

cause this parameter is a potential biomarker of RBC quality 

for use in blood transfusions. Measuring this property from 

microscopy images would greatly reduce the effort required 

to acquire this information, as well as improve standardiza- 

tion across different centers. This dataset consists of live cell 

microscopy images of RBC samples from 10 healthy donors. 

Each RBC sample is sorted into fractions based on deforma- 

bility using the microfluidic ratchet device. Each deforma- 

bility fraction is imaged in microwell plates using a Nikon 

CFI S Plan Fluor ELWD 40 × objective and a Nikon DS-Qi2 

CMOS camera on a Nikon Ti-2E inverted microscope. This 
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data could be reused to develop deep learning algorithms to 

associate live cell images with cell deformability. 

© 2023 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

S

V

 

 

 

 

 

 

 

1

 

i  

o  
pecifications Table 

Subject Biomedical Engineering 

Specific subject area Single cell image analysis using deep learning 

Type of data 2424 × 2424 pixel 8-bit greyscale images 

How the data were acquired The data was acquired using a Nikon Ti-2E inverted microscope configured for 

brightfield imaging with a Nikon CFI S Plan Fluor ELWD 40 × objective and a 

Nikon DS-Qi2 CMOS camera. 

Data format All images are 8-bit greyscale bitmaps. The raw image data are full microwell 

image scans. The cleaned image data excluded images outside the microwell or 

those that had poor focus. 

Description of data collection Self-identified healthy donors between the ages of 18–70 provided fresh or 

stored RBCs. These blood samples were sorted based on deformability using 

the microfluidic ratchet device. After sorting, the sorted cells were extracted 

and imaged. The imaging data were cleaned by removing images outside the 

well, as well as images with poor focus. 

Data source location Institution: University of British Columbia 

City/Town/Region: Vancouver, British Columbia 

Country: Canada 

Latitude and longitude (and GPS coordinates, if possible) for collected 

samples/data: 49.2606 ° N, 123.2460 ° W 

Data accessibility Repository name: Federated Research Data Repository 

Direct URL to data: https://doi.org/10.20383/103.0589 

Related research 

article 

Lamoureux, E. S., Islamzada, E., Wiens, M. V., Matthews, K., Duffy, S. P., & Ma, 

H. (2022). Assessing red blood cell deformability from microscopy images 

using deep learning. Lab on a Chip, 22(1), 26-39. 

https://doi.org/10.1039/D1LC01006A [1] 

alue of the Data 

• This dataset will be useful to researchers developing new AI algorithms to estimate RBC

deformability from single cell images. 

• Measuring RBC deformability is a technically challenging and time-consuming process

that requires specialized equipment and personnel. Assessing RBC deformability from mi-

croscopy images would greatly reduce the amount of effort required to acquire this data

and standardize this measurement across different centers. 

• This dataset includes microscopy images of RBC samples from 10 donors. Each sample is

sorted into fractions based on deformability. 

• This dataset could be used to develop image analysis algorithms to associate RBC images

with deformability, and importantly, to generalize this analysis across donors. 

• This dataset can also be used to develop algorithms to segment single cells from mi-

croscopy images. 

. Data Description 

This dataset consists of microscopy images of RBC samples from 10 donors who self-

dentified as healthy between the ages of 18-70. The RBCs were collected in citrate tubes (n = 4)

r in blood bags (n = 6). Some of the RBC samples were imaged immediately after collection

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.20383/103.0589
https://doi.org/10.1039/D1LC01006A
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Table 1 

Number of images for each donor. The higher numbered outlets contain more rigid cells. Samples of sorted cells were 

split and imaged in two separate wells. 

Outlet 2 Outlet 3 Outlet 4 Outlet 5 Unsorted 

Donor Well 1 Well 2 Well 1 Well 2 Well 1 Well 2 Well 1 Well 2 Well 1 Well 2 

1 - - 124 129 108 70 - - - - 

2 86 93 66 92 75 91 - - 82 - 

3 79 90 81 79 80 82 100 119 77 88 

4 - - 92 103 69 104 87 102 70 74 

5 - - 90 94 102 86 - - - - 

6 98 94 124 100 99 116 92 98 - - 

7 - - 107 107 102 102 132 145 - - 

8 82 133 102 128 118 96 119 87 - - 

9 - - 123 113 119 123 - - - - 

10 - - 121 101 109 117 113 107 - - 

Fig. 1. Example 2424 × 2424 pixel bitmap raw images from donor 3. 

 

 

 

 

 

 

(n = 3), one was imaged after storage in a plastic test tube at 4 °C (n = 1), while others were

stored in blood bags at 4 °C (n = 6). The donors were diverse in terms of blood type and sex [1] .

The microscopy image data consists of 6,491 grey-scale bitmap images of 2424 × 2424 pixels

at 8-bit depth. For the 10 donors, each consists of sets of images for multiple deformability out-

lets ( Table 1 ), where lower numbered outlets correspond to more deformable cells. Fig. 1 depicts

example microscopy image from donor 3 including sorted (outlets 2-5) and unsorted cell images.

Fig. 2 depicts the resultant images after preprocessing for single-cell image segmentation. 
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Fig. 2. Example preprocessed single-cell segmented images from donor 6. The images were segmented into single-cell 

images and augmented via rotation. 
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. Experimental Design, Materials and Methods 

.1. Data collection 

Donor whole blood samples were separated into components via centrifugation at 3180 g for

 minutes. Blood supernatant (plasma and white blood cells) were removed and discarded. The

emaining red blood cell pellet was resuspended and washed three times in a five-fold dilution

f Hanks balanced salt solution (HBSS, Gibco) with 0.2% Pluronic solution (F127, MilliporeSigma).

inally, the washed RBC pellet was resuspended in HBSS + 0.2% Pluronic at 1% hematocrit for

nfusion into the microfluidic ratchet sorting device. 

The manufacture of the microfluidic devices has been described previously [2 , 3] . Briefly, a

aster mold was manufactured using photolithographic microfabrication and was used to fab-

icate a secondary master polyurethane mold [4] . From the secondary master molds, single-use

icrofluidic devices were fabricated using PDMS silicone (Sylgard-184, Ellsworth Adhesives). Af-

er the PDMS mold devices cured, they were punched with 0.5- and 3.0-mm hole punches to

reate the inlets and outlets, respectively. The 0.5-mm inlets were washed with deionized water

or 15 seconds to remove any remaining PDMS debris. A thin PDMS layer (RTV 615, Momen-

ive Performance Materials LLC) was produced by spinning uncured PDMS on a 100 mm silicon

afer. After curing, the thin PDMS layer was bonded to the molded PDMS device to seal its mi-

rostructures using air plasma. The resulting sealed microstructure molded device was bonded

o a glass slide (Corning) using air plasma to allow for microscopy imaging. 

The microfluidic device operates using microscale funnel constrictions to measure cell de-

ormability. The operation of the microfluidic device has been described and validated previously
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[5 , 6] . Four pressurized fluidic inputs operate the microfluidic ratchet sorting. Three of these in-

puts push HBSS + 0.2% Pluronic buffer fluid: first, a horizontal crossflow moves the RBC sample

towards the outlets, and a coupled oscillating up-down pressure system squeezes cells through

progressively smaller tapered constrictions and declogs other cells unable to pass through. Cells

that squeeze through a minimum constriction size of 2.50 μm wide travel to outlet 5, 2.25 μm

to outlet 4, 2.00 μm to outlet 3, and 1.75 μm to outlet 2. The fourth and final pressurized input

pushes the 1% hematocrit sample into the microfluidic matrix sorting region. Running the device

for 60-90 minutes will sort > 30,0 0 0 cells into the outlets. 

After cell sorting, cells were extracted from the microfluidic device and transferred into an

imaging well plate. Each deformability outlet sample was split in two, producing two wells for

imaging, allowing us to account for potential well-specific imaging bias (e.g., cell location shad-

ing bias). Full well image scans were conducted in brightfield using a Nikon CFI S Plan Fluor

ELWD 40 × objective and a Nikon DS-Qi2 CMOS camera on a Nikon Ti-2E inverted microscope

with NIS Elements software. A description of the raw data is found in the “Data description”

section. 

2.2. Data cleaning 

The raw images were cleaned in several ways. First, the images were manually audited to

remove images captured outside the microwell or that were out of focus. The remaining images

after this manual audit are included in the referenced data repository for this work [7] . To make

these images useful for deep learning classification, a computer vision algorithm was used to ex-

tract single-cell images of size 60 × 60 pixels. The code used to segment the cells can be found

here [8] . After single cell segmentation, each image was manually reviewed to remove those

with no cells, partial cells, multiple cells, or those that were out of focus. The resulting cleaned

dataset was further processed. Images from well 1 and well 2 from each outlet for a specified

donor were combined to increase the variations within the deformability class. From this, we

split the images 80/20 from each outlet to produce separate sets for training and testing. Since

most cells ( ∼80%) were sorted to outlets 3 and 4, we decided to split the deformability groups

into deformable (outlets 2 and 3) and rigid (outlets 4 and 5) classes. After train-test splitting

and combining the outlets, we introduced further image variation using an image augmentation

protocol to rotate single-cell images by a random integer multiple of 90 °. This method produced

10,0 0 0 images for training and 2,0 0 0 images for testing for each deformability class. This aug-

mentation approach is presented in our Github repository [8] . 

2.3. Analysis 

The balanced datasets were used to train a convolutional neural network (CNN) model for

binary deformability classification for each donor. Our CNN model design can be found here

[1] and was influenced by the AlexNet model architecture [9] and other deep learning architec-

ture used in our lab [10] . The model was implemented in Python 3.7 using the Keras library in

TensorFlow. For feature extraction, the model used a series of 4 convolutional layers (sequential

kernel sizes of 7 × 7, 5 × 5, 3 × 3, and 3 × 3) and 3 max pooling layers. Each convolutional

layer was followed by batch normalization and ReLU activation. Then, the 3 fully connected lay-

ers were followed by batch normalization, ReLU activation, and 20% dropout. The output layer

used a SoftMax error function for backpropagation during training. We used a binary cross-

entropy loss function and stochastic gradient descent for optimization. The implementation of

this model can be found here [8] . 

The model was trained and validated using five-fold cross validation. We iteratively deter-

mined optimal donor-specific learning rates and number of epochs, ranging from 0.0 0 01 to 0.1

and 25 to 80, respectively. A stochastic gradient descent operator was reliable across the 10
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onors and was used with decay 10 −6 and Nesterov momentum 0.9. A batch-size of 32 was

eld for all donors. 

After training and testing, the model’s performance was assessed in multiple ways. First, we

onducted saliency maps to assess whether the model was learning and classifying deforma-

ility based on relevant cell morphological features. Second, performance evaluations including

onfusion matrices, accuracy, precision, recall, F1-score, ROC AUC were performed. Finally, the

eep-learning derived donor deformability score was compared to the microfluidic-derived score

1] . 

This dataset provides a comprehensive group of images at varying deformability levels for 10

onors who are diverse in terms of age, sex, and blood type. By further refining and developing

eep learning platforms to assess red blood cell deformability, there is potential to alleviate the

echnical and equipment burdens associated with cell deformability measurement. Ultimately,

his capability could enable blood banks to routinely assess RBC deformability in order to assess

he quality of donated red blood cell units. 

thics Statements 

This study was approved by the University of British Columbia’s Clinical Research Ethics

oard (UBC REB# H19-01121) and Canadian Blood Services Research Ethics Board (CBS REB#

019-029). 

eclaration of Competing Interest 

H. M. is listed as an inventor on a patent related to this work. 

ata Availability 

Data for: Assessing Red Blood Cell Deformability from Microscopy Images Using Deep Learning

Original data) (Federated Research Data Repository). 

RediT Author Statement 

Erik S. Lamoureux: Conceptualization, Methodology, Investigation, Software, Writing – origi-

al draft; Emel Islamzada: Investigation; Matthew V.J. Wiens: Software; Kerryn Matthews: In-

estigation; Simon P. Duffy: Conceptualization, Writing – review & editing; Hongshen Ma: Su-

ervision, Conceptualization, Writing – review & editing. 

cknowledgments 

We are grateful to Canadian Blood Services’ blood donors who made this research possible. 

This work was supported by grants from the Canadian Institutes of Health Research ( 322375 ,

62500 , 414861 ), Natural Sciences and Engineering Research Council of Canada ( 538818-19 ,

015-06541 ), MITACS (K. M. IT09621 ), and the Canadian Blood Services Graduate Fellowship Pro-

ram (E. I.), which is funded by the federal government (Health Canada) and the provincial and

erritorial ministries of health. The views herein do not necessarily reflect the views of Canadian

lood Services or the federal, provincial, or territorial governments of Canada. 

https://doi.org/10.20383/103.0589
https://doi.org/10.13039/501100000024
https://doi.org/10.13039/501100000038
https://doi.org/10.13039/501100004489


E.S. Lamoureux, E. Islamzada and M.V.J. Wiens et al. / Data in Brief 47 (2023) 108928 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

[1] E.S. Lamoureux, E. Islamzada, M.V.J. Wiens, K. Matthews, S.P. Duffy, H. Ma, Assessing red blood cell deformability

from microscopy images using deep learning, Lab. Chip 22 (1) (2022) 26–39, doi: 10.1039/D1LC01006A . 

[2] Q. Guo, et al., Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by
Plasmodium falciparum, Lab. Chip 16 (4) (2016) 645–654, doi: 10.1039/C5LC01248A . 

[3] Q. Guo, S.P. Duffy, K. Matthews, E. Islamzada, H. Ma, Deformability based cell sorting using microfluidic ratchets
enabling phenotypic separation of leukocytes directly from whole blood, Sci. Rep. 7 (1) (Dec. 2017) 6627, doi: 10.

1038/s41598- 017- 06865- x . 
[4] S.P. Desai, D.M. Freeman, J. Voldman, Plastic masters—rigid templates for soft lithography, Lab. Chip 9 (11) (2009)

1631, doi: 10.1039/b822081f . 

[5] Q. Guo, S. Park, H. Ma, Microfluidic micropipette aspiration for measuring the deformability of single cells, Lab. Chip
12 (15) (2012) 2687, doi: 10.1039/c2lc40205j . 

[6] E. Islamzada, et al., Deformability based sorting of stored red blood cells reveals donor-dependent aging curves, Lab.
Chip 20 (2) (2020) 226–235, doi: 10.1039/C9LC01058K . 

[7] E.S. Lamoureux, E. Islamzada, M.V.J. Wiens, K. Matthews, S.P. Duffy, H. Ma, Data for: Assessing Red Blood Cell De-
formability from Microscopy Images Using Deep Learning, Federated Research Data Repository, 2022 [Online]. Avail-

able:, doi: 10.20383/103.0589 . 
[8] E.S. Lamoureux, M.V.J. Wiens, Assessing Red Blood Cell Deformability using Deep Learning, Github, 2022 . [Online].

Available:. https://github.com/lamoureuxe/Assessing- Red- Blood- Cell- Deformability- using- Deep- Learning . 

[9] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with deep convolutional neural networks,
in: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Eds.), Advances in Neural Information Process-

ing Systems 25, Curran Associates, Inc., 2012, pp. 1097–1105 . [Online]. Available: http://papers.nips.cc/paper/
4824- imagenet- classification- with- deep- convolutional- neural- networks.pdf . 

[10] S. Berryman, K. Matthews, J.H. Lee, S.P. Duffy, H. Ma, Image-based phenotyping of disaggregated cells using deep
learning, Commun. Biol. 3 (1) (Dec. 2020) 674, doi: 10.1038/s42003- 020- 01399- x . 

https://doi.org/10.1039/D1LC01006A
https://doi.org/10.1039/C5LC01248A
https://doi.org/10.1038/s41598-017-06865-x
https://doi.org/10.1039/b822081f
https://doi.org/10.1039/c2lc40205j
https://doi.org/10.1039/C9LC01058K
https://doi.org/10.20383/103.0589
http://refhub.elsevier.com/S2352-3409(23)00046-X/sbref0008
https://github.com/lamoureuxe/Assessing-Red-Blood-Cell-Deformability-using-Deep-Learning
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1038/s42003-020-01399-x

	Data for assessing red blood cell deformability from microscopy images using deep learning
	Value of the Data
	1 Data Description
	2 Experimental Design, Materials and Methods
	2.1 Data collection
	2.2 Data cleaning
	2.3 Analysis

	Ethics Statements
	Declaration of Competing Interest
	Data Availability
	CRediT Author Statement
	Acknowledgments

	References

