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A B S T R A C T   

Working memory impairment is a common feature of psychiatric disorders. Although its neural mechanisms have 
been extensively examined in healthy subjects or individuals with a certain clinical condition, studies investi
gating neural predictors of working memory in a transdiagnostic sample are scarce. The objective of this study 
was to create a transdiagnostic predictive working memory model from whole-brain functional connectivity 
using connectome-based predictive modeling (CPM), a recently developed machine learning approach. Resting- 
state functional MRI data from 242 subjects across 4 diagnostic categories (healthy controls and individuals with 
schizophrenia, bipolar disorder, and attention deficit/hyperactivity) were used to construct dynamic and static 
functional connectomes. Spatial working memory was assessed by the spatial capacity task. CPM was conducted 
to predict individual working memory from dynamic and static functional connectivity patterns. Results showed 
that dynamic connectivity-based CPM models successfully predicted overall working memory capacity and ac
curacy as well as mean reaction time, yet their static counterparts fell short in the prediction. At the neural level, 
we found that dynamic connectivity of the frontoparietal and somato-motor networks were negatively correlated 
with working memory capacity and accuracy, and those of the default mode and visual networks were positively 
associated with mean reaction time. Moreover, different feature selection thresholds, parcellation strategies and 
model validation methods as well as diagnostic categories did not significantly influence the prediction results. 
Our findings not only are coherent with prior reports that dynamic functional connectivity encodes more 
behavioral information than static connectivity, but also help advance the translation of cognitive “connectome 
fingerprinting” into real-world application.   

1. Introduction 

Working memory refers to the ability to maintain and manipulate 
information over a brief period of time (several seconds to minutes) 
during the execution of ongoing tasks and activities (Chai et al., 2018; 
Constantinidis and Klingberg, 2016). In recent years, working memory 
has motivated research in neuroscientific, cognitive and clinical do
mains since it has been considered a core component of higher-order 
cognitive functions (D’Esposito and Postle, 2015; Eriksson et al., 
2015). A fundamental property of working memory is its limited ca
pacity, that is, restricted amount of information can be held active 
simultaneously (Baddeley, 2003; Luck and Vogel, 2013). There are 
substantial differences between individuals in working memory capac
ity. These inter-individual differences are highly stable over time and 
have strong associations with individual variability in a range of 

cognitive functions, such as learning (Unsworth and Engle, 2005), 
comprehension (Engle et al., 1992), mathematics (Tuholski et al., 2001), 
attentional control (Bleckley et al., 2003; Kane et al., 2007), fluid in
telligence (Conway et al., 2003; Unsworth et al., 2014), and overall 
academic performance (Gathercole et al., 2003). Using neuroscience 
methodologies including electrophysiological, neuroimaging and lesion- 
deficit approaches, investigators have examined the neural bases that 
underlie working memory processes in non-human primates and 
humans (Constantinidis and Klingberg, 2016; Eriksson et al., 2015). It is 
now generally accepted that working memory involves complex and 
dynamic interactions among a large number of brain regions mainly 
including the prefrontal and parietal cortex, sensory cortex (visual and 
auditory areas), motor system, basal ganglia, and cerebellum (Brissen
den and Somers, 2019; Chai et al., 2018; Christophel et al., 2017; Con
stantinidis and Klingberg, 2016; D’Esposito and Postle, 2015; Lara and 
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Wallis, 2015; Marvel et al., 2019; Rottschy et al., 2012). 
Significant overlap in genetic risk factors (Pettersson et al., 2016), 

clinical symptoms (Russo et al., 2014; Tamminga et al., 2013), cognitive 
dysfunction (Millan et al., 2012) across psychiatric disorders, and high 
comorbidity rates (Kessler et al., 2011) raise the possibility that current 
categorical classifications might not be carving nature by its joints. In 
response, transdiagnostic initiatives, such as the Hierarchical Taxonomy 
of Psychopathology (Kotov et al., 2018, 2017) and the Research Domain 
Criteria (Cuthbert, 2014; Insel et al., 2010), have worked towards 
developing new dimensionally oriented approaches by integrating 
findings from genetics, cognition, and neuroimaging. There are many 
precedents showing impaired working memory in schizophrenia (SZ) 
(Gilmour et al., 2019; Grot et al., 2017), bipolar disorder (BD) (Soraggi- 
Frez et al., 2017), and attention deficit/hyperactivity disorder (ADHD) 
(Maehler and Schuchardt, 2016), supporting the idea that working 
memory impairment may be a transdiagnostic signature of psychiatric 
disorders. In addition, prior studies have revealed substantial overlap in 
neural circuits with connectivity alterations in different mental disor
ders, suggesting common neurobiological mechanisms (Baker et al., 
2019, 2014; Reinen et al., 2018; Sha et al., 2019, 2018). Accordingly, a 
central objective of the present study was to examine the association 
between working memory and brain connectivity in a transdiagnostic 
sample with a normative background, which may offer a workable route 
towards translation of findings into real-world application. 

Resting-state functional magnetic resonance imaging (fMRI) has 
emerged as a non-invasive brain imaging technique enabling researchers 
to measure functional connectivity, i.e., the temporal coherence of the 
blood-oxygen-level-dependent (BOLD) signal between distinct brain 
regions (Biswal et al., 1995; Fox and Raichle, 2007). Conventionally, 
resting-state functional connectivity is thought to be temporally static 
and evaluate the average functional organization, with the assumption 
that the interaction between brain regions is fixed throughout a whole 
resting-state fMRI scan period. However, this assumption may under
estimate the dynamic repertoire of brain functions (Calhoun et al., 2014; 
Chang and Glover, 2010; Hutchison et al., 2013; Preti et al., 2017), 
whereby the resting brain navigates through a range of putative 
different functional connectivity states at much faster timescales (Abrol 
et al., 2017; Liegeois et al., 2017). Recently, an extensive literature has 
been published to exploit the rich temporal information contained in 
dynamic functional connectivity (Calhoun et al., 2014; Chang and 
Glover, 2010; Chen et al., 2016; Hutchison et al., 2013; Liu et al., 2017a, 
2017b; Preti et al., 2017; Sakoglu et al., 2010; Sun et al., 2018). Indeed, 
recent research demonstrates that dynamic connectivity captures task- 
based phenotypes, whereas self-reported phenotypes are equally well 
explained by static and dynamic connectivity, indicating that dynamic 
functional connectivity encodes more behavioral information (Liegeois 
et al., 2019). Here, we also sought to compare performances of dynamic 
and static functional connectivity in predicting working memory profile. 

To realize these goals, we constructed whole-brain dynamic and 
static functional connectomes based on resting-state fMRI data from a 
large transdiagnostic sample of healthy controls and individuals with SZ, 
BD, and ADHD. Then, we built predictive working memory models by 
leveraging a connectome-based predictive modeling (CPM) approach, 
which is a recently developed machine learning method for creating 
brain-behavior predictive models and identifying functional networks 
underlying specific behaviors (Shen et al., 2017). Based on prior evi
dence for more behavioral information contained in dynamic functional 
connectivity, it was predicted that dynamic connectivity would 
outperform its static counterpart in predicting individual working 
memory performance in a transdiagnostic fashion. 

2. Materials and methods 

2.1. Participants 

The participants were from a publicly-available dataset, the 

Consortium for Neuropsychiatric Phenomics (CNP) (Poldrack et al., 
2016). The CNP dataset is available via the OpenfMRI project 
(http://openfmri.org) (Poldrack et al., 2013) and includes neuro
imaging data, neuropsychologic assessments, neurocognitive tasks, de
mographic and clinical information from a large cohort of right-handed 
adults aged 21–50 years: healthy controls (n = 130) and individuals with 
SZ (n = 50), BD (n = 49), and ADHD (n = 43). Diagnoses were based on 
the Structured Clinical Interview for DSM-IV (SCID) supplemented by 
the Adult ADHD Interview. Full details on these participants have been 
described in the data descriptor publication (Poldrack et al., 2016). Out 
of all subjects, 4 had incomplete or outlier neurocognitive data used in 
this study, 12 had missing MRI data, 13 had excessive head motion 
defined a priori as translational or rotational motion parameters > 3 mm 
or 3◦ during fMRI scanning, and 1 had errors in the spatial normalization 
step during resting-state fMRI preprocessing. These subjects were 
excluded from subsequent analyses. The participant numbers and de
mographic information of the final sample are presented in Table 1. 

2.2. Spatial working memory task 

During the spatial capacity task (SCAP) (Cannon et al., 2005; Glahn 
et al., 2003), participants were shown a target array of 1, 3, 5 or 7 yellow 
circles positioned pseudorandomly around a central fixation. After a 
fixed delay, subjects were shown a single green circle and were required 
to indicate whether or not that circle was in the same position as one of 
the target circles. A relatively long stimulus presentation of two seconds 
was used to allow subjects to fully encode the target array, minimizing a 
potential encoding bias on the basis of set size interaction. Likewise, 
decision requirements were kept constant across set sizes to reduce 
possible effects of set size on response processes. Trial events included a 
1-sec fixation to orient attention, 2-sec target-array presentation, a 3-sec 
delay period, and a 3-sec fixed response interval during which the 
subject responded via keyboard presses. A central fixation was visible 
throughout each of the 48 trials (12 per memory set size). Before starting 
the scored trials, subjects underwent a supervised instruction and 
training period (4 trials). Half of the trials were true positive, and half 
were true negative. The schematic representation of the SCAP design is 
shown in Fig. 1A. 

The primary variables of interest are overall working memory ca
pacity, overall accuracy, and mean reaction time of correct responses at 
each load (Table 1). Briefly, working memory capacity at each load is 
calculated according to the formula by Cowan: k = n*(H + CR-1), where 

Table 1 
Demographic characteristics of the sample.  

Characteristics HC SZ BD ADHD 

Number of subjects 115 43 44 40 
Gender (female/male) 53/62 11/32 19/25 19/21 
Age (years) 31.1 ± 8.6 36.3 ± 9.0 35.0 ± 9.1 32.1 ±

10.4 
Education (years) 15.1 ± 1.7 12.6 ± 1.8 14.7 ± 2.0 14.7 ± 1.8 
Overall working 

memory capacity 
4.08 ±
0.83 

3.38 ±
1.01 

3.72 ±
1.07 

3.71 ±
1.08 

Overall accuracy 0.89 ±
0.06 

0.82 ±
0.09 

0.86 ±
0.08 

0.86 ±
0.09 

Mean reaction time at 
load 1 (ms) 

821.0 ±
222.2 

1001.2 ±
262.7 

915.1 ±
240.7 

891.1 ±
248.6 

Mean reaction time at 
load 3 (ms) 

978.7 ±
263.3 

1251.1 ±
570.1 

1144.4 ±
429.1 

1014.2 ±
263.7 

Mean reaction time at 
load 5 (ms) 

1062.9 ±
271.0 

1310.9 ±
439.6 

1190.2 ±
348.9 

1049.0 ±
238.0 

Mean reaction time at 
load 7 (ms) 

1114.5 ±
290.3 

1302.2 ±
368.9 

1184.8 ±
280.2 

1140.7 ±
267.3 

FD (mm) 0.17 ±
0.09 

0.24 ±
0.13 

0.18 ±
0.09 

0.18 ±
0.12 

The data are presented as the mean ± standard deviation. Abbreviations: HC, 
healthy controls; SZ, schizophrenia; BD, bipolar disorder; ADHD, attention 
deficit/hyperactivity; FD, frame-wise displacement. 
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k = capacity, n = load, H = hits (out of those responded to), CR = correct 
rejections (out of those responded to). Overall working memory capacity 
is the maximum of capacities at 4 loads. Overall accuracy is the average 
percent correct across 4 loads. Considering the sample heterogeneity, we 
excluded outliers with values greater than mean + 6 × standard devi
ation (SD) or smaller than mean − 6 × SD. Group differences in these 
SCAP variables among the four groups were assessed using a general 
linear model with age, gender, and education as nuisance covariates. 

2.3. Imaging acquisition 

MRI data were collected using the same scanning protocol on one of 
two 3.0-Tesla Siemens Trio scanners, located at the Ahmanson-Lovelace 
Brain Mapping Center and the Staglin Center for Cognitive Neuroscience 
at UCLA. High-resolution structural MPRAGE images were acquired 
with the following parameters: repetition time (TR) = 1900 ms; echo 
time (TE) = 2.26 ms; field of view (FOV) = 250 mm × 250 mm; matrix =
256 × 256; slice thickness = 1 mm, no gap; and 176 sagittal slices. 
Resting-state BOLD fMRI data were collected using a T2*-weighted echo 
planar imaging (EPI) sequence with the following parameters: TR =
2000 ms; TE = 30 ms; flip angle = 90◦; FOV = 192 mm × 192 mm; 
matrix = 64 × 64; slice thickness = 4 mm; 34 axial slices; and 152 time 
points. Despite the same scanning protocol on two same MR scanners, 
we included scanner as a covariate of no interest in our analysis to rule 
out its potential effect. 

2.4. fMRI data preprocessing 

Resting-state BOLD data were preprocessed using Statistical Para
metric Mapping software (SPM12, http://www.fil.ion.ucl.ac.uk/spm) 
and Data Processing & Analysis for Brain Imaging (DPABI, http://rfmri. 
org/dpabi) (Yan et al., 2016). The first 5 volumes for each participant 
were discarded to allow the signal to reach equilibrium and the 

participants to adapt to the scanning noise. The remaining volumes were 
corrected for the acquisition time delay between slices. Then, realign
ment was performed to correct the motion between time points. Head 
motion parameters were computed by estimating the translation in each 
direction and the angular rotation on each axis for each volume. All 
BOLD data of the final sample were within the defined motion thresh
olds (i.e., translational or rotational motion parameters less than 3 mm 
or 3◦). We also calculated frame-wise displacement (FD), which indexes 
the volume-to-volume changes in head position (Table 1). Several 
nuisance covariates (the linear drift, the estimated motion parameters 
based on the Friston-24 model, the spike volumes with FD > 0.5, the 
white matter signal, and the cerebrospinal fluid signal) were regressed 
out from the data. The datasets were then band-pass filtered using a 
frequency range of 0.01 to 0.1 Hz. In the normalization step, individual 
structural images were firstly co-registered with the mean functional 
image; then the transformed structural images were segmented and 
normalized to the Montreal Neurological Institute (MNI) space using a 
high-level nonlinear warping algorithm, that is, the diffeomorphic 
anatomical registration through the exponentiated Lie algebra (DAR
TEL) technique (Ashburner, 2007). Finally, each filtered functional 
volume was spatially normalized to MNI space using the deformation 
parameters estimated during the above step and resampled into a 3-mm 
cubic voxel. 

2.5. Functional connectivity calculation and functional connectome 
construction 

Whole-brain functional connectivity analyses were performed using 
GRETNA software (http://www.nitrc.org/projects/gretna) (Wang et al., 
2015). Network nodes were defined using the Shen brain atlas, which 
consists of 268 nodes and provides whole-brain coverage of the cortex, 
subcortex, and cerebellum (Shen et al., 2013). For each of the 268 nodes, 
the representative mean time course was obtained by averaging BOLD 

Fig. 1. Inter-group differences in primary working memory variables. (A) Schematic representation of the spatial capacity task design. A combination of violin and 
box plots shows the distribution and group differences of working memory capacity (B), accuracy (C), and mean reaction time (D). * P < 0.05. Abbreviations: HC, 
healthy controls; SZ, schizophrenia; BD, bipolar disorder; ADHD, attention deficit/hyperactivity. 
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time courses over all voxels within the node. Then, we computed the 
node-by-node pairwise Pearson’s correlation coefficients and trans
formed them using Fisher’s z-transformation, resulting in a symmetric 
268 × 268 correlation matrix for each subject. In the matrix, each 
element represents the strength of static functional connectivity be
tween two individual nodes. To characterize functional connectivity 
temporal dynamics, sliding time-window analysis was conducted. Spe
cifically, Hamming windows (window size = 50 TR = 100 s, which 
satisfies the 1/f0 wavelength criterion for a minimum cutoff frequency of 
0.01 Hz (Leonardi and Van De Ville, 2015; Pedersen et al., 2018a, 
2018b; Zalesky and Breakspear, 2015); window step = 1 TR = 2 s) were 
applied to each participant’s preprocessed fMRI data to obtain a series of 
BOLD signal windows (98 time windows for the current study). The 
above-described whole-brain functional connectivity analysis was per
formed for each window, resulting in a total of 98 correlation matrices 
for each subject. Here, the standard deviations of the sliding-windowed 
correlation time series were used as a proxy of dynamic functional 
connectivity, where higher standard deviation indicates greater signal 
dispersion from average sliding-windowed correlation time series. For 
each subject, a 268 × 268 standard deviation matrix was created and 
each element in this matrix represents the strength of dynamic func
tional connectivity between two individual nodes (Bosma et al., 2018a, 
2018b; Choe et al., 2017). 

2.6. Connectome-based predictive modeling 

CPM is a recently developed approach for identifying brain networks 
associated with a behavioral variable of interest from whole-brain 
functional connectivity, which can be then used to predict novel par
ticipants’ behavior at the single-subject level (Shen et al., 2017). Here, 
CPM was conducted using previously validated custom MATLAB scripts 
that are freely available online (https://www.nitrc.org/projects/bioim 
agesuite/). Overall, CPM took edge weights (i.e., whole-brain dynamic 
and static functional connectivity matrices) and behavioral data (i.e., 
the primary variables of SCAP) as inputs. First, the input data were 
divided into a training set and a testing set. In the training set, the 
behavioral data were correlated with each edge in the connectivity 
matrices using partial correlation analyses (adjusting for age, gender, 
education, scanner, and mean FD) with a statistical significance 
threshold of P < 0.01 to identify positive and negative predictive net
works. For positive networks, edges were significantly positively asso
ciated with the behavioral data; for negative networks, edges were 
significantly negatively associated with the behavioral data. Two net
works were considered separately because they may provide different 
yet complementary information on prediction of behaviors. Next, a 
single-subject summary value was created by summing the significant 
edge weights in each network. Then, we built a predictive model that 
assumes a linear relationship between the single-subject summary value 
of connectivity data (independent variable) and the behavioral data 
(dependent variable). In the testing set, the summary value was calcu
lated for each subject and was then input into the predictive model. The 
resulting value was the predicted behavioral variable for the current test 
subject. Here, we employed a leave-one-out cross-validation analysis (i. 
e., internal validation) to test the prediction performance (Liu et al., 
2015). Briefly, one subject (i.e., the testing set) was left out and all other 
subjects (i.e., the training set) were used to build the predictive model; 
the left-out subject’s predicted behavioral variable was generated by the 
predictive model; this step was repeated in an iterative manner until all 
subjects had a predicted behavioral variable. Model performance was 
evaluated by the magnitude and statistical significance of the Pearson’s 
correlation between actual and predicted behavioral values. Permuta
tion testing was performed to assess the statistical significance of the 
correlation. To generate an empirical null distribution of the test statistic 
(i.e., prediction correlation values), we randomly shuffled the corre
spondence between connectivity matrices and behavioral variables 
1000 times and reran the CPM pipeline using the shuffled data. On the 

basis of the null distribution, the P value for the leave-one-out prediction 
was calculated as the proportion of sampled permutations that were 
greater than or equal to the true prediction correlation, i.e., P value =
the number of permutations that generated correlation values greater 
than or equal to the true correlation values/1000. Bonferroni correction 
was applied to adjust significance levels for multiple testing, i.e., P <
0.05/12 = 0.0042 corresponding to 2 brain networks (positive and 
negative networks) and 6 behavioral variables. 

2.7. Validation analyses 

The following procedures were performed to further test the repro
ducibility of our findings. First, a significance threshold of P < 0.01 was 
used to identify edges that were positively and negatively associated 
with SCAP scores. To determine whether our results depended on the 
choice of different thresholds, we repeated the CPM analyses using two 
other thresholds (i.e., P < 0.05 and 0.005). Second, given the strong 
influence of different parcellation strategies on brain network analysis, 
we constructed functional connectome using another parcellation 
scheme based on automated anatomical labeling (AAL) atlas with 116 
nodes and then repeated the entire prediction procedure. Third, two 
other cross-validation methods, i.e., 10-fold and leave-one-group-out, 
were utilized to further assess the CPM prediction performance. In the 
10-fold cross-validation, the sample was randomly divided into 10 
equalized divisions; the CPM model was trained on 9 divisions and 
tested on the excluded 10th division in an iterative manner. In the leave- 
one-group-out cross-validation, the model was trained on 3 groups (e.g., 
controls, SZ, and BD) and tested on the excluded fourth group (e.g., 
ADHD) iteratively. Critically, we also created predictive models based 
on only healthy controls (i.e., the training set) and then examined their 
performances in predicting SCAP variables of individuals with psychi
atric disorders (i.e., the testing set). Fourth, considering that the trans
diagnostic sample heterogeneity may influence the results, we reran the 
CPM analyses additionally controlling for diagnostic categories. Fifth, 
for the dynamic functional connectivity-based CPM analyses, we 
calculated a single-subject mean value instead of the original summary 
value to build predictive models and then retested their predictive 
ability. With respect to dynamic functional connectivity measurement, 
we also calculated the correlation time series based on the Dynamic 
Conditional Correlation model (Lindquist et al., 2014) and used their 
standard deviations as dynamic functional connectivity to repeat the 
CPM analyses. Sixth, considering the fact that none of these SCAP var
iables was actually independent, we utilized a multi-output regression 
model with regularization to predict the entire set of six SCAP variables 
in each iteration. The multioutput. MultiOutputRegressor meta- 
estimator of scikit-learn 0.24.1 used herein represents a simple strat
egy (https://scikit-learn.org/stable/modules/generated/sklearn.multi 
output.MultiOutputRegressor) for extending single output estimators 
to multioutput estimators. Here, a ridge regressor was used and the 
regularization parameter was set to 1.0. Finally, we performed CPM 
prediction of mean reaction time by filtering the edges based on overall 
correlations regardless of load. 

3. Results 

3.1. Group differences in spatial working memory 

Inter-group differences in 6 primary SCAP variables are illustrated in 
Fig. 1B-D. In comparison to healthy controls, individuals with SZ 
showed lower overall working memory capacity (Fig. 1B). Individuals 
with SZ and ADHD both exhibited lower overall accuracy relative to 
healthy controls (Fig. 1C). With respect to mean reaction time, in
dividuals with SZ demonstrated higher levels than controls at all loads 
and a higher level than those with ADHD at load 5 (Fig. 1D). 
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3.2. Prediction of spatial working memory 

CPM performances in predicting SCAP variables based on dynamic 
and static functional connectivity are shown in Table 2. Specifically, the 
CPM models, using dynamic functional connectivity within the negative 
networks, successfully predicted overall working memory capacity (r =
0.229, P = 0.001) (Fig. 2A) and overall accuracy (r = 0.221, P = 0.002) 
(Fig. 2B) (P < 0.05, Bonferroni corrected). The CPM models based on 
dynamic functional connectivity within the positive networks effectively 
predicted mean reaction time (load 3: r = 0.185, P = 0.001; load 5: r =
0.235, P = 0.002; load 7: r = 0.174, P = 0.003) (Fig. 3A-C) (P < 0.05, 
Bonferroni corrected). However, the CPM predictability of SCAP vari
ables using static functional connectivity was low and did not reach 
statistical significance (Table 2). In addition, Table S1 shows other 
measures of CPM performances in predicting SCAP variables, including 
mean absolute error (MAE) and root mean square error (RMSE). 

3.3. Network anatomy 

Because of the nature of cross-validation, it is likely that a slightly 
different set of edges will be selected as features in each iteration of the 
cross-validation. For illustrative purpose, we defined final dynamic 
functional connectivity networks using data from all 242 subjects. 
Overall, anatomies for the dynamic functional connectivity networks 
associated with SCAP variables were complex and included edges be
tween nodes across the brain. For overall working memory capacity, the 
negative network consisted of 890 edges (Fig. 2A). Highest-degree nodes 
(i.e., nodes with the most edges) were mainly located within the fron
toparietal, somato-motor and visual networks (Fig. 4). For overall ac
curacy, the negative network was comprised of 640 edges (Fig. 2B). 
Highest-degree nodes were predominantly located within the fronto
parietal, somato-motor and default mode networks (Fig. 4). For mean 
reaction time, the positive networks were composed of 1532 edges at 
load 3, 1488 edges at load 5, and 992 edges at load 7, respectively 
(Fig. 3A-C). The most consistently identified highest-degree nodes were 
located within the default mode and visual networks (Fig. 4). 

3.4. Validation analysis 

First, using edges selected by thresholds of P < 0.05 and 0.005, we 
found that the prediction performances of SCAP variables were similar 
to those at the threshold of P < 0.01 (Tables S2 and S3). Second, when 
constructing functional connectome using parcellation scheme based on 
AAL atlas with 116 nodes, the patterns of results held although the CPM 
predictability of overall working memory capacity lost significance 
(Table S4). Third, when using 10-fold cross-validation analyses, the 
prediction results of SCAP variables remained unchanged (Table S5); 
while using leave-one-group-out cross-validation analyses yielded rela
tively poor prediction, the tendency of results was still present 
(Table S6); the predictive models built in healthy controls successfully 
predicted SCAP variables of individuals with psychiatric disorders 
(Table S7), which was similar to the CPM performances using the leave- 
one-out cross-validation analyses. Fourth, we found that our main 

results were reproducible when additionally considering the effect of 
diagnostic categories (Table S8). Fifth, CPM performances in predicting 
SCAP variables using the mean value of selected dynamic functional 
connectivity were nearly identical to those using the summary value 
(Table S9). However, the CPM models using dynamic connectivity 
derived from the Dynamic Conditional Correlation model failed to 
predict any of the SCAP variables (Table S10), suggesting that the pre
dictive ability was largely dependent on dynamic functional connec
tivity measurement approaches. Sixth, multi-output regression models 
based on dynamic connectivity yielded results comparable to those from 
the CPM models; strikingly, we also observed that static connectivity- 
based multi-output regression models could predict overall accuracy 
and mean reaction time (Table S11). Finally, we found that the overall 
predictive power was improved when performing CPM prediction of 
mean reaction time by filtering the edges based on overall correlations 
regardless of load (Fig. S1). 

4. Discussion 

This is the first machine learning study focusing on the comparison of 
dynamic and static functional connectivity in building transdiagnostic 
predictive working memory models. Our data demonstrated that the 
dynamic functional connectivity-based CPM models successfully pre
dicted overall working memory capacity and accuracy as well as mean 
reaction time, yet their static counterparts showed inability in the pre
diction. At the neural level, we found that dynamic functional connec
tivity of the frontoparietal and somato-motor networks were negatively 
correlated with working memory capacity and accuracy, and those of 
the default mode and visual networks were positively associated with 
mean reaction time. Our findings not only are congruent with previous 
reports of the superiority of dynamic functional connectivity in 
capturing task-based phenotypes, but also add to the current knowledge 
by identifying a “connectivity fingerprint” that can predict individual 
working memory transdiagnostically. 

Inter-group comparisons in the primary SCAP variables revealed that 
individuals with psychiatric disorders manifested shared working 
memory impairment, but to differing degrees. Individuals with SZ 
demonstrated the most prominent abnormalities, characterized by lower 
overall working memory capacity and accuracy along with higher mean 
reaction time at all loads. Individuals with ADHD only showed lower 
overall accuracy relative to healthy controls. By contrast, there was no 
significant alteration in any of the primary SCAP variables in individuals 
with BD. This may be partially due to limited statistical power from 
relatively small samples and clinical heterogeneity related to variation 
in illness profile, as we observed a non-significant trend for lower overall 
accuracy and higher reaction time in BD individuals relative to controls. 
The current findings, taken with previous reports of lower working 
memory capacity in these diseases (Gilmour et al., 2019; Grot et al., 
2017; Maehler and Schuchardt, 2016; Soraggi-Frez et al., 2017), provide 
strong evidence that working memory impairment is a transdiagnostic 
feature of psychiatric disorders. 

There have been several brain imaging studies using machine 
learning approaches to predict individual working memory in healthy 

Table 2 
CPM performances in predicting SCAP variables.  

SCAP variables Dynamic functional connectivity Static functional connectivity 

r_positive P r_negative P r_positive P r_negative P 

Overall working memory capacity − 0.078  0.769  0.229  0.001** − 0.355  0.994  0.076  0.194 
Overall accuracy − 0.188  0.949  0.221  0.002** 0.004  0.532  0.092  0.132 
Mean reaction time at load 1 0.142  0.030*  − 0.344  0.997 0.032  0.385  − 0.078  0.809 
Mean reaction time at load 3 0.185  0.001**  − 0.269  0.993 0.036  0.320  − 0.047  0.736 
Mean reaction time at load 5 0.235  0.002**  − 0.221  0.979 0.107  0.086  − 0.021  0.624 
Mean reaction time at load 7 0.174  0.003**  − 0.356  0.999 0.035  0.353  − 0.053  0.733 

*P < 0.05, uncorrected; ** P < 0.05, Bonferroni corrected. Abbreviations: CPM, connectome-based predictive modeling; SCAP, spatial capacity task. 
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subjects or individuals with a certain clinical condition. In a recent 
resting-state fMRI study of 1003 healthy young adults, a spatiotemporal 
multilayer modularity model was applied to the time-resolved fMRI 
connectivity data to quantify network switching rate; using cross- 
validated elastic net regression, moreover, this newly developed dy
namic functional connectivity measure was found to predict inter- 
subject variation in working memory performance (i.e., average accu
racy) (Pedersen et al., 2018b). Another task-based fMRI study on healthy 
subjects quantified functional connectivity between occipital and pari
etal regions during working memory encoding, and subsequent multi
variate pattern regression analysis using the Classification and 
Regression Tree algorithm revealed that individual differences in 
working memory performance (specifically the working memory pre
cision but not the individual number of items stored in memory) could 
be reliably predicted on the basis of voxel-wise occipito-parietal func
tional connectivity patterns (Galeano Weber et al., 2017). Taking 
advantage of a combination of fMRI and diffusion tensor imaging (DTI) 
data, McKenna and colleagues employed least angle regression with 
least absolute shrinkage and selector operator (LASSO) estimation to 
select the best joint neuroimaging predictors of working memory per
formance for BD patients and healthy participants, separately (McKenna 
et al., 2015). For working memory accuracy, BD-specific predictors 
included gray matter activation in bilateral dorsolateral prefrontal cor
tex, and white matter integrity in splenium of the corpus callosum, left 
uncinate fasciculus, and bilateral superior longitudinal fasciculi. 

Compared to prior studies, our design has the advantage of generating 
transdiagnostic predictive models using CPM. In comparison with the 
machine learning approaches that have previously been utilized to study 
working memory, CPM is optimized for neuroimaging data because it is 
entirely data driven and requires no a priori selection of networks. The 
predictive power of CPM has been demonstrated in studies of fluid in
telligence (Finn et al., 2015), attention (Rosenberg et al., 2016; Yoo 
et al., 2018), creativity (Beaty et al., 2018), personality (Cai et al., 
2020b), and decision impulsivity (Cai et al., 2020a). More importantly, 
performing prediction in a sample of healthy and multiple psychiatric 
populations may permit identification of transdiagnostic neurobiolog
ical mechanisms underlying working memory processes, which is of 
higher clinical and translational importance. 

Traditional resting-state functional connectivity is assumed to have 
static nature and thereby provides a measure of brain function averaged 
within an fMRI experiment. Yet, the brain is not a static organ, and time- 
varying profiles of functional connectivity are evident across a broad 
range of task states and during periods of unconstrained rest (Hutchison 
et al., 2013; Preti et al., 2017). As a consequence, a rapidly increasing 
number of studies have emerged to attempt a more thorough charac
terization of brain activity dynamics (Calhoun et al., 2014; Hutchison 
et al., 2013; Preti et al., 2017). In this study, we selected the variance (i. 
e., the amplitude of the sliding-windowed functional connectivity time 
series) as the dynamic functional measure, as it offers important infor
mation on the relationship between brain activity and behavior that can 

Fig. 2. Connectome-based predictive modeling 
(CPM) of overall working memory capacity (A) 
and overall accuracy (B). On the left, scatter plots 
show the correspondence between actual (x-axis) 
and predicted (y-axis) values generated using 
CPM based on the negative networks. On the 
right, circle plots show high-degree nodes and 
their connections in the negative networks. 
Green lines represent interhemispheric connec
tivity and blue lines intrahemispheric connec
tivity. Abbreviations: HC, healthy controls; SZ, 
schizophrenia; BD, bipolar disorder; ADHD, 
attention deficit/hyperactivity. (For interpreta
tion of the references to colour in this figure 
legend, the reader is referred to the web version 
of this article.)   
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be used to detect between-individual variations (Choe et al., 2017). 
Remarkably, we found that dynamic functional connectivity out
performed its static counterpart in the prediction of working memory. 
The findings here not only corroborate previous reports that dynamic 
connectivity specifically encodes task-based behavioral phenotypes 
(Liegeois et al., 2019), but also add important context to the growing 
literature on the more behavioral information contained within the 
temporal features of spontaneous neural activity. Indeed, the execution 
of cognitive tasks relies on a coordinated activation of multiple networks 
at faster timescales, which can be captured by dynamic rather than static 
functional measures. Moreover, our data showed that lower functional 
connectivity dynamics variance was associated with better working 

memory performance, i.e., higher working memory capacity and accu
racy as well as shorter reaction time. Converging evidence suggests that 
the amplitude of dynamic functional connectivity variability decreases 
during task as compared to resting-state (Elton and Gao, 2015; Hutch
ison and Morton, 2015). Although speculative, a potential explanation 
may be that lower neural activity variability during resting-state may 
facilitate rapidly switching to task states, resulting in greater ability to 
be recruited according to task demands. 

The present observations indicate that dynamic functional connec
tivity of the frontoparietal and somato-motor networks contribute the 
most to inter-subject differences in working memory capacity and ac
curacy. Working memory has long been linked to the prefrontal cortex, 
since lesion-deficit studies have demonstrated that damage to this brain 
region can critically impair the ability to maintain and update mne
monic information (Pribram et al., 1952). Electrophysiological evidence 
from non-human primates has made it possible to understand the basis 
of working memory at the single-neuron level, and revealed neural 
correlates of working memory in the prefrontal cortex of monkeys 
(Fuster and Alexander, 1971). Furthermore, many supporting research 
studies have pointed to the frontoparietal network as the working 
memory neural network in the monkey brain (Constantinidis and Pro
cyk, 2004). Although human neuroimaging studies have found that 
performances of working memory tasks are associated with activity in a 
wide range of areas across the brain, there are commonalities in a 
frontoparietal network of regions activated during different working 
memory tasks with different types of stimulus (Ikkai and Curtis, 2011; 
Jerde et al., 2012; Rottschy et al., 2012). Moreover, stronger fronto
parietal functional connectivity (Palva et al., 2010; Stevens et al., 2012) 
and structural connectivity (Darki and Klingberg, 2015; Ostby et al., 
2011; Vestergaard et al., 2011) have been shown to be associated with 
higher working memory capacity. Notably, there is also evidence for 
brain activity changes in the frontal and parietal regions as well as 
increased frontoparietal connectivity after working memory training 
(Astle et al., 2015; Constantinidis and Klingberg, 2016; Jolles et al., 
2013; Kundu et al., 2013; Thompson et al., 2016). In addition, a 
convergent body of neuroimaging data show that motor networks are 
highly integrated into working memory processes and are critical for 
normal performance (Marvel et al., 2019). On one hand, secondary 
motor regions, including the premotor cortex, supplementary motor 
area, basal ganglia, and cerebellum are often simultaneously activated 
during the maintenance phase of working memory assessments in 
healthy individuals (Wager and Smith, 2003). On the other hand, 
damage to secondary motor regions, e.g., the cerebellar motor regions 
(Cooper et al., 2012; Stoodley et al., 2016) and supplementary motor 
area (Canas et al., 2018), has been associated with subsequently 
observed working memory deficits. Our findings, in conjunction with 
those of previous studies, support an interaction between cognitive 
effort and motor system engagement in working memory. 

With respect to reaction time of working memory, our data suggest a 
strong contribution of dynamic functional connectivity of the default 
mode and visual networks to the prediction. The default mode network 
exhibits correlated activity at rest and has shown deactivation across a 
range of cognitive tasks (Raichle, 2015; Raichle et al., 2001). Therefore, 
the default mode network and task-positive networks (e.g., working 
memory-related network) are usually considered to be anti-correlated. 
However, recent studies increasingly implicate that working memory 
is also modulated by the default mode network, and thus it is likely that 
this network is potentially involved in the neural mechanism underlying 
the core working memory processes. For example, previous task fMRI 
studies have demonstrated greater activation of the default mode 
network during n-back tasks (Konishi et al., 2015; Spreng et al., 2014). 
From a functional connectivity perspective, the within-network con
nectivity strength between default mode network hubs was found to 
correlate with percent correct responses (Hampson et al., 2006) and 
reaction times to correct responses (Vatansever et al., 2017) of working 
memory paradigms. In addition, Bluhm et al. reported working memory 

Fig. 3. Connectome-based predictive modeling (CPM) of mean reaction time at 
load 3 (A), 5 (B) and 7 (C). On the left, scatter plots show the correspondence 
between actual (x-axis) and predicted (y-axis) values generated using CPM 
based on the positive networks. On the right, circle plots show high-degree 
nodes and their connections in the positive networks. Yellow lines represent 
interhemispheric connectivity and red lines intrahemispheric connectivity. 
Abbreviations: HC, healthy controls; SZ, schizophrenia; BD, bipolar disorder; 
ADHD, attention deficit/hyperactivity. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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task-related changes in functional connectivity between the default 
network nodes and brain areas typically activated during cognitive tasks 
(i.e., task-positive brain areas) (Bluhm et al., 2011). Moreover, such 
between-network functional connectivity were shown to predict 
behavioral performance (Hampson et al., 2010) and to display variable 
dynamics during the three distinct working memory stages of encoding, 
maintenance, and retrieval (Piccoli et al., 2015). Using positron emis
sion tomography and DTI techniques, Yakushev et al. demonstrated that 
metabolic and structural connectivity within the default mode network 
also related to working memory performance in young healthy adults 
(Yakushev et al., 2013). Recently, it is quite apparent that the visual 
network plays a pivotal role in complex cognitive functions, such as 
visual working memory. For instance, using task-based fMRI, re
searchers have revealed that neural activity in the visual system is 
generally recruited to contribute to visual working memory (Albers 
et al., 2013; Lawrence et al., 2018; Xing et al., 2013). Bergmann et al. 
reported that individuals with a larger gray matter volume of primary 
visual cortex tended to have greater visual working memory storage 
(Bergmann et al., 2016). During visual working memory, functional 
connectivity patterns between visual processing and frontoparietal 
control systems were predictive of the behavioral mean precision 
(Galeano Weber et al., 2017). More directly and interpretably, Rade
maker and colleagues found that transcranial magnetic stimulation 
targeting the visual cortex had an impact on visual working memory 
precision and guess rate (Rademaker et al., 2017). 

Our study has several limitations that need to be considered. First, 
because of the lack of an independent dataset that could replicate the 
CNP data, we were not able to perform an additional external validation 
of the models’ predictive ability. Second, our interpretation may be 
influenced by the confounding factors such as medication use and/or 
long illness duration in the patient groups. Future studies with drug- 
naive first-episode patients are warranted to further determine the 
reliability of the current findings. Third, during resting-state fMRI 
scanning, we did not assess subjects’ levels of drowsiness or vigilance 
that might have influenced the dynamic functional connectivity analysis 

(Laumann et al., 2017). However, the variance measure of dynamic 
functional connectivity used in our study has been proved to exhibit 
good test-retest reliability (Choe et al., 2017), which may alleviate the 
concern about noise interference to some extent. Finally, the CPM 
models using dynamic functional connectivity derived from the Dy
namic Conditional Correlation model failed to predict any of the SCAP 
variables, suggesting that the predictive ability is strongly influenced by 
dynamic functional connectivity measurement approaches. This issue 
warrants further investigation that is beyond the scope of the present 
study. 

In conclusion, by applying CPM to resting-state fMRI data from a 
transdiagnostic sample, we demonstrate that dynamic connectivity 
patterns of functional connectome can effectively and reliably predict 
working memory performance at the single-subject level, whereas their 
static counterparts fall short in the prediction. Our data also reveal that 
individual variations in dynamic functional connectivity of the fronto
parietal and somato-motor networks contribute the most to inter-subject 
differences in working memory capacity and accuracy, and those of the 
default mode and visual networks contribute to inter-individual vari
ability in reaction time. These findings not only endorse prior observa
tions that dynamic functional connectivity encodes more behavioral 
information than static connectivity, but also help advance the trans
lation of cognitive “connectome fingerprinting” into real-world clinical 
settings. 
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