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Microbial metabolic networks in 
a complex electrogenic biofilm 
recovered from a stimulus-induced 
metatranscriptomics approach
Shun’ichi Ishii1,2, Shino Suzuki1,3,4,5, Aaron Tenney1,†, Trina M. Norden-Krichmar1,‡, 
Kenneth H. Nealson5 & Orianna Bretschger1

Microorganisms almost always exist as mixed communities in nature. While the significance of 
microbial community activities is well appreciated, a thorough understanding about how microbial 
communities respond to environmental perturbations has not yet been achieved. Here we have 
used a combination of metagenomic, genome binning, and stimulus-induced metatranscriptomic 
approaches to estimate the metabolic network and stimuli-induced metabolic switches existing in 
a complex microbial biofilm that was producing electrical current via extracellular electron transfer 
(EET) to a solid electrode surface. Two stimuli were employed: to increase EET and to stop EET. An 
analysis of cell activity marker genes after stimuli exposure revealed that only two strains within 
eleven binned genomes had strong transcriptional responses to increased EET rates, with one 
responding positively and the other responding negatively. Potential metabolic switches between 
eleven dominant members were mainly observed for acetate, hydrogen, and ethanol metabolisms. 
These results have enabled the estimation of a multi-species metabolic network and the associated 
short-term responses to EET stimuli that induce changes to metabolic flow and cooperative or 
competitive microbial interactions. This systematic meta-omics approach represents a next step 
towards understanding complex microbial roles within a community and how community members 
respond to specific environmental stimuli.

Microbial community activities define the rates of key biogeochemical cycles across the globe and are 
important to biotechnology, bioremediation, industrial and clinical applications1. While the importance 
of microbial community activities is widely recognized, it is challenging to acquire details about the spe-
cific microbial interaction networks that enable community functions2. Understanding these microbial 
networks is essential to expanding our predictive capability of the factors that control community func-
tion, adaptation and evolution3. Inherent complexities associated with understanding microbial networks 
include specifying taxonomic composition, genetic potential, metabolic activity1,4,5, and also functional 
adaptability of each community member to environmental perturbations and how stimuli affect com-
munity function as a whole6,7. Additionally, microbial interaction networks must accurately describe the 
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cooperative, competitive, or neutral interactions that may occur between microbes8,9. To-date micro-
bial metabolic interactions have been explored using flux analyses between defined co-cultures10 and 
tri-cultures11 of microbial isolates under defined conditions, or via community reconstruction using five 
isolated dominant microbes from a more complex consortium12. However, these types of approaches are 
not practical for highly diverse mixed communities and do not address the specific genetic responses 
induced as a function of a given environmental stimulus.

Several groups have begun investigating and describing microbial networks in highly diverse communi-
ties relative to taxonomic composition, genetic potential and metabolic activity. Cultivation-independent 
molecular surveys based on conserved marker genes (such as the 16S rRNA gene) have provided a 
greater understanding of community taxonomic compositions and co-occurrence patterns8. DNA-based 
metagenomic analyses have more precisely defined both the taxonomic compositions and collective gene 
pools of many highly complex microbial communities, providing greater insights into the metabolic 
potentials of whole communities13. Recently, high-quality microbial draft genomes of community mem-
bers have been successfully recovered from deeply sequenced metagenomes14,15, which elevates the level 
of resolution from a whole community to individual members. However, such DNA-based studies cannot 
address actual microbial activities.

Metatranscriptomic mRNA-based analyses are now used to quantify transcripts within complex 
microbial communities in many different environments16–18, thus enabling the characterization of gene 
activity within entire communities directly through measuring levels of gene expression. However, many 
of these studies faced challenges relative to correlating gene activities with specific environmental varia-
bles because multiple variables (e.g., temperature, light, and redox) often change simultaneously. In addi-
tion, the genetic background can shift temporally19 and/or spatially20 along with community composition 
changes, adding yet another challenge to the interpretation of metatranscriptomic data. While these 
data sets have contributed significant new knowledge relative to describing whole community activities, 
they cannot specifically address each member’s functional role, metabolic interactions, or adaptability to 
environmental perturbations.

To address these challenges we have developed an experimental strategy called “stimulus-induced 
metatranscriptomics”21. The strategy enables the characterization of transcriptional responses to specific 
environmental changes by applying focused stimuli and analyzing gene expression profiles before the 
community taxonomic composition changes under the new environmental condition. By combining 
genome binning strategies, we are able to describe metabolic activity and functional adaptability at both 
a community- and strain-level resolution. In our previous study, we applied this multi-pronged strategy 
to identify functional microbes and genes associated with extracellular electron transfer (EET)21.

EET-mediated reactions are widespread in subsurface environments where iron- and manganese-oxide 
reduction drives the anaerobic oxidation of organic matter22. We utilized bioelectrochemical systems to 
enrich a functional multi-species biofilm (over 100 species) from wastewater23, and identified two specific 
EET-active microbes, and their gene cassettes, that rapidly responded to changes in electrode surface 
potentials21. The previous study focused on describing the competitive respiratory reactions including 
solid surface reduction via EET, and identifying key EET-active members. However, it was still unclear 
how the two EET-active microbes were metabolically interacting with each other, or with other commu-
nity members in terms of cooperative (e.g. species one produces a metabolite that can be consumed by 
species two) and competitive (e.g. species one and two both require the same metabolite) relationships. 
Electron donors for the EET-active microbes were supplied via the decomposition of complex organic 
matter in wastewater, which is usually performed by other microbes24; thereby, establishing successful 
microbial metabolic networks is necessary for maintaining a functional EET-active community.

Here we address how the EET-active microbes metabolically interact with each other and with other 
microbial members using a combination of improved genome binning strategies and an optimized 
stimulus-induced metatranscriptomics analytical approach. By improving the draft genome binning 
process, we increased the number of high-coverage Bin-genomes from four to eleven, enabling a more 
comprehensive analysis of the metabolic connections within the community. We further expanded the 
metatranscriptomic analytical scheme to include marker gene sets for cell activities to identify positive 
or negative response to the given stimulus, and for metabolic activities to identify specific metabolism 
changes. This significantly improved omics-based analytical strategy now offers a robust approach for 
estimating microbial interaction networks and understanding microbial community adaptation strategies.

Results
Analytical scheme overview. Figure  1 summarizes our newly-developed approach for describing 
metabolic networks within the complex EET-active community. This approach addresses microbial activ-
ity as well as cooperative, competitive, or neutral metabolic interactions between dominant microbes 
within the community as described in Fig. 1 step 6.

Bin-genome association for highly abundant strains. An EET-active electrogenic biofilm was 
established in a MFC bio-reactor repeatedly fed with wastewater for over 2 years23,25. The wastewa-
ter contained variable organic compounds that could be used for microbial fermentation and various 
microbial respiration processes with soluble electron acceptors and the solid electrode via EET. Our 
first metagenomic analysis of this community recovered four Bin-genomes and one pan-genome of the 
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dominant strains21; however, more Bin-genomes were needed to obtain comprehensive interspecies met-
abolic networks.

The recovery of additional Bin-genomes was accomplished by an improved sequence assembly, which 
yielded 169,740 contigs (Supplementary Table S1). We clustered the contigs by using mean contig coverage 
vs. G+ C content plots, which showed clustering when the mean coverage was > 20 (Supplementary Fig. 
S2). Then, we refined the clusters by using differential coverage binning method and their tetra-nucleotide 
frequencies15. From the contig clusters, we recovered thirteen Bin-genomes overall (Table 1), two of which 
were a mixture of genomes from at least two different microbes (Supplementary Table S2–S4), and six 
of which were high-quality draft genomes as assessed by the HMP criteria (Supplementary Table S5)26.  
The genome mixtures were omitted from further analyses. From the Bin-genome clustering, we suc-
cessfully identified the Bin-genome of the most dominant Desulfuromonadaceae strain DM1 from 
Desulfuromonadales pan-genome DM of the previous study21, which is important for analyzing the 
strain-based metabolic network. In total, eleven Bin-genomes were utilized for reconstructing the meta-
bolic networks within the community. A detailed description and discussion of these results can be found 
in Supporting Information (Supplementary Discussion, Supplementary Fig. S3–S7, and Table S3–S6).

Bin-genome frequency within the community. Bin-genome frequencies within the community 
are essential for normalizing and calculating mRNA/DNA ratios, which is the quantitative value used 
to determine gene expression levels. Metagenomics-based community composition analysis was per-
formed by using prokaryotic single copy housekeeping genes (Fig. 2). Within 107 reported housekeeping 
genes21, we selected sixteen core genes that are present in all eleven Bin-genomes (Fig.  2A). The rela-
tive frequencies of each Bin-genome were determined based on coverage of the selected core genes for 
each Bin-genome (Fig.  2B); then the community composition was compared using different methods 
(Fig. 2C). The results showed that 52% of the microbial population was occupied by the eleven dominant 
Bin-genomes (Table 1). This approach revealed a more accurate view of community composition relative 
to other methods including 16S rRNA gene-based clone analysis21 and raw read frequencies of each 

Figure 1. Scheme for the analytical approach used to describe the microbial networks in a complex 
EET-active community. (Step 1) Enrichment of an EET-active microbial ecosystem; (Step 2) Metagenomic 
sequencing and analysis of the community; (Step 3) Bin-genome association by contig clustering. Each 
cluster indicates a Bin-genome of a community member, which includes coding sequences for cell activity 
and available metabolic pathways; (Step 4) stimulus-induced metatranscriptomics involving the application 
of a specific EET-condition via stimulus addition and biofilm sampling with DNA and mRNA extraction; 
(Step 5) Metatranscriptomic sequencing and subsequent comparative analyses of gene expression profiles 
of the whole community and each community member, which are executed via marker gene sets correlated 
with important “cell activity” and “metabolic” functions; (Step 6) Construction of the community metabolic 
network for the dominant microbes within the community.
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taxon (Supplementary Table S6–S7). The detailed discussion for the improved community composition 
analysis can be found in Supplementary Discussion.

Gene expression trends during different EET conditions. In our previous study, we iden-
tified EET-responsive microbes (Bin-genome DB1 and Pan-genome DM) and genes within the 
electrode-associated EET-active biofilm by the dynamic analyses of gene-expression profiles between 
three sequential operational condition changes within 3-hr time period: 1) baseline condition related to 
static EET-activity (MFC) at 5 hours after wastewater replacement and stabilization of current genera-
tion with 70 mA/m2 of anodic current density; 2) increased EET rate with 430 mA/m2 of current density 
that was achieved by set-potential (SP) condition that held the anode surface potential as + 100 mV vs 
SHE under potentiostatic operation; and 3) zero EET activity with no current generation achieved by 
open-circuit (OC) condition (Table  2)24. Stimuli were applied for 45 minutes until current production 
or open circuit potential was observed to stabilize for each operational change, then DNA and mRNA 
of the anodic biofilms were co-extracted and sequenced as described in previous study24. With these 
stimuli, the rector coulombic efficiencies and wastewater treatment times were also changed. Coulombic 
efficiencies were 23% for MFC, 58% for SP, and 0% for OC; and the wastewater treatment times were 
10.0 day for MFC, 4.8 day for SP, and 18.3 day for OC, which were evaluated by long term operations23.

As a next step toward fully describing the microbial relationships within the electrogenic commu-
nity including those two EET-responsive microbes, the present study utilized the same mRNA sequence 
datasets (Table 2), but applied different analyses with the goal of describing a comprehensive metabolic 
network. We analyzed the overall gene expression dynamics for each Bin-genome, comparative expres-
sion levels of coding sequences (CDSs) between two operational conditions by scatter plotting, and the 
top 10 highly-expressed CDSs among the conditions (Supplementary Fig. S7–S11 and Table S8–S14). 
These basic analyses were sufficient to confirm that the main EET-responsive strains in the community 
were strains DB1 and DM1 as reported previously21. However, the overview analyses could not deter-
mine whether these two strains were positively activated or stressed; or the nature of their metabolic 
relationships to other dominant strains in the community. To achieve a more detailed view of com-
munity systems biology, we compiled a new set of marker genes for describing microbial cell activities 
(Supplementary Data 1) and metabolic activities (Supplementary Data 2) from full lists of KEGG module 
(Supplementary Data 3) and KEGG orthology (Supplementary Data 4), and analyzed these gene sets 
independently for each of the eleven Bin-genomes.

Microbial cell activity dynamics. To compare the gene expression trends of cell activity-associated 
marker genes between the dominant strains, gene expression levels (mRNA-RPKM) were normalized 
by the DNA frequencies (DNA-RPKM), and both gene expression levels and dynamic changes were 

Bin-genome 
ID Taxonomy

Core gene-basis 
frequency (%)a

Genome 
size (Mbp)

No. of 
gene/ ORFb

% Complete- 
nessc

No. of 
contigs

GC content 
(%)

MS1 Methanosarcinaceae 22.7 ±  2.5 2.21 2155 90 [HQD] 171 44

DB1 Desulfobulbaceae 7.2 ±  0.7 3.51 3188 95 [HQD] 79 54

Bet1 Betaproteobacteria 3.3 ±  0.5 2.59 3020 87 [SD] 487 64

Bac1 Bacteroidetes 3.1 ±  0.3 2.98 2514 96 [HQD] 86 50

DF1 Desulfobacteraceae 2.7 ±  0.5 3.52 3272 90 [HQD] 166 57

Unc1 Unassigned 2.7 ±  1.1 3.60 3081 80 [SD] 81 59

DM1 Desulfuromonadaceae 2.4 ±  0.6 2.86 3361 84 [SD] 908 60

Unc2 Unassigned 2.2 ±  0.9 2.53 2634 82 [SD] 73 36

DB2 Desulfobulbaceae 1.8 ±  0.3 2.49 2217 93 [HQD] 114 50

Bac2 Bacteroidetes 1.7 ±  0.2 4.59 3748 96 [HQD] 218 44

DF2 Desulfobacteraceae 1.5 ±  0.5 3.35 2967 78 [SD] 262 48

Chl1mixd Chloroflexi etc. 3.9 ±  1.1 3.88 3715 190d [mix] 302 54

DM2mixd Geobacteaceae etc. 2.9 ±  0.7 7.73 10512 347d [mix] 3843 58

Table 1.  Summary of Bin-genomes clustered from metagenomic assembly. aAveraged frequency within 
the metagenome was calculated based on the coverage of 16 universal single-copied core genes (Mean ±  SD). 
bNumbers of ORFs have potential errors in metagenomic ORF calling because of incomplete assemblies. 
cValues were calculated from frequency of KO assignment to universal single-copied gene family lists 
(Supplementary Table S3 and S4). Quality of draft genomes (HQD, High-quality draft; SD, Standard draft; 
mix, mixture of two or more genomes) were assessed by HMP criteria (Supplementary Table S6)26. dChl1mix 
was considered as mixture of two genomes, while DM2mix was considered as mixture of over three 
genomes. Those bin-genomes were not used for subsequent metabolic network analyses.
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co-visualized in Fig. 3. The selected marker genes encode proteins that are ubiquitously essential for all 
life, including transcription, translation, and replication (Fig. 3B–D). In addition, genes encoding ATP 
synthase, superoxide reductase, and catalase were also employed as indicators for energy synthesis or 
stress responses, respectively (Fig.  3E). By combining them, we will enable to discuss about microbial 
cell activity dynamics for each strain within the given community.

Except for strain DB2 and the EET-responsive strains DB1 and DM1, the gene expression dynam-
ics of the marker genes (Fig.  3B–E) were similar to those of the average/median for all CDSs in each 
Bin-genome (Fig. 3A and Supplementary Fig. S7). The gene expression levels and dynamics indicate that 
strains DF1, DF2 and DB2, which are likely sulfate reducers estimated from their phylogenetic position, 
were active members under all conditions but not EET-responsive. On the other hand, strains Bet1, Bac1, 
Bac2, Unc1, and Unc2 showed significantly low gene expression levels, indicating relatively low activity 
within the community.

More significant gene expression fold-changes were observed in EET-responsive strains DB1 and 
DM1 (Fig.  3). Especially, the gene encoding RpoH (σ 32), which is a known stress response protein27, 
showed completely different expression trends between strains DB1 and DM1 (Fig. 3B). The rpoH gene 
of strain DB1 was highly expressed only under the OC condition, while that of strain DM1 was highly 

Figure 2. Single-copy housekeeping gene-based analysis to profile microbial diversity using 
metagenomic analyses and Bin-genome clustering. (Panel A) shows principal component analysis 
(PCA) diagram for 107 single-copy bacterial housekeeping genes based on existence in each Bin-genome 
(Supplementary Table S3). Genes determined as suitable for the community analyses are clustered within 
gray area. Names of sixteen core-genes used for microbial community population analysis are described in 
red/orange colors. (Panel B) shows the taxonomic composition of the microbial community based on core-
gene frequencies of each taxon and Bin-genome (bars inside). (Panel C) shows comparison of microbial 
community compositions between three different methods of metagenomic analyses and 16S rRNA clone 
analyses separately conducted for domains Bacteria and Archaea.
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Conditiona
Time after 
stimulusb

Current density 
(mA/m2)c

Total  
mRNA readsd

Mapped mRNA readse

All ORFsf
Bin-genome 

ORFsg

MFC 5 hr 70 467,556 196,392 (42%) 125,024 (27%)

SP 45 min 430 521,036 222,585 (43%) 147,875 (28%)

OC 45 min 0 513,056 231,056 (45%) 153,834 (30%)

Table 2.  Summary of parameters for stimulus-induced metatranscriptomic analyses. aMFC, microbial 
fuel cell operation with 750 Ω  external resistor; SP, set potential operation to control anode surface potential 
of + 100 mV vs SHE; OC, open circuit operation to disconnect electrical circuit. bTotal RNAs were extracted 
under steady-state MFC condition, and stimulus-induced SP/OC conditions. cAnodic current density 
normalized by projected anode surface area. dmRNA was obtained by rRNA subtraction from total raw RNA 
reads using SILVA database. emRNA was mapped to ORFs called from contigs with the parameter as 0.95 
of identity and 0.7 of length coverage. fNumbers of mRNA reads mapped to all ORFs. Parenthesis indicates 
% mapped to all ORFs. gNumbers of mRNA reads mapped to ORFs from 13 bin-genomes. Parenthesis 
indicates % mapped to the ORFs.

Figure 3. Overall gene expression levels and dynamics related to microbial cell activities for each 
Bin-genome. Mean gene expression levels were calculated from all CDSs in each Bin-genome (A). Gene 
expression levels and changes for selected marker gene families related to transcription (B), translation 
(C), replication (D), and energy and stress (E) were calculated (see Supplementary Data 1). Normalized 
gene expression levels (mRNA-RPKM/DNA-RPKM) for each Bin-genome under the three operational 
conditions is described by the size of circle, while gene expression dynamics (mRNA-RPKM/mRNA-RPKM) 
is described by the circle color of SP (expression fold-change from MFC to SP) and the circle color of OC 
(expression fold-change from SP to OC).
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expressed under the SP condition. In addition, expression of the gene encoding cell division protein 
FtsZ28 was up-regulated under the SP condition and down-regulated under the OC condition in strain 
DB1; however, the ftsZ gene was consistently expressed in strain DM1 (Fig.  3D). These differential 
responses suggest that the EET-accelerated SP condition was a preferable situation for strain DB1; con-
trarily, the OC condition was a stressful condition, which are expected trends for an EET-active microbe. 
However, the other EET-responsive strain DM1 showed a more complicated trend, which suggest that 
the EET-accelerated SP condition was stressful due to a highly oxidative surface potential for the strain, 
or pH drop by H+ accumulation in the biofilm as a counter reaction of increased EET to the electrode. 
Subsequently, the strain DM1 adapted to the new environmental condition, as indicated by the modi-
fication of its gene expression profiles related to transcription and translation, which was not predicted 
from the previous research21. These results indicate that the EET-responsive strain DM1 may have been 
forced to reconstruct electron transfer pathways after sensing a change in electron acceptor availability.

The strain DB2 also showed over 2-fold higher gene expression for genes related to transcription, 
translation and replication as a result of the SP stimulus. Lower expression of oxidative stress response 
genes was also observed (Fig. 3E), which indicates that the strain DB2 may have been directly correlated 
with the EET reaction in a positive way.

Microbial metabolic activity. Next, we analyzed the specific metabolic activities of each strain. Since 
a majority of metabolic interactions among microbes are related to fermentation and/or electron trans-
fer reactions24, we analyzed the expression profiles of gene families associated with KEGG pathways or 
KEGG modules29 that are known to relate to these metabolic activities (Supplementary Data 2). From 
the list, we depicted gene expression trends of appropriate gene family modules for describing respi-
ration pathways (Fig.  4A) ubiquitously occurring in the earth environments30, substrate consumption 
or byproduct production (Fig.  4B) which are well-known intermediate compounds within anaerobic 
metabolic networks31, and glycolysis and the TCA cycle (Fig. 4C) from highly expressed KEGG modules 
(Supplementary Data 3). Several marker genes were selected based on known key enzymes of the specific 
pathway (e.g. citrate synthase, gltA in TCA cycle) or highly expressed genes within the Bin-genomes 
(Supplementary Data 4) that correlated to a specific metabolic function (e.g. alcohol dehydrogenase, yiaY 
and cation/acetate symporter, actP).

Metabolism for respiration. Gene expression levels of the five most ubiquitous respiration metabo-
lisms30 indicated that methanogenesis, sulfate reduction, and EET to solid surfaces were actively occurring 
simultaneously in the community (Fig.  4A). The gene expression levels of each marker gene indicated 
that strain MS1 conducted hydrogenotrophic methanogenesis, while strains DB1, DB2, DF1, and DF2 
conducted dissimilatory sulfate reduction; however, expression of sulfate reduction and methanogenesis 
related genes were not changed significantly among the three conditions, except for EET-active strain 
DB1. These results suggest that competitive respiration activities, relative to electrode respiration, were 
not immediately affected by changes in EET rates for most of the dominant strains in the community.

Dissimilatory metal reduction and electrode respiration via EET are known to be mediated by 
multi-heme c-type cytochromes (MH-cytCs)32. The EET-responsive strains DB1 and DM1 contained 
many genes encoding MH-cytCs, but their gene expression levels were not significantly changed under 
the three different EET conditions (Fig. 4A). We further analyzed twelve gene families that are known to 
encode key MH-cytCs for EET processes in model organisms Geobacter and Shewanella33,34, and found 
that the two strains include many of those key MH-cytCs. The key MH-cytCs of the two strains were 
highly expressed compared to all other MH-cytCs (Fig. 4A) and all CDSs (Fig. 3A), but not drastically 
changed by the EET stimuli. In contrast, the gene expression levels of several specific MH-cytC families 
were significantly changed by the EET stimuli in the two strains (Supplementary Data 2), suggesting that 
further characterization of different types of MH-cytCs may help to understand their roles in specific 
EET activities.

Only strain Bet1 showed the possible capability for nitrate and oxygen respiration, suggesting that the 
strain was an oxygen scavenger and/or dissimilatory nitrate reducer (Fig. 4A); however, the gene expres-
sion levels were relatively low, indicating that high concentrations of oxygen did not reach the anodic 
biofilm and the majority of the activity was associated with anaerobic respirations.

Metabolism for electron donors. Understanding strain specific substrate utilization, and how sub-
strates may be shared between strains, is extremely important for describing a comprehensive metabolic 
network. High molecular-weight complex organic chemicals in wastewater are diverse and have variable 
concentrations; therefore, the primary decomposition of complex organics may be conducted by diverse 
rare populations with specific metabolic niches. The rare population microbes in the biofilm did not yield 
high quality Bin-genomes because of low coverage (< 20) in the metagenome (Supplementary Fig. S2). 
Thus, in this study, we focused our analyses on the more dominant microbial populations that appeared 
to metabolize the smaller compounds (sugars, amino acids, and fatty acids) that could be closely asso-
ciated to terminal electron accepting reactions including EET. Complex substrate utilization generally 
happens by a combination of fermentative and respiratory reactions, where the fermentation byproducts 
are consumed as substrates for the respiratory microbes via interspecies metabolite transfer processes24. 
Figure  4B shows expression profiles of the selected highly expressed gene families/modules associated 
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with substrate utilization during respiration processes or byproduct production during fermentation pro-
cesses (the full list is shown in Supplementary Data 2). The results imply that hydrogen was consistently 
utilized by strains DF2 (as a chemolithoautotrophic sulfate reducer) and MS1 (as a hydrogenotrophic 
methanogen), while DF1 primarily consumed fatty acids and amino acids. Interestingly, strains DB1 and 
DM1 appeared to be competing for acetate utilization, while strains DF1 and DB2 were in competition 
for ethanol utilization under different EET conditions.

The gene expression profiles of the actP gene encoding the acetate uptake protein ActP35 indicated 
that strain DM1 was primarily responsible for acetate consumption under the MFC condition. However, 
strain DM1 showed a significantly lower actP expression under the SP condition, while strain DB1 had 
a 5-fold increase in actP expression relative to the MFC condition. These data indicate a competitive 
relationship between strains DB1 and DM1 with respect to acetate consumption, which is driven by 
EET rates. Further evidence for acetate utilization competition was provided by an analysis of the key 
genes related to central metabolic pathways including the gltA gene (encoding a key enzyme of the TCA 

Figure 4. Overall gene expression levels and dynamics related to microbial metabolisms for each Bin-
genome. Gene expression levels and changes were calculated (see Supplementary Data 2) for selected 
metabolism-related marker gene families associated to respiration (A) substrate consumption or byproduct 
production (B) and glycolysis and TCA cycle (C). Normalized gene expression levels (mRNA-RPKM/
DNA-RPKM) for each Bin-genome under the three operational conditions is described by the size of circle, 
while gene expression dynamics (mRNA-RPKM/mRNA-RPKM) is described by the circle color of SP 
(expression fold-change from MFC to SP) and the circle color of OC (expression fold-change from SP to 
OC). Important gene sets for the metabolic pathway analyses within the community are indicated by yellow 
rectangles highlighting the circles. Bars indicate partial pathways of a given KEGG module or no existence 
of the KEGG orthology/module, and the elements of the incompleteness are described below the bar. Red 
rectangles indicate potential metabolism switches after stimuli addition.
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cycle)36 and hydrogenase genes. The expression of the gltA gene was significantly decreased along with 
the actP gene in strain DM1 under the SP condition (Fig. 4C); however, expression of the hydrogenase 
genes was significantly increased (Fig. 4B). Specifically, the ehrCD genes encoding Ech hydrogenase com-
plex (HyfEF) were significantly up-regulated for the strain DM1 under the SP condition (Supplementary 
Data 2). The Ech hydrogenase complex has been characterized as necessary for producing a reduced form 
of ferredoxin via hydrogen oxidation37. These trends suggest that strain DM1 stopped utilizing acetate 
and switched to hydrogen as its preferred electron donor during the EET-enhanced SP condition, which 
might be regulated by the stress-responsive sigma factor (RpoH) in strain DM1 (Fig. 3B). Interestingly, 
the SP-stimulus responsive hydrogenase EhrCD in strain DM1 is a different group from known res-
piratory uptake hydrogenase (HydB) in a model Deltaproteobacterial EET-active microbe, Geobacter 
sulfurreducens38. In addition, we recently reported that genus Desulfuromonas microbes were more asso-
ciated with electro-negative surface potentials and acetate utilization as compared to genus Geobacter 
microbes39. Thus, we postulate that the Desulfuromonadaceae strain DM1 may have a mechanism to 
‘sense’ surface potentials and adapt accordingly to rapidly reconstruct its protein profiles for both central 
carbon metabolism and EET-associated MH-cytCs.

The gene expression trends for the yiaY gene encoding alcohol dehydrogenase, which was the most 
highly expressed gene among alcohol dehydrogenases, also indicated a competitive relationship for eth-
anol utilization between two active sulfate reducers, strains DB2 and DF1 (Fig. 4B). Under the SP con-
dition, strain DB2 appeared to be the dominant ethanol consumer and strain DF1 likely shifted from 
primarily ethanol to fatty acid consumption. The activation of strain DB2 under the SP condition was 
also supported by cell activity marker gene trends (Fig.  3). These trends indicate that strain DB2 was 
EET-responsive and preferred the SP condition, even though the strain seems not to correlate directly 
with EET-respiration from our knowledge to-date.

Under the MFC condition, strain DB1 showed high gene expression levels for the nrfD gene encoding 
a polysulfide reductase in their top 10 gene expression list (Supplementary Table S9); and interestingly, 
the nrfD gene expression trends were completely opposite to the acetate utilization-associated marker 
genes (Fig. 4B). The NrfD protein was originally identified as a conduit in the transfer of electrons from 
the quinone pool to terminal electron transfer components40; however, the protein has also been reported 
as an enzyme involved with the transformation of elemental sulfur to sulfide41. Since the preferred elec-
tron donor for strain DB1 under the MFC condition is unknown, the gene expression trends suggest 
that NrfD proteins might be utilized for electron donating under MFC condition, which might extract 
electrons from sulfide or elemental sulfur produced by active sulfate reducers.

Metabolism for fermentation. Since highly variable organic matter exists in wastewater, a wide 
variety of fermentative strains could be maintained within the electrogenic community. An analysis of 
the gene expression levels of glycolysis-associated gene families indicated that strains Bet1, Bac1, and 
Unc1 may be sugar fermenters (Fig. 4C). However, their gene expression levels were too low to indicate 
any possible dynamic gene expression trends as a function of EET stimuli.

The contig clustering analysis showed many Firmicutes-assigned contigs, which are also potential 
fermenters, in the low mean coverage region (< 20) that represents less than 1.5% relative frequency in 
the community (Fig.  2B, Supplementary Fig. S2, Table S7). However, in order to address such diverse 
but less dominant microbial metabolic activities, we will need to recover higher quality Bin-genomes of 
the fermenters via more sequencing.

Describing microbial metabolic networks. From the combination of metagenomic, genome bin-
ning and stimulus-induced metatranscriptomics analyses, it is possible to hypothesize the metabolic 
networks that exist between the eleven dominant strains within the complex EET-active microbial com-
munity (Fig.  5). Since we added EET stimuli to the community, the suggested metabolic network and 
metabolism shifts between microbes were identified relative to the terminal electron accepting reaction 
to the anode electrode. EET-active strains DB1 and DM1 competed with each other for acetate utiliza-
tion and the EET rate defined which strain prevailed, which was not expected from the previous study21. 
Strain DB1 was more active under the higher EET-rate condition (SP), while strain DM1 was the active 
acetate utilizer under the lower EET-rate condition (MFC). Strain DB1 also appeared to be correlated 
with sulfur metabolisms like dissimilatory sulfate reduction and sulfide oxidation, but the mechanisms 
that strain DB1 may use for these processes are not yet clear.

Another obvious metabolic shift observed under the SP condition was that primary ethanol con-
sumption moved from strain DF1 to strain DB2 (Fig.  5). The upstream processes of wastewater treat-
ment for converting complex organic compounds to volatile fatty acids, amino acids, alcohols, and H2 
via microbial hydrolysis and fermentation reactions are still unknown from this EET stimulus-induced 
metatranscriptomic analyses. To achieve a greater understanding about those hydrolysis and fermenta-
tion processes, we hypothesize that specific fermentative substrates can be used as stimuli to produce new 
information about the processes via stimulus-induced metatranscriptomics methods.

Discussion. To date, metabolic interaction networks within complex microbial communities have pri-
marily been inferred from community dynamics8 and metagenomics3,42, and are now improving with 
the application of metatranscriptomic43,44 and metaproteomic45 approaches. Here we have significantly 
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enhanced the current state-of-the-art by optimizing methods for extracting Bin-genomes and analyzing 
novel stimulus-induced metatranscriptomics data with appropriate marker gene sets (Fig. 1). The gene 
expression dynamics of cell activity-associated marker genes after the stimuli addition enabled classifi-
cation of microbial responses to the specific stimulus as either positive, negative, or neutral (Fig. 3). The 
gene expression dynamics of metabolism-associated marker genes after the stimuli addition (Fig. 4) ena-
bled the reconstruction of a metabolic pathway network and their pathway shifts by the given stimulus 
for dominant strains, and identified active metabolic pathways in the system (Fig.  5). Finally, we have 
successfully described the cooperative and competitive microbial interactions in the system, and identi-
fied how these relationships change as a function of induced stimuli, which has not yet been addressed 
by other types of studies.

From two EET-active strains, Desulfobulbaceae strain DB1 was more active under the SP condition 
than the MFC condition, while Desulfuromonadaceae strain DM1 showed an opposite trend. These 
same trends have been confirmed by longer-term microbial community population studies exploring 
continuous MFC and SP operation (Supplementary Fig. S12) that showed a relatively abundant pop-
ulation of family Desulfobulbaceae including strain DB1 in the SP enriched condition, while family 
Desulfuromonadaceae including strain DM1 was found as the most relatively abundant strain in the 
MFC condition23. These studies indicate that the gene expression trends of both cell activity and micro-
bial metabolism observed in the short-term stimulus-induced metatranscriptomics are tightly corre-
lated with longer-term microbial community dynamics. This consistency provides more evidence and 
stronger confidence in our estimated metabolic pathway networks and the metabolic switches predicted 
from our stimulus-induced metatranscriptomics approach. In addition, we operated triplicate MFCs fed 
with the same wastewater and conducted 16S rRNA community analyses throughout the operation. The 
results showed that all three reactors contained both Desulfobulbaceae and Desulfuromonadaceae phylo-
types as abundant members in the anodic biofilms (Supplementary Fig. S13). These results also validate 
the observations yielded from the stimulus-induced metatranscriptomic experiments in this study. This 
level of understanding has not yet been achieved by other types of metagenomic, metatranscriptomic or 
metaproteomic studies.

The stimulus-induced metatranscriptomics analyses also indicate that two dominant Desulfobulbaceae 
strains, DB1 and DB2, were both more active under the SP condition (Figs  3 and 4), which suggests 
that the family Desulfobulbaceae may preferentially associate with more electropositive surface redox 
conditions as compared to other Deltaproteobacterial families in the electrogenic community. Family 
Desulfobulbaceae microbes have been reported in relative abundance in electrogenic biofilms that have 
been extracted from anodes in a sediment MFC46,47 and in a rice straw hydrolysate-fed MFC48, both of 
which contained sulfate in the reactors or sediments. Further, a filamentous Desulfobulbaceae strain has 

Figure 5. Estimated metabolic network between dominant microbes within the EET-active microbial 
community. Metabolic roles of eleven Bin-genomes (colored rounded rectangles) are estimated from the cell 
activity and metabolism-associated gene expression dynamics related to EET stimuli additions. Metabolism 
switches between MFC and SP conditions are described by thick arrows with blue (MFC) or red (SP) color. 
Intracellular and extracellular EET processes are described by orange arrows. Cytoplasmic carbon metabolic 
flows are described by right blue arrows.
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recently been identified as an important group in marine sediments for long distance EET processes from 
the sulfate-reducing zone to the oxygen-respiring zone49. These reports suggest that Desulfobulbaceae 
strains could be more competitive in sulfate-containing and EET-active sediments than Geobacter strains.

Our metatranscriptomic results showed that Desulfobulbaceae microbes DB1 and DB2 were also acti-
vated during the EET-enhanced SP condition with a more positive surface potential, and strain DB1 
performed EET to the solid electrode via MH-cytCs in addition to sulfur and acetate metabolisms 
(Fig. 5). These metabolisms have not been previously described for family Desulfobulbaceae isolates41,50,51. 
Dissimilatory sulfate and elemental sulfur reduction are well-known metabolic functions within family 
Desulfobulbaceae isolates; however, solid metal-oxide reduction as well as electrode respiration has only 
been reported in Desulfobulbus propionicus with lactate, propionate or pyruvate, but not acetate as an 
electron donor50. However, it should be noted that the strain DB1 is phylogenetic distinct from the pre-
viously reported Desulfobulbaceae isolates and does not associate to the known genera (Supplementary 
Fig. S14). The activities observed and described as a part of our stimulus-induced metatranscriptomic 
approach may help to address the reason why Desulfobulbaceae strains are more abundant than Geobacter 
strains in those sulfate-containing EET-active sediments.

The expanded use of this meta-omics approach could contribute toward revealing microbial func-
tions and roles in geochemical cycling, eliciting effective strategies for applying microbial communities 
to industrial applications, and testing fundamental theories about microbial adaptation and evolution 
occurring in the environment1. While we have demonstrated the success of our approach for an enriched 
microbial community in a bioelectrochemical system, we propose that the same concepts and strategies 
can be applied to microbial communities in natural environments, although we recognize that there are 
different challenges (detailed discussion can be found in Supplementary Discussion).

Consequently, this new approach and resulting knowledge is a first step toward unveiling compre-
hensive microbial metabolic networks and addressing how microbial ecosystems function and main-
tain. The previously reported longer-term community dynamics trends23 correlate with the short-term 
stimulus-induced responses described here, which is a partial validation of these results. Further valida-
tion of our estimated metabolic network and metabolic switches will be conducted by meta-proteomic 
and metabolomic analyses of the community in response to the same EET stimulus. Additional 
stimulus-induced metatranscriptomics efforts associated with utilization of electron donors and esti-
mated intermediates will also be explored. By combining these methods and associated results, we can 
expand our knowledge base and tools for describing complex microbial ecosystem dynamics in this era 
of rapid environmental change.

Methods
Metagenomic and metatranscriptomic samples. An electrogenic EET-active microbial commu-
nity was established in an air-cathode microbial fuel cell (MFC) repeatedly fed with primary clarifier 
effluent from a municipal wastewater treatment plant25. The anode and cathode electrode were connected 
with an external resistor of 750 Ω  during the 800 day MFC operation, and current generation was 
monitored as the function of microbial EET reaction. Two more MFCs fed with same wastewater were 
operated over 1 year in parallel for establishing comparable electrogenic microbial communities (MFC#2 
and MFC#3). Community composition of these reactors was analyzed by using 16S rRNA amplicon 
sequencing as described elsewhere52.

The DNA and mRNA sequence raw reads yielded from our previous report21 were used in this study. In 
brief, three biofilm samples were harvested sequentially within a 3 hr time period after exposure to three 
different operating conditions. These include the standard MFC operation (MFC) with current density 
of 70 mA/m2, set-potential (SP) condition after controlling the electrode surface potential to + 100 mV 
vs. standard hydrogen electrode with current density of 430 mA/m2, and open circuit (OC) condition 
with zero current production21. Both DNA and RNA of the anode-associated microbial community were 
coextracted using a MObio PowerBiofilm RNA Isolation Kit (MO BIO, San Diego, CA). The DNAs 
were sequenced using Illumina GAIIx (Illumina, San Diego, CA, USA) and 454 Titanium FLX (454 Life 
Sciences, CT, USA) platforms (Supplementary Table S1). The RNAs were sequenced using the GAIIx, 
and ribosomal RNAs were removed by in silico subtraction method21. The mRNA nucleotide sequences 
have been deposited in the NCBI Short Read Archive under accession number SRX189137-SRX189139.

Revised assembly of metagenomic data sets. The revised de novo assembly of metagenomic 
sequences was conducted by CLC de novo Assembly Cell version 4.0 (CLCbio, Boston, MA, USA). All 
DNA data was mixed, assembled into contigs with scaffolding based on paired information using dif-
ferent kmer sizes (23, 33, 43, 53, and 63) and bubble lengths (100, 300, 500 and 700 bp). The assem-
blies were compared using total bases of the contigs, N50, and % mapped raw DNA reads to contigs 
(Supplementary Fig. S1). From a total of 20 sets, two assembly sets of bubble length 700 bp with kmer 
size 33 and 23 showed the best quality, and the assembly set with bubble length 700 bp and kmer size 
33 was selected. The contigs over 500 bp in the selected assembly were used in subsequent analyses 
(Supplementary Table S1). The revised contigs have been deposited at DDBJ/EMBL/GenBank under the 
accession AMWB00000000. The version described in this paper is version AMWB02000000.

The contigs were functionally annotated as described previously21. Briefly, all contigs were taxonom-
ically assigned based on most abundant taxonomic information of peptides in the contig21, and all open 
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reading fames (ORFs) were functionally annotated based on KEGG orthologous (KO) groups29 using the 
KEGG Automatic Annotation Server53. ORFs were annotated to c-type cytochromes based on a CXXCH 
motif search, and 714 ORFs contained more than two occurrences of the motif indicating that these 
may be multi-heme c-type cytochromes (MH-cytCs). Conserved protein orthologous groups of c-type 
cytochromes33 were used for assigning to the c-type cytochrome family ID21.

Bin-genome clustering. Bin-genomes were extracted by grouping contigs of the estimated dominant 
strains within the community. The specific values used for the Bin-genome clustering are summarized 
in Supplementary Table S2. The contig clusters were then refined by differential coverage method and 
tetra nucleotide frequency method15. To assess the genome “completeness” of Bin-genomes, we used 
107 marker genes for Bacteria and 137 marker genes for Archaea21. Percentages of single-copied house-
keeping genes were used to estimate the genome completeness and mixture of multiple genomes for 
each Bin-genome. A principal component analysis (PCA) diagram of the marker gene existence matrix 
of Bacteria was constructed using XLSTAT (Addinsoft, New York, NY, USA) to identify representative 
marker genes. Quality assessment for the Bin-genomes was conducted by QUAST tool54 and finish-
ing standards by provisional HMP Consortium definitions26. Ribosomal RNA-associated regions were 
assigned to phylotypes (clone IDs) by using the BLAST program to link Bin-genomes to phylotypes 
from the 16S rRNA clone analyses21. If direct linkages were not established, associations were estimated 
by comparing phylogenetic positions of 16S rRNA and three housekeeping proteins (RplE, NusA, and 
PheS) using phylogenetic trees created by the neighbor-joining algorithms in CLC Genomics Workbench 
version 5.0.

Metagenomic community composition analysis. Relative frequencies of Bin-genomes were deter-
mined using several different methods. Sixteen single-copied housekeeping genes were selected from the 
PCA diagram, and the relative frequencies of each Bin-genome were determined from the mean coverage 
of the contigs that include ORFs of each selected housekeeping gene. The average of the relative frequen-
cies for the marker genes was calculated as community composition. The community composition was 
also analyzed based on metagenomic raw read frequencies.

Read mapping of raw reads to ORFs. RPKM values, Reads Per Kilobase per Million mapped 
reads55, for both DNA and mRNA samples under three different operational conditions (MFC, SP, and 
OC) were generated by the RNA-Seq Analysis pipeline in CLC Genomics Workbench (version 6.5), and 
used to analyze ORF frequency (DNA-RPKM) and gene expression levels (mRNA-RPKM). All 359,891 
ORFs were used as references, and read mapping was conducted using 0.5 as the minimum length and 
0.95 as the minimum similarity fractions. The calculated mean of the DNA-RPKM for three conditions 
was used to determine gene existence level of each ORF, while mRNA-RPKM values for each condition 
were normalized by using the ratio between corresponding DNA-RPKM for each condition and the 
mean of DNA-RPKM.

Selection of marker genes for analyzing cell activity and metabolisms. Microbial cell activity- 
and metabolism-associated marker genes were selected from the KEGG module or KEGG pathway data-
bases29. Selected marker gene families for cell activity include central dogma-associated KEGG modules 
that are essential for life, ATP synthase that is essential for energy production, and stress response asso-
ciated genes such as superoxide dismutase. Selected marker gene families for microbial metabolisms 
include KEGG modules associated with glycolysis, TCA cycle, a wide selection of genes related to dif-
ferent forms of prokaryotic respiration, and manually selected genes associated with production of fer-
mentation byproducts and potential substrate transporters, all of which are of potential importance for 
anaerobic microbial life. Detailed criteria for selection are described in Supplementary Methods. The 
KOs used for analyses are summarized in Supplementary Data 1 for cell activity and Supplementary 
Data 2 for microbial metabolisms, along with mRNA-RPKM for each condition and mean DNA-RPKM. 
The gene expression levels were normalized by dividing the mRNA-RPKM by the DNA-RPKM (mRNA/
DNA ratio). From the full list of marker gene families for microbial metabolisms, key KEGG module and 
KEGG orthology (Fig. 4) were selected for describing metabolic pathway networks as described above.
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