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Somatostatin is highly expressed in mammalian brain and is involved in many brain
functions such as motor activity, sleep, sensory, and cognitive processes. Five somato-
statin receptors have been described: sst1, sst2 (A and B), sst3, sst4, and sst5, all
belonging to the G-protein-coupled receptor family. During the recent years, numerous
studies contributed to clarify the role of somatostatin systems, especially long-range
somatostatinergic interneurons, in several functions they have been previously involved
in. New advances have also been made on the alterations of somatostatinergic systems
in several brain diseases and on the potential therapeutic target they represent in these
pathologies.
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NEUROANATOMY OF SOMATOSTATINERGIC SYSTEM
SOMATOSTATIN PEPTIDES IN THE BRAIN
Somatostatin14 (SRIF, somatotropin release inhibiting factor) was
serendipitously discovered in 1972 by Roger Guillemin and col-
leagues who were aiming to purify and characterize growth
hormone (GH)-releasing hormone from sheep hypothalamus
(Brazeau et al., 1973). Soon thereafter, an N-terminally extended
peptide, SRIF28, was purified from the gut. Both peptides, arising
from a common propeptide encoded from a single gene, were
found in the mammalian nervous system where SRIF14 is the
predominant form (for review, see Epelbaum, 1986).

Two brain SRIF-related bioactive peptides have been discov-
ered later. Cortistatin (CST) has been cloned in 1996 (De Lecea
et al., 1996) and shares 11 amino acids with SRIF (Figure 1). CST
peptides are predicted to occur as 14-AA or 17-AA short forms in
rodents and humans, respectively, and a 29-AA extended form in
both species. CST is mainly restricted to the cerebral cortex and
the hippocampus in the central nervous system (CNS). CST has
been implicated in several brain functions such as learning and
memory, regulation of sleep/wakefulness rhythms and it is sus-
pected to have an anticonvulsant activity (for review, see de Lecea,
2008). Recently, bioinformatics analyses of evolutionary conserved
sequences identified neuronostatin, a 13-AA amidated peptide
also encoded by the somatostatin gene. Mostly found in pancreas,
spleen, and brain, it is involved in metabolic, cardiovascular, and
neuronal functions (Samson et al., 2008).

Somatostatin induces many transduction mechanisms in trans-
fected systems (for review, see Lahlou et al., 2004; Olias et al.,
2004), but deciphering the physiological actions of the native
receptors in situ remains an intense field of study. The last decade
showed increasing progress in understanding the role of SRIF in
brain functions using molecular, pharmacological, and behavioral
approaches. The development of innovative molecular, genetic,
and imaging tools now allows to go a step further and to assess
the cellular contribution of SRIF-expressing cells in neuronal

networks ex vivo and soon in vivo. In this review we will give an
overview of the latest findings concerning SRIF systems in brain,
report some recent data concerning their synaptic actions and their
physiological roles within the brain, in normal or pathological
conditions.

SOMATOSTATINERGIC NETWORKS IN THE BRAIN
Somatostatin is ubiquitously expressed in mammalian brain,
including humans (Figure 2A). SRIF-immunoreactivity is found
at high level in the mediobasal hypothalamus and median emi-
nence, amygdala, preoptic area, hippocampus, striatum, cerebral
cortex, sensory regions, and the brainstem (for review, see
Epelbaum, 1986; Viollet et al., 2008).

Somatostatin peptide colocalizes with gamma-aminobutyric
acid (GABA), a major inhibitory neurotransmitter and labels
mostly non-glutamatergic cells in the brain. In order to target SRIF
interneurons in situ, most recent studies took advantage of rodent
models expressing the green fluorescent protein (GFP) under the
control of the GAD67 promoter to visualize GABAergic popula-
tions more easily. In the GIN (GFP-expressing inhibitory neurons)
strain (Oliva et al., 2000) nearly all GFP cells stained for SRIF while
in the GAD67-GFP strain, SRIF immunohistochemistry labels
37% of total GFP cells (Ma et al., 2006). The recent development
of specific Cre recombinase and knock-in inducible driver lines
for SRIF (Taniguchi et al., 2011) opens promising avenues to study
SRIF functions at the cellular level combined to optogenetic and
imaging tools.

Previous immunohistochemical and tracing studies have iden-
tified two main categories of SRIF neurons: those acting locally
in a given structure within microcircuits (interneurons) and those
projecting to a distant structure (long-projecting neurons). Nev-
ertheless, recent data using GFP transgenic mice revisit previous
anatomical records by demonstrating that some formerly called
interneurons also belonged to the projecting neurons category.
The different kinds of GABAergic interneurons are classified

www.frontiersin.org December 2012 | Volume 3 | Article 154 | 1

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Neuroendocrine_Science/10.3389/fendo.2012.00154/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GuillaumeMartel&UID=69386
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PatrickDutar_1&UID=8050
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JacquesEpelbaum&UID=6671
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=C�cileViollet&UID=68867
mailto:cecile.viollet@inserm.fr
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroendocrine_Science/archive


“fendo-03-00154” — 2012/12/4 — 23:44 — page 2 — #2

Martel et al. Role of somatostatinergic networks in the brain

FIGURE 1 | Schematic representation of somatostatin-related

peptides. SRIF14 and CST14 come from two distinct genes but bind
the five mammalian sst receptors. Neuronostatin is encoded by the

same gene as SRIF but does not bind SRIF receptors; its effects
seem mediated through the melanocortin system. r, rat; m, mouse; h,
human.

according to their molecular, physiological, and morphological
properties. Immunohistochemical characterization of neuronal
populations in rat cortex initially stated, based on calcium-binding
proteins and peptides expressions that parvalbumin (PV), SRIF,
calretinin, and cholecystokinin labeled four main non-overlapping
chemical classes of interneurons (Xu et al., 2006). However, several
studies later reported a significant colocalization of SRIF and cal-
retinin in mouse brain (Xu et al., 2006; Kosaka and Kosaka, 2007;
Lepousez et al., 2010a), pointing out species-dependent variations
in the repertoire of calcium-binding proteins and neuropeptides.
It seems that neuronal populations immunoreactive for calbindin
or the neuropeptide Y strongly overlap with the somatostatinergic
population in rats whereas calretinin is preferentially coexpressed
with SRIF in the mouse.

Recent morphological and electrophysiological studies using
GIN mice focused on SRIF-expressing populations in cortical
circuits. In mouse cortex, parvalbumin- and SRIF-expressing neu-
rons respectively constitute 40 and 30% of the total GABAergic
neurons, calretinin being expressed in 50% of the somatostatin-
ergic population (Rudy et al., 2011). The remaining cortical
inhibitory interneurons, expressing ionotropic serotonergic recep-
tor 5HT3a, include VIP- and NPY-positive subpopulations whose
partial colocalization with SRIF has been reported (Gonchar et al.,
2007; Xu et al., 2010; Rudy et al., 2011). SRIF-positive interneurons
are homogeneously distributed in all cortical layers (2–6), as com-
pared to PV-positive inhibitory interneurons that are concentrated
in the upper part of the layer (Perrenoud et al., 2012).

The major class of SRIF interneurons, the Martinotti cells, have
ascending axons that arborize and spread horizontally in layer 1,
targeting the distal dendritic parts of excitatory pyramidal neurons
(for review, see Viollet et al., 2008). Excitatory inputs onto Mar-
tinotti cells are generally strongly facilitating, allowing feedback
inhibition of the excited pyramidal cell that increases as func-
tion of the rate and the duration of the presynaptic discharge
(Kapfer et al., 2007; Silberberg and Markram, 2007). The rela-
tive distance between excitatory and interneurons inputs may also

impact feedback selectivity and grade, inhibition being stronger
for closer inputs. A recent study using a two-photon microscopy
approach coupled to uncaged glutamate in cortical slices of GIN
mouse mapped the inhibitory network between SRIF-positive
interneurons and pyramidal cells at the single-cell resolution
(Fino and Yuste, 2011). Whatever the pyramidal cell stimulated,
it led to a dense innervation of the surrounding somatostatin-
ergic interneurons, with activity related to the proximity of the
cells. Notably, this inhibitory connectivity looked unspecific as all
inhibitory interneurons were locally connected to every sampled
pyramidal cells regardless whether these were connected among
themselves or not. This dense circuit and the fact that somato-
statinergic neurons electrically communicate via gap junctions
(Ma et al., 2006; Hu et al., 2011) favors the hypothesis that the
entire somatostatinergic population belongs to a same inhibitory
cortical circuit, contradicting the hypothesis of specific inhibitory
cortical subnetworks.

Additional classes of cortical SRIF inhibitory interneurons have
been recently described according to their localization, intrinsic
firing properties, expression of molecular markers, and con-
nectivity (Gonchar et al., 2007; McGarry et al., 2010). On one
hand, calretinin expression was proposed as a distinctive marker
(Rudy et al., 2011), since its expression is associated to distinct
neuronal morphology and connectivity in populations with dis-
tinct ontogenic origin (Sousa et al., 2009; Xu et al., 2010). On
the other hand, two novel SRIF-positive subtypes were identified
after cluster and principal component analysis of a whole range
of morphological or electrophysiological parameters (McGarry
et al., 2010). These cell types have some similarities to neurons
labeled in a GABAergic-GFP strain distinct from GIN (X94 strain;
Ma et al., 2006), such as the lack of expression in the layer
1, but they target different cortical layers. Future identification
of their respective calcium-binding proteins and neuropeptides
repertoire as well as their molecular phenotype will help to concil-
iate these independent classifications based on morphological and
electrophysiological properties.
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FIGURE 2 | (A) Schematic representation of somatostatin and
cortistatin distribution in the mouse brain. (B) Schematic
representation of somatostatin receptors distribution in the mouse brain.
AcbT, nucleus accumbens; Amb, ambiguous nucleus; AP, anterior pituitary;
AOB, accessory olfactory bulb; Amy, amygdala; Arc, arcuate nucleus;
BNST, bed nucleus of the stria terminalis; CC, corpus callosum; CPut,
caudate putamen; Cx, cortex; DBB, diagonal band of broca; DMH,
dorsomedian hypothalamus; DR, dorsal raphe; iC, inferior colliculus; IL,

intermediate lobe of the pituitary; Hi, hippocampus; Hpt, hypothalamus;
LRN, lateral reticularis nucleus; ME, median eminence; MOB,
main olfactory bulb; NL, neural lobe of the pituitary; NTS, nucleus
of the solitary tract; OT, olfactory tubercle; PAG, periaqueductal gray;
PBo, pre-Bötzinger nucleus; PeV, periventricular nucleus; PVN,
paraventricular nucleus; sC, superior colliculus; S, septum; SON, supraoptic
nucleus; SN, substantia nigra; Th, thalamus; VMH, ventromedian
hypothalamus.

Somatostatin is found in most sensory systems, i.e., retina
(Thermos, 2003; Cervia and Bagnoli, 2007). In the olfactory
system, SRIF expression has also been described in sparse short-
axon cells scattered in the deep part of the granule cell layer
(the main site of intrinsic inhibitory neurons; Shipley and Ennis,
1996; Eyre et al., 2009) and in the peripheral glomerular layer
(which receives sensory inputs) in some species (Hwang et al.,
2004). Recently, a novel type of somatostatinergic interneurons
has been described as predominant in the murine olfactory bulb
and specific to this species (Lepousez et al., 2010a). SRIF-positive
somata and dendritic fields are restricted to the layer of the
olfactory bulb where intrinsic GABAergic interneurons and bul-
bar principal cells interact through dendrodendritic reciprocal

synapses to initiate local gamma oscillations responsible for odor
processing. Electron microscopy evidences suggest that SRIF-
positive interneurons also establish reciprocal dendrodendritic
synapses with the bulbar principal cells (mitral cells). SRIF-
positive neurons have also been described downstream in the
olfactory pathway; SRIF interneurons constitute a major GABAer-
gic population in the pars principalis of the anterior olfactory
nucleus and in the olfactory tubercle (Brunjes et al., 2011). In
both piriform and entorhinal cortices, two cortical structures
involved in the processing of odor coding, multipolar SRIF-
positive interneurons displaying Martinotti-like morphological
and electrical properties are found in the deep (Young and Sun,
2009; Saiz-Sanchez et al., 2010; Suzuki and Bekkers, 2010) and
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superficial (Saiz-Sanchez et al., 2010; Tahvildari et al., 2012) layers
respectively.

As mentioned before, in addition to the somatostatinergic
interneurons acting within microcircuits, long-projecting somato-
statinergic cells have been described in several regions (Viollet
et al., 2008). As glutamatergic pyramidal cells projections do, long-
range inhibitory connections mediate communication between
multiple brain areas. Long-range inhibitory terminals have a larger
diameter and a thicker myelin layer than excitatory projection
neurons, suggesting that inhibitory signal may precede the arrival
of excitation in co-innervated cortical areas (Jinno et al., 2007).
Long-range projecting SRIF-containing neurons are encountered
in numerous brain areas (for review, see Viollet et al., 2008)
such as the hippocampus (Jinno et al., 2007), the cerebral cortex
(Tomioka et al., 2005), and the amygdala (McDonald et al., 2012).
For instance, virtually all non-pyramidal neurons in the amygdala
that have long-range projecting axons to the basal forebrain in
the rat express SRIF (McDonald et al., 2012). Figure 3 represents
the projections of all long-range somatostatinergic interneurons
known to date in the brain.

SOMATOSTATIN RECEPTORS IN THE CENTRAL NERVOUS
SYSTEM
Autoradiographic studies characterized initially two SRIF bind-
ing site according to their affinity for the synthetic agonist
octreotide and their pattern of expression. In the early 1990s,
five receptors (sst1−5) belonging to the G-protein-coupled recep-
tors (GPCRs) family were cloned and characterized from various
species. Sequence homology is 39–57% among the five subtypes,
each being highly conserved across species. They activate mul-
tiple intracellular targets (Olias et al., 2004) and display distinct
internalization and dimerization properties (Csaba et al., 2012).
Based on structural, pharmacological, and operational features,
they are now divided into two groups displaying nanomolar affin-
ity for both SRIF and CST: SRIF-1 (sst2, sst3, and sst5 receptors)
and SRIF-2 (sst1 and sst4 receptors). Figure 2B represents the
wide expression of SRIF receptors in the CNS. In contrast to most
GPCRs, sst1−5 are unique because their gene coding sequence is
devoid of introns. However, this does not preclude the generation
of spliced variants such as a shorter isoform of mouse sst2, named
sst2B, originating by the excision of a cryptic intronic sequence
(Vanetti et al., 1992), and spliced variants of sst5 in human and
rodents (Córdoba-Chacón et al., 2011). While some data suggested
that CST also acts through the proadrenomedullin receptor MgrX2
or the ghrelin orexigenic peptide receptors, the existence of specific
CST receptors has not been demonstrated (Siehler et al., 2008).
Neuronostatin does not bind to SRIF receptors, but some of its
effects seem mediated through the central melanocortin system
(Yosten et al., 2011). Recent findings have shown that neuronos-
tatin is involved in regulating depressive behavior and nociception
(Yang et al., 2011a,b, 2012).

The extended distribution of sst2 receptors in the CNS together
with studies using subtype selective SRIF analogs in both in
vivo and in vitro experiments, suggested that these subtypes are
the major players in the SRIF receptor family. They have broad
inhibitory effects in many neuronal networks including cortex,
hippocampus, limbic regions, and sensory systems (retina and

olfactory system; Viollet et al., 2008; Lepousez et al., 2010a; Radoje-
vic et al., 2011). The sst1 receptor may function as an autoreceptor
in basal ganglia, hypothalamus, and sensory systems (Thermos
et al., 2006), and in the hippocampus (de Bundel et al., 2010).
sst3 receptors are localized to mature neuronal cilia in most brain
regions (Stanić et al., 2008), and pharmacological or genetic block-
ade of sst3 have marked behavioral effects (Einstein et al., 2010).
sst4 receptors are highly expressed in the olfactory bulb, cortex,
and hippocampus, where their role remains to be clarified. In the
mouse they modulate epileptic activity, whereas in the rat it seems
that this effect is largely related to sst2 receptors. Hippocampal
sst4 have also been involved in cognitive processes (Gastambide
et al., 2009; Sandoval et al., 2011), functionally interacting with
sst2 (Dutar et al., 2002; Gastambide et al., 2010). sst5 receptors
mediate regulation of GH release and inhibit cell prolifera-
tion by SRIF/CST, mainly through sst2/sst5 receptors interaction.
The detection of functional truncated forms of sst5 suggests
that they could interfere in and modulate those interactions
(Córdoba-Chacón et al., 2011).

SOMATOSTATINERGIC FUNCTIONS IN THE BRAIN
NEURONAL ACTIONS OF SRIF
Presynaptic mechanisms
Somatostatin, like other neuropeptides, can modulate CNS
excitability via presynaptic mechanisms (Baraban and Tallent,
2004). In rat hippocampus and cortex, SRIF induces a presynaptic
inhibition of excitatory neurotransmission leading to a decrease
in glutamate release and in the amplitude of evoked synaptic
responses (Ishibashi and Akaike, 1995; Boehm and Betz, 1997;
Tallent and Siggins, 1997; Grilli et al., 2004). The SRIF-induced
decrease in glutamate release is explained by an inhibition of
excitatory transmission via a G-protein of the Gi/Go family and
modulation of calcium channels. Indeed, SRIF selectively inhibits
N-type Ca2+ channel via the picrotoxin-sensitive G(i)/G(o) pro-
tein. Somatostatin can also inhibit N-type Ca2+ channels in the
dentate gyrus (Baratta et al., 2002). By these inhibitory effects on
excitatory synaptic transmission, SRIF, co-released with GABA
on dendritic shafts of principal neurons, increases and prolongs
GABA effect. This presynaptic action on Ca2+ conductance could
explain, at least in part, the inhibitory effect of SRIF on long-
term potentiation in the mouse dentate gyrus (Baratta et al.,
2002). Other studies suggest that presynaptic K+ channels mod-
ulation may also be involved in the SRIF inhibition of excitatory
transmission (Tallent and Siggins, 1997). More precisions on the
mechanisms have been given by Grilli et al. (2004), demonstrat-
ing on synaptosomal preparations from mouse cerebral cortex that
activation of sst2 presynaptic receptors may inhibit the cAMP/PKA
pathway stimulated by high potassium concentration, leading to
a decrease of the evoked glutamate release. If in the hippocam-
pus, cortex and also hypothalamus, the presynaptic effects of SRIF
concern almost exclusively the excitatory transmission (Peineau
et al., 2003), SRIF is also able to decrease GABA release in different
brain structures, such as the rat basal forebrain (Momiyama and
Zaborszky,2006), the neostriatum (Lopez-Huerta et al.,2008), and
the thalamus (Leresche et al., 2000). In the basal forebrain, SRIF
presynaptically inhibits both GABA and glutamate release onto
cholinergic neurons in a Ca2+-dependent way.
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FIGURE 3 | Schematic representations of long-range somatostatinergic

interneurons in the central nervous system. (A) Telencephalic efferent
projections to the rest of the brain. (B) Efferent projections arising from the
diencephalon and projecting to the telencephalon and the pons. (C) Efferent
projections arising from the mesencephalon, the medulla oblongata, the pons

and the spinal cord. Enteped, entopeduncular; BLA, basolateral amygdala;
BNST, bed nucleus of the stria terminalis; CEA, central amygdala; DG, dentate
gyrus; DRG, dorsal root ganglia; MPOA, medial preoptic area; NTS, nucleus of
the solitary tract; OB, olfactory bulb; PAG, periaqueductal gray; POA, preoptic
area; PVN, paraventricular nucleus.
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Postsynaptic mechanisms
Effects of SRIF on intrinsic neuronal membrane properties are
well documented. Somatostatin induces a membrane hyperpolar-
ization resulting from the activation of two distinct K+ current,
the voltage-sensitive K+ current or M-current (IM; Moore et al.,
1988; Jiang et al., 2003), and a voltage-insensitive leak current
(Schweitzer et al., 1998). In hippocampal CA1 pyramidal neu-
rons, sst4 seems to be the receptor subtype that couples to IM

(Qiu et al., 2008).
In medium spiny neostriatal neurons, SRIF produces a qual-

itative change in the firing pattern from a tonic regular to an
interrupted“stuttering”-like pattern (Galarraga et al., 2007). These
authors demonstrated that SRIF changes the firing pattern via
sst2-subtype activation, which reduces the small conductance
Ca2+-activated K+ currents (SK-channels) and activates large
conductance g(K)Ca2+ (GK channels). These results highlight the
fact that SRIF is a regulator of cellular function in the striatum.
The numerous effects of SRIF on Ca2+ and K+ channel conduc-
tance in different structures are reviewed by Cervia and Bagnoli
(2007).

A huge amount of literature has tried to define the pharma-
cological nature of SRIF effects, using agonists and antagonists of
SRIF receptors or mice invalidated for receptor subtypes. Results
are often controversial and are different in mice and rats (Aourz
et al., 2011). Therefore, the classification of SRIF effects is complex
and it is accentuated by the description of functional cooperation
between different receptor subtypes sst2/sst3, sst2/sst4, sst3/sst4

(Moneta et al., 2002; Gastambide et al., 2010; Aourz et al., 2011).
Recent publications suggest that sst3 and sst4 (but not sst1; de Bun-
del et al., 2010) have potent anticonvulsive properties (Aourz et al.,
2011), and that sst2, the major receptor subtype involved in the
anticonvulsant effect of SRIF in the hippocampus exerts a func-
tional cooperation with sst3/sst4. In hippocampus, sst1 activation
inhibits both NMDA- and AMPA-mediated responses but did not
affect the inhibitory transmission (Cammalleri et al., 2009).

SRIF-CONTAINING NEURONS ARE INVOLVED IN PHYSIOLOGICAL
FUNCTIONS
Interneurons
A large diversity of inhibitory interneurons is able to exert inhi-
bition on specific compartments of principal cells. Among these
populations is the dendrite-targeting SRIF-expressing interneu-
ron located in oriens-lacunosum moleculare of the hippocampus.
These SRIF-containing neurons are the only subtype of interneu-
ron that reliably follows synaptic stimulation of the alveus in the
theta frequency range via activation of their kainate receptors,
suggesting that they play an important role in theta band fre-
quency oscillations (Goldin et al., 2007). Spontaneous activities
of inhibitory interneurons have been characterized and SRIF-
containing neurons are described in the cortex and piriform cortex
as regular-spiking (Kawaguchi and Kubota, 1998; Suzuki and
Bekkers, 2010) or low-threshold spiking neurons (Goldberg et al.,
2004), often opposed to the fast spiking PV-containing neurons.
In the hippocampus, SRIF neurons are locked to the ascending
phase of the theta cycle. However, using an optogenetic inhibition
of different populations of interneurons, it was recently demon-
strated that silencing SRIF interneurons increases burst firing of

pyramidal cells without altering the theta phase of spikes (Royer
et al., 2012). Applying optogenetic technique to animals trained
to run head-fixed on a treadmill belt rich with visual-tactile stim-
uli, these authors provided evidence that the dendritic (but not
somatic) inhibition of pyramidal neurons by SRIF interneurons is
critical for controlling spike burst firing during active exploration.
They concluded that perisomatic PV-targeting interneurons con-
trol the spikes’ theta phase while the dendrite-targeting SRIF
interneurons control the rate of discharge. This is in agreement
with the fact that dendritic but not somatic GABAergic inhibition
is decreased in experimental epilepsy (Cossart et al., 2001). Com-
bining optogenetic stimulation with in vivo two-photon imaging
in the mouse visual cortex, Wilson et al. (2012) demonstrate that
soma-targeting PV neurons regulate the gain of cortical response,
while dendritic-targeting SRIF neurons shift response level and
alter stimulus selectivity, leaving response gain unaffected.

Another demonstration of the role of SRIF interneurons in cel-
lular function has been given recently (Gentet et al., 2012). In this
study, SRIF neurons recorded in the barrel cortex of awake mice
were tonically active during quiet wakefulness but they decreased
their firing during whisker sensorimotor processing. This decrease
in firing relieves the dendrites of excitatory pyramidal neurons
from inhibition.

It is known that inhibitory neurons have diverse roles in physio-
logical and synaptic function, based on their connectivity patterns
and intrinsic properties. All the experiments described above
demonstrated that SRIF interneurons have a prominent role in
the regulation of distal dendrites excitability.

Long-range projecting neurons
The long-range projecting somatostatinergic non-pyramidal cells
found in the hippocampus target the medial septum and the
medial entorhinal cortex (Viollet et al., 2008; Melzer et al., 2012)
and more specifically form inhibitory synapses on GABAergic
interneurons of these areas. They coordinate activity between dis-
tant brain regions, contributing to the generation and the synchro-
nization of rhythmic oscillatory activity in the hippocampus and
entorhinal cortex (Melzer et al., 2012). They are therefore involved
in spatial and temporal coding. Interestingly, early-generated
GABA-containing hub neurons, dendrite-targeting interneurons,
express preferentially SRIF and give long-range projecting neurons
(Picardo et al., 2011). These superconnected hub cells are present
early in the developing hippocampus. They develop a widespread
axonal arborization and remain into adulthood. They play a key
role in the control of the hippocampal giant depolarizing poten-
tials as well as in the modulation of network dynamics. In the other
brain areas, the precise contribution of these long-projecting SRIF
neurons in the oscillatory activity still needs to be addressed.

Hypophysiotropic neurons
Somatotropin release inhibiting factor was initially discovered as a
neurohormone that inhibits GH secretion from anterior pituitary
somatotroph cells. This function is exerted by hypophysiotropic
neurons, located in the anterior periventricular hypothalamic
nucleus, which project to the median eminence and release
the peptide in the fenestrated capillaries of the hypothalamo–
hypophyseal portal vessels; thus directly connecting the brain to
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the anterior pituitary. SRIF is also a potent inhibitor of many hor-
monal and exocrine secretions as well as an antiproliferative agent
in normal and tumoral tissue (Epelbaum, 1986). SRIF analogs
(octreotide and lanreotide) have potent inhibitory effects on
hypersecretion, thereby alleviating the symptoms associated with
neuroendocrine tumors. Furthermore, the antitumor potential
of octreotide is now well documented. Pasireotide, a long-acting
SRIF analog, has the advantage of targeting a wider range of SRIF
receptors (subtypes 1, 2, 3, and 5) than the analogs previously
used in clinical practice (which preferentially target subtype 2)
and has a broader spectrum of activity (for review, see Bousquet
et al., 2012).

INVOLVEMENT OF SRIF SYSTEMS IN SENSORY, MOTOR, AND
COGNITIVE FUNCTIONS
Since SRIF systems are widely expressed in CNS, they are involved
in numerous functions including nociceptive and vasoconstrictor
properties. Here, we will present recent advances about the role of
SRIF systems in autonomic responses (digestion, cardiac rate, and
respiration) and motor functions as well as cognitive functions
such as learning and memory and emotion (for review, see Viollet
et al., 2008).

Somatostatinergic involvement in sensory functions
Somatostatin and visual information. Somatostatinergic sys-
tem is expressed in mammalian retina (for review, see Thermos,
2003; Casini et al., 2005; Cervia et al., 2008), where it is suspected
to exert multiple actions on neurons and on retinal physiology.
SRIF acts as a positive factor in the retina by regulating home-
ostasis and protecting neurons against damage. Both sst2 and sst5

somatostatinergic receptors are involved. Indeed, activation of sst2

protects the retina from ischemic insults ex vivo (Mastrodimou
et al., 2005) and sst2 as well as sst5 receptor activation protect
from excitotoxicity in vivo (Kiagiadaki and Thermos, 2008; Kia-
giadaki et al., 2010; Kokona et al., 2012). The severity of angiogenic
responses to hypoxia is correlated to the sst2 expression level in
the retina (Dal Monte et al., 2007). Moreover, the sst2-preferring
agonist octreotide prevents hypoxia-induced VEGF up-regulation
(Dal Monte et al., 2009).

Somatostatinergic modulation of olfactory discrimination.
Recent studies have shown that SRIF modulates olfactory pro-
cessing in mice (Lepousez et al., 2010a,b). In mouse main olfactory
bulb, SRIF is mainly concentrated in local GABAergic interneurons
synaptically connected to the mitral cells by reciprocal den-
drodendritic synapses. When activated by an odor, mitral cells
synchronize and generate gamma oscillations of the local field
potentials that are involved in olfactory processing. Pharmacolog-
ical or genetic blockade of sst2 transmission in the olfactory bulb of
awake animal selectively decreased the gamma oscillations power
while pharmacological activation of sst2 had opposite effects.
These treatments were respectively correlated to either impairment
or improvement of odor discrimination performances of the phar-
macologically injected animals. Thus, bulbar endogenous SRIF,
presumably released from external plexiform layer interneurons,
affects gamma oscillations through the dendrodendritic reciprocal
synapse and contributes to olfactory processing.

Involvement of SRIF in learning and memory
It has been reported for decades that SRIF plays a role in learn-
ing and memory at different stages of information processing.
The first studies investigating its role in cognition showed that
intracerebroventricular administrations of SRIF improved learn-
ing in active avoidance tasks (Bollok et al., 1983; Vecsei et al.,
1983; Vecsei and Widerlov, 1988) and prevented electroshock-
induced amnesia in passive avoidance paradigms (Vecsei et al.,
1983, 1984). Conversely, the depletion of SRIF in the brain by
cysteamine (which depletes SRIF levels; Szabo and Reichlin, 1981)
produced major memory deficits in passive avoidance (Bakhit and
Swerdlow, 1986; Schettini et al., 1988; DeNoble et al., 1989). These
studies revealed that SRIF is involved in the acquisition of informa-
tion but other studies showed that cysteamine produced memory
deficits not only when given before the training session but also
within a critical time window (0–4 h) after acquisition, suggesting
that SRIF plays a critical role in memory consolidation proces-
sing (Haroutunian et al., 1987, 1989; Schettini et al., 1988; Vecsei
et al., 1990).

The hippocampus is an essential structure in learning and
memory (Jeneson and Squire, 2012), and is also a chosen site
to study the effects of SRIF on learning and memory since injec-
tion of cysteamine impairs tasks requiring its integrity (DeNoble
et al., 1989; Guillou et al., 1998). Surprisingly in the rodent hip-
pocampus, both activation of SRIF receptors as well as depletion
of SRIF contents generate hippocampal memory impairments.
Indeed, microinjections of cysteamine, SRIF or CST directly into
the hippocampus impaired hippocampal-dependent spatial learn-
ing (Guillou et al., 1993; Sanchez-Alavez et al., 2000; Lamirault
et al., 2001; Mendez-Diaz et al., 2005; Gastambide et al., 2009).
Consistent with these pharmacological results, transgenic mice
overexpressing CST display a profound impairment of spatial
learning (Tallent et al., 2005). Studies that investigated which
SRIF receptor mediates SRIF memory effect showed that intra-
hippocampal injections of the sst4 agonist, but not sst1, sst2,
or sst3 agonists, dramatically impaired spatial memory forma-
tion (Gastambide et al., 2009). Importantly, these authors found
that concomitantly to the impairment of spatial memory, an sst4

agonist also enhanced the use of striatum-dependent memory.
Therefore, it was hypothesized that hippocampal sst4 controls
the use of cognitive strategies by switching from hippocampus-
based multiple associations to simple striatum-based behavioral
response through a functional interaction with sst2 receptor
(Gastambide et al., 2010). The precise cellular and molecular
mechanisms involved in this functional interaction between sst2

and sst4 are not fully understood but some studies showed that
sst4 mediates increases in glutamatergic excitability and bursting
frequency, which were blocked by sst2 agonists or antagonists and
were lacking in sst2 knockout (KO) mice (Moneta et al., 2002;
Cammalleri et al., 2006). Therefore, sst4 is not the unique SRIF
receptor in the hippocampus mediating SRIF memory effects
as sst2 also modulates memory as previously suggested by Dutar
et al. (2002).

Involvement of SRIF in the control of emotion
Somatostatin and its receptors are strongly expressed in the dif-
ferent nuclei of the amygdala (Hannon et al., 2002), a key brain
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structure involved in the emotional assessment of the environment
(Schumann et al., 2011). Despite the extensive expression of SRIF
systems in this area, the effects of SRIF on emotions have not yet
been studied extensively. Nevertheless, some studies reported an
involvement of SRIF systems in the control of emotion and anxiety.
Indeed, a very recent work revealed that the pattern of activation of
SRIF-positive interneurons was specific to the nuclei of the amyg-
dala considered and also to the kind of stressor used (Butler et al.,
2012). Moreover, SRIF has anxiolytic- and antidepressant-like
effects (Engin et al., 2008b) that are associated with the suppression
of the frequency of hippocampal theta activity, a neurophysi-
ological signature common to most classes of anxiolytic drugs
(i.e., benzodiazepines, selective 5-HT reuptake inhibitors, 5-HT1A
agonists). These effects seem to be mediated by sst2 receptor
since both intra-septal and intra-amygdala SRIF microinfusions
induced anxiolytic effects that were completely reversed by selec-
tive sst2 receptor antagonist injection in these brain areas (Yeung
and Treit, 2012). Additional evidence for a specific role of sst2

receptor came from the observation that a stressful experience
is associated with an increase of sst2 mRNA levels within the
amygdala (Nanda et al., 2008) and that mice lacking sst2 receptor
display increased anxiety-like behaviors associated with increased
pituitary ACTH levels, a main regulator of the stress response
(Viollet et al., 2000).

Involvement of SRIF in locomotion
An involvement for SRIF was also reported in motor functions.
Increased motor activity was shown in rats receiving intracere-
broventricular administration of SRIF (Havlicek et al., 1976) as
well as in mice receiving unilateral striatal infusions of the peptide
by retrodialysis (Hathway et al., 2004) and in animals receiving
direct injections of SRIF in the nucleus accumbens (Raynor et al.,
1993). Tashev et al. (2001) showed that SRIF modulated locomo-
tor activity in biphasic manner. Indeed, shortly after SRIF striatal
injection a decrease of locomotor activity is observed whereas
later, the locomotor behavior is increased. Similar effects have
been found after striatal injection of sst2 and sst4 agonists. On the
other hand, genetic invalidation of sst2 receptor in two different
strains of mice as well as SRIF null mice showed an impairment of
motor functions (Viollet et al., 2000; Zeyda et al., 2001; Allen et al.,
2003). But the role of SRIF in locomotion seems to be limited to
fine motor control since these different lines of transgenic mice
only develop impaired motor coordination in tasks that require
a fine motor control and display normal levels of motor activity
and coordination in undemanding tasks (Viollet et al., 2000; Zeyda
et al., 2001; Allen et al., 2003).

Autonomic responses
Somatotropin release inhibiting factor and its receptors are found
in several medulla oblongata nuclei that control autonomic func-
tions such as digestion, cardiac rate, and respiration (Llona and
Eugenín, 2005; Spary et al., 2008; Viollet et al., 2008). In the
preBötzinger complex (preBötC), a critical component of the res-
piratory rhythm generator that underlies mammalian breathing,
SRIF is expressed in a subpopulation of glutamatergic neurokinin
1 receptor-positive neurons, a kind of neuron rhythmically active
(Stornetta et al., 2003). Originating from the homeogene Dbx1

lineage, these cells are mandatory for breathing, since inval-
idation of the Dbx1 gene impaired their differentiation and
disrupted respiratory rhythm generation in the preBötC (Bouvier
et al., 2010; Gray et al., 2010). Acute silencing of somatostatin-
ergic preBötC neurons increased respiratory rhythm, leading to
persistent apnea (Tan et al., 2008). Similar effects were found
in vitro after pharmacological blockade of sst2 transmission,
while exogenous SRIF application decreased rhythms genera-
tion (Pantaleo et al., 2011; Ramírez-Jarquín et al., 2012). This
demonstrated that the peptide exerts a tonic inhibitory control
on the rythmogenic neurons in order to avoid deleterious over-
activity, probably through cellular subdomain-specific inhibitory
and excitatory synaptic contacts (Wei et al., 2012). The existence
of long-range somatostatinergic projections to either contralat-
eral PreBötC (Stornetta et al., 2003) or downstream premotor
neurons (Tan et al., 2010) favors a neuromodulatory role for Pre-
BötC SRIF (Llona and Eugenín, 2005), whose developmental
impairment may be involved in human pathologies (Schwarzacher
et al., 2011) such as the sudden infant death syndrome (Lavezzi and
Matturri, 2008).

SOMATOSTATINERGIC NETWORKS IN PATHOLOGICAL
CONDITIONS
In animals, an alteration of SRIF systems is observed during
normal aging (Stanley et al., 2012) and pathological models of
aging. In human a similar specific dysregulation is observed
in normal pathological disorders such as some neurodegenera-
tive and psychiatric diseases (Glorioso et al., 2011; Gleichmann
et al., 2012).

ALZHEIMER’S DISEASE
Somatostatin has been involved in Alzheimer’s disease (AD)
pathology for a number of years. Indeed, since the early 1980s, it is
known that SRIF levels in cortex and hippocampus are decreased
in AD patients (Davies et al., 1980). Later, it was demonstrated
that the decline in SRIF concentrations in the CSF (Tamminga
et al., 1987) or in the middle frontal gyrus (Dournaud et al., 1995)
correlates with cognitive deficits. Using quantitative real-time
PCR, a recent study confirmed this decrease of SRIF in the infe-
rior, medial, and superior temporal lobe of AD patients (Gahete
et al., 2010). Interestingly, SRIF concentrations were reported to
be significantly lower in Alzheimer patients carrying the epsilon
4 allele of APOE (Grouselle et al., 1998), the main genetic risk
factor described to date for late-onset AD (Genin et al., 2011).
In addition, two different studies found in Finnish and Chi-
nese patients that polymorphisms in the SST gene are associated
with the risk of developing AD (Vepsalainen et al., 2007;
Xue et al., 2009).

Regarding SRIF receptors, data are limited and controversial.
Although all studies agreed on a decrease of SRIF receptors in AD,
controversies appeared about the proportion, the localization, and
receptor subtype specificity of this decrease. SRIF receptor quan-
tification using quantitative real-time PCR in AD temporal lobe
showed a decrease of sst1, sst3, and sst4 receptors whereas sst2

and sst5 receptors were unchanged (Gahete et al., 2010). Previ-
ously, an immunohistochemistry study reported a similar decrease
of sst4 but showed a reduction in neuronal sst5 – and a modest

Frontiers in Endocrinology | Neuroendocrine Science December 2012 | Volume 3 | Article 154 | 8

http://www.frontiersin.org/Neuroendocrine_Science/
http://www.frontiersin.org/Neuroendocrine_Science/archive


“fendo-03-00154” — 2012/12/4 — 23:44 — page 9 — #9

Martel et al. Role of somatostatinergic networks in the brain

decrease in sst2 –like immunoreactivity without any changes in
sst1 immunoreactive neurons (Kumar, 2005). Surprisingly, in the
same study, an increase of sst3 subtype was observed in AD cor-
tex. A radioligand binding and functional study showed a general
receptor decrease in AD brain (Beal et al., 1985). More specifically,
receptors levels in the frontal and temporal cortex were reduced
by approximately 50% of control values in AD patients while a
40% reduction was reported in the hippocampus and no signifi-
cant changes were found in the cingulate cortex, postcentral gyrus,
temporal pole, and superior temporal gyrus. Another radioligand
binding study revealed that while the maximal binding capacity
of the SRIF-1 receptor subtype (primarily sst2, and possibly sst5)
is altered in frontal and temporal cortices, other putative cortical
SRIF receptor classes (SRIF-2 sites, i.e., sst1 and sst4) are not as
broadly affected (Krantic et al., 1992). Finally, a last study showed
a significant decrease only in the frontal cortex, but not in other
brain regions (Bergstrom et al., 1991). Because of the cholinergic
hypothesis regarding AD etiology, it was concluded that the pat-
tern of change of SRIF binding in AD cortex might be secondary
to the degeneration of SRIF receptor-bearing cholinergic afferents
arising from the nucleus basalis. In line with this idea, experi-
ments in the literature demonstrate that the selective destruction
of cholinergic neurons of the basal forebrain with intracerebroven-
tricular injection of 192-IgG saporin produces an irreversible loss
of SRIF-immunoreactive neurons in the hilus of the hippocam-
pus (Jolkkonen et al., 1997) and in the cortex (Zhang et al., 1998).
This last study shows a correlation between the intensity of acetyl-
cholinesterase in the cortex and the number of remaining SRIF
cells. These data highlight a trophic dependence of SRIF neurons
on cholinergic inputs and are consistent with observations in AD
and aging.

Although SRIF deficit is not correlated with the amyloid load
in AD brain patients (Dournaud et al., 1995), SRIF was identi-
fied as a modulator that increases brain neprilysin activity, one
of the main enzymes involved in Aβ degradation (Saito et al.,
2005). Recently, it has been shown that neuropeptide pitu-
itary adenylate cyclase-activating polypeptide slows down AD-like
pathology and improves cognition in a transgenic mouse model
of AD through the activation of SRIF-neprilysin cascade (Rat
et al., 2011). In mouse primary embryonic neurons, SRIF con-
comitantly increased neprilysin activity and decreased Aβ42 in
the culture medium and these effects were blocked by an sst5

antagonist (but also an agonist at sst1 and sst3 receptors; for
review, see Epelbaum et al., 2009). Moreover, neprilysin activity
was decreased by 50% and Aβ42 increased by a similar extent
in SRIF KO mice (Saito et al., 2005). Such findings may have
important implications for understanding the cellular mecha-
nisms leading to AD and suggest that SRIF and its receptors are
potential pharmacological targets for AD. Indeed, FK962, which
promotes SRIF production in the brain, co-administrated with
donepezil, an acetylcholinesterase inhibitor widely used to treat
patients, enhances cognition in rat and has been proposed as
an add-on therapy for AD (McCarthy et al., 2011). In addition,
Rubio et al. (2012) recently suggested that SRIF and CST act as a
protective agent against Aβ toxicity. However, in APP transgenic
mouse models, data concerning SRIF-containing interneurons are
contradictory. In the triple-transgenic model of AD, 3×Tg-AD,

inhibitory neurotransmission is unchanged in the cerebral cortex
and hippocampus (Gleichmann et al., 2012). In a APP/PS1 mouse
model of AD, as soon as 6 months of age, a decrease in the number
of oriens-lacunosum moleculare hilar perforant path-associated
SRIF-positive interneurons was evidenced in the hippocampus,
when no change was demonstrated for 21 additional mRNA mark-
ers tested (Ramos et al., 2006). In the APPswe/PS1dE9 mouse
model, Aβ deposition disrupted cognitive circuits when the cholin-
ergic and somatostatinergic systems remained relatively intact
(Savonenko et al., 2005). Another study on this last model even
found that, in most brain regions tested, SRIF concentrations
were increased rather than decreased relative to controls (Hor-
gan et al., 2007). Thus, the validity of a direct and major role
for SRIF in the regulation of Aβ42 degradation remains to be
further confirmed (Iwata et al., 2005). More recent studies, focus-
ing on olfaction, an early-altered function in AD (Wilson et al.,
2009), account for evidence of a relationship between Aβ pathol-
ogy and SRIF alterations in the disease. Indeed, SRIF interneurons
and receptors are selectively reduced by approximately 50% in
the anterior olfactory nucleus of AD patients (Saiz-Sanchez et al.,
2010). These authors suggested that SRIF decreases in AD might
be linked with Aβ. Moreover, an increase in the levels of aggre-
gated Aβ peptide is observed with aging in olfactory cortices of
APP/PS1 transgenic mouse model of AD, and it is accompanied
by a fall in numbers of SRIF-positive interneurons (Saiz-Sanchez
et al., 2012).

Experiments from our laboratory demonstrated that intrahip-
pocampal injections of Aβ in rats induced aberrant inhibitory
septo-hippocampal network activity associated with an impair-
ment of hippocampal memory processes (Villette et al., 2010).
This effect can be explained by the selective loss of long-range
hippocampo-septal projecting neurons population containing cal-
bindin and SRIF (Villette et al., 2012). This population of SRIF
neurons could be a favored target for Aβ, explaining the early
decrease of SRIF observed in AD.

Somatotropin release inhibiting factor is not only interacting
with Aβ42 in AD, it has also an effect on Tau phosphorylation.
Rubio et al. (2008) indicated that in mouse cortex SRIF and CST
induce Tau phosphorylation at Ser262, a site modified in AD
(Wang et al., 2007), although with different kinetics. An sst2/sst4

interaction seems implicated in this process but the types of
phosphatases that are involved remain to be determined. More-
over, in human apoE4 knock-in mice where Tau phosphorylation
and intracellular neurofibrillary tangle-like deposits are detected
(Huang et al., 2001; Harris et al., 2003; Brecht et al., 2004), Huang’s
group showed that the number of SRIF-positive interneurons cor-
related inversely with the performance of these mice in a spatial
memory task (Andrews-Zwilling et al., 2010).

PARKINSON’S DISEASE
Alteration of SRIF levels is also observed in other neurodegener-
ative diseases. Indeed, decrease in SRIF levels has been described
in demented Parkinson’s disease patients (Epelbaum et al., 1989)
as well as in a unilateral 6-OHDA experimental mouse model of
Parkinson’s disease (Nilsson et al., 2009). Recent data obtained
in a rat model of Parkinsonism showed that an alteration of
presynaptic modulation by SRIF after dopamine deprivation. This

www.frontiersin.org December 2012 | Volume 3 | Article 154 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Neuroendocrine_Science/archive


“fendo-03-00154” — 2012/12/4 — 23:44 — page 10 — #10

Martel et al. Role of somatostatinergic networks in the brain

observation may underlie a homeostatic mechanism trying to
compensate for the excitability imbalance between direct and
indirect basal ganglia pathways found during Parkinson’s disease
(Lopez-Huerta et al., 2012).

MAJOR DEPRESSIVE DISORDER
Evidence in major depressive disorder (MDD) suggests an
impaired excitation/inhibition balance that is potentially mediated
by decreased GABA content (Levinson et al., 2010). More specifi-
cally, Sibille et al. (2011) reported a down-regulation of SRIF in the
dorsolateral prefrontal cortex (PFC), the subgenual cingulate cor-
tices (Tripp et al., 2011), and the amygdala (Guilloux et al., 2011)
of MDD patients. Engin et al. (2008a) and Engin and Treit (2009)
revealed an antidepressant effect of SRIF mediated by either sst2

or sst3 receptor and suggested that while SRIF itself is not appro-
priate for clinical use because of its short half-life and diverse
range of effects (Pinter et al., 2006), a closely related SRIF deriva-
tive may have some potential for the pharmacological treatment
of depression.

SCHIZOPHRENIA
One of the most consistent findings in schizophrenia neuropathol-
ogy is deficits in cortical inhibitory interneurons across multiple
cortical regions (Hashimoto et al., 2008). It has been known for
years that cerebral cortical concentrations of SRIF are reduced in
schizophrenics (Roberts et al., 1983) as well as hippocampal con-
centration (Ferrier et al., 1983; Konradi et al., 2011). Moreover,
Hashimoto et al. (2008) found that subjects with schizophrenia
exhibited deficits in SRIF expression in the PFC, and this was fur-
ther confirmed after global analysis from six previously published
microarray studies (Perez-Santiago et al., 2012). A recent study
suggested that this decrease of SRIF-positive inhibitory interneu-
rons in the PFC may be related to changes in an inflammatory
response pathway that are often observed in schizophrenics (Fill-
man et al., 2012). In addition, Beneyto et al. (2012) showed that
SRIF neurotransmission in the PFC of subjects with schizophre-
nia is also altered at the postsynaptic level in a receptor subtype-,
layer-, and cell type-specific manner. The expression of sst2, but
not sst1, mRNA is preferentially lower in layers 5–6, and in larger,
putative pyramidal neurons in those layers. These authors sug-
gested converging pre- and postsynaptic mechanisms to reduce
inhibitory neurotransmission in pyramidal neurons in the PFC,
which could alter the synchronization of low frequency oscilla-
tions and disturb working memory performance in subjects with
schizophrenia.

EPILEPSY
Somatostatin is highly expressed in brain regions associated with
seizures and has been implicated as playing a prominent role

in epilepsy (Vezzani and Hoyer, 1999) based on the observa-
tion of an activity-dependent release of SRIF during seizures,
the modulation of SRIF mRNA expression, peptide and recep-
tors levels by seizures and the effect of SRIF and its analogs
on seizures (Tallent and Qiu, 2008; Zafar et al., 2012). Tempo-
ral lobe epilepsy (TLE) is characterized by hippocampal sclerosis
together with profound phenotypic changes of different classes of
interneurons. Hilar SRIF interneurons undergo extensive degen-
eration in patients with hippocampal sclerosis (de Lanerolle
et al., 1989; Robbins et al., 1991). Recently, this selective neu-
rodegeneration has been linked to the specific enrichment of
somatostatinergic neurons in striatum-enriched phosphatase, an
enzyme that counteracts the MAPK neuroprotective pathway
(Choi et al., 2007; Florio et al., 2008). SRIF receptors may rep-
resent potential therapeutic targets for TLE. Indeed, SRIF is
released in characteristic conditions of seizures and SRIF and
its analogs affect seizures (Vezzani and Hoyer, 1999; Buckmaster
et al., 2002). However, information on the precise contribu-
tion of each SRIF receptor on the SRIF-induced inhibition of
epileptiform activity is still limited. Although the sst2 recep-
tor is likely to mediate the anticonvulsant effects of SRIF in
rat hippocampus (Vezzani and Hoyer, 1999), observations in
the mouse support a central role for sst4 (Moneta et al., 2002)
and/or sst1 receptors (Cammalleri et al., 2004, 2006) in mediat-
ing SRIF inhibition of epileptiform activity. In a rodent model
of cortical focal ischemia, sst2 is also activated while the infarct
size is significantly reduced in sst2 KO mice (Stumm et al.,
2004). However, recent data in rats showed that sst1 receptors
do not appear to mediate the in vivo anticonvulsive effect of
SRIF (de Bundel et al., 2010), whereas sst3 and sst4 mediate this
effect through a functional interaction with sst2 receptor (Aourz
et al., 2011).

CONCLUSION
Somatostatin systems are widely expressed in the different brain
regions and are involved in numerous processes from sensory to
cognitive functions, suggesting that they play major roles in brain
functioning. These key roles are illustrated by the decrease of
SRIF concentrations observed in neurodegenerative diseases such
as AD and Parkinson’s disease but also in psychiatric diseases such
as schizophrenia and MDD. From this perspective, SRIF systems
represent a potential and challenging therapeutic target. Further
studies need to be carried on to unravel the role of SRIF systems
in all functions they have been implicated in.
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