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Non-dissociative structural 
transitions of the Watson-Crick 
and reverse Watson-Crick А·Т DNA 
base pairs into the Hoogsteen and 
reverse Hoogsteen forms
Ol’ha O. Brovarets’   1,2, Kostiantyn S. Tsiupa1 & Dmytro M. Hovorun   1,2

In this study it was theoretically shown that discovered by us recently (Brovarets’ et al., Frontiers in 
Chemistry, 2018, 6:8; doi: 10.3389/fchem.2018.00008) high-energetical, significantly non-planar 
(symmetry C1), short-lived wobbled conformers of the classical Watson-Crick А·Т(WC), reverse Watson-
Crick А·Т(rWC), Hoogsteen А·Т(Н) and reverse Hoogsteen А·Т(rН) DNA base pairs are the intermediates 
of their pairwise А∙Т(WC)/А∙Т(rWC) ↔ А∙Т(H)/А∙Т(rH) conformational transformations. These 
transitions do not require for their realization the energy-consumable anisotropic rotation of the amino 
group of A around the exocyclic C6-N6 bond. They are controlled by the non-planar transition states 
with quasi-orthogonal geometry (symmetry C1) joined by the single intermolecular (Т)N3H···N6(А) 
H-bond (~4 kcal∙mol−1). The Gibbs free energies of activation for these non-dissociative, dipole-active 
conformational transitions consist 7.33 and 7.81 kcal∙mol−1, accordingly. Quantum-mechanical (QM) 
calculations in combination with Bader’s quantum theory of “Atoms in Molecules” (QTAIM) have been 
performed at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory in the continuum with 
ε = 4 under normal conditions.

Spontaneous transition of the DNA base pairs from the Watson-Crick (WC) to Hoogsteen (H) configuration and 
vice versa is one of the functionally-important physico-chemical properties of DNA1–9. It was shown by NMR 
methods1–5 that Watson-Crick ↔ Hoogsteen breathing in DNA duplex containing A∙T rich region occurs via 
the switching of the Watson-Crick DNA base pair (bp) from the anti- to syn-conformation with the probability 
~10−2 and represents one of the pathways for the reaction of formaldehyde with DNA10. Thorough calculations 
by the method of molecular dynamics indicate that А·Т(WC) ↔ А·Т(Н) transitions of actually bps and anti ↔ syn 
transitions of the A around the glycosidic bond are closely correlated processes, for which Gibbs free energy of 
activation is 10–11 kcal∙mol−1 under normal conditions8.

Based on analysis of the microstructural nature of these transitions, it is quite logical to connect it with the 
analogical properties of the isolated DNA bps11–13. Comprehensive analysis of the current literature data showed 
that the nature of these biologically-important processes has not been investigated at all. Currently in the litera-
ture there is only one single theoretical work devoted to the study of the anti ↔ syn non-dissociative transitions in 
irregular pairs of nucleotide bases that do not have an exocyclic amino group in its composition14.

Recently, we have theoretically revealed novel high-energetic, significantly non-planar (symmetry C1), 
short-lived wobbled (w) conformers – А·Т(wWC), А·Т(wrWC), А·Т(wН) and А·Т(wrН) for each of the four classical 
А·Т(WC) DNA bps – Watson-Crick А·Т(WC), reverse Watson-Crick А·Т(rWC), Hoogsteen А·Т(Н) and reverse 
Hoogsteen А·Т(rН)11. It is known from the literature data, that these bps joined by different H-bonds are formed 
due to the rotation of the DNA base relative to the other on 180° around: the (A)N1–N3(T) axis for the reverse 
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Watson-Crick А·Т(rWC) or in other terms Donohue DNA bp15–23; the (A)C9′-N9 axis for the Hoogsteen A·T(H) 
bp1–30 and the (A)N7–N3(T) axis for the reverse Hoogsteen A·T(rH) or in other terms Haschemeyer–Sobell 
bp31–34.

It was found that revealed А·Т(wWC), А·Т(wrWC), А·Т(wН) and А·Т(wrН) conformers have essentially 
non-planar structure joined by the two anti-parallel N6H/N6H′···O4/O2 and N3H···N6 H-bonds (the N6H′ 
chemical bond has trans-orientation relative to the N1C6 chemical bond of A). These specific intermolecular con-
tacts involve pyramidalized A amino group, acting simultaneously as an acceptor and a donor of the H-bonding. 
The transition states (TSs) – TSА·Т(WC)↔А·Т(wWC), TSА·Т(rWC)↔А·Т(wrWC), TSА·Т(Н)↔А·Т(wН) and TSА·Т(rН)↔А·Т(wrН) – of the 
dipole-active conformational transformations of the basic, plane-symmetric state of the classical А·Т DNA bps 
into the high-energetic, essentially non-planar wobbled bps and vice versa possess wobble structures (symmetry 
C1) and are joined by the N6H/N6H′···O4/O2 and N3H···N6 H-bonds. The А·Т(wWC), А·Т(wrWC), А·Т(wН) and 
А·Т(wrН) conformers was found to be dynamically stable structures with short lifetime τ = (1.4–3.9) ps. It was 
assumed that these conformational transitions are directly related to the thermally-driven fluctuational behavior 
of DNA – pre-melting and breathing6,7.

In this work it was established for the first time that just-mentioned novel conformers А·Т(wWC), А·Т(wrWC), 
А·Т(wН) and А·Т(wrН) control the А·Т(wWC)/А·Т(wrWC) ↔ А·Т(wН)/А·Т(wrН) conformational transitions. 
Moreover, in view of the recently discovered conformational transitions for the classical A·T DNA bps - 
А·Т(WC) ↔ А·Т(wWC), А·Т(rWC) ↔ А·Т(wrWC), А·Т(Н) ↔ А·Т(wН) and А·Т(rН) ↔ А·Т(wrН)11, they are also 
intermediates of the biologically-important А·Т(WC)/А·Т(rWC) ↔ А·Т(Н)/А·Т(rН) conformational transitions.

Energetically favorable mechanism of the conformational pairwise transformation of the intermediates 
А∙Т(wWC) ↔ А∙Т(wH) and А∙Т(wrWC) ↔ А∙Т(wrH), and together with them conformational transition of the А∙Т 
DNA bps – А∙Т(WC)/А∙Т(rWC) ↔ А∙Т(H)/А∙Т(rH), does not require for their realization the rotation of the 
amino group of A around the exocyclic C6N6 bond35.

In this case conformational transformations are controlled by the soft, non-planar TSs, stabilized by the par-
ticipation of the single intermolecular (Т)N3H···N6(А) H-bond between the imino group of T and pyramidilized 
amino group of A. The Gibbs free energies of activation for these non-dissociative, dipole-active conformational 
transitions consist 7.33 and 7.81 kcal∙mol−1, accordingly.

Two other mechanisms – the А∙Т(wWC) ↔ А∙Т(wH) and А∙Т(wrWC) ↔ А∙Т(wrH) – are realized via the ani-
sotropic rotation of the amino group of A (together with T interacting with A through two intermolecular 
antiparallel (A)N6H/N6H′···O4/O2(T) and (T)N3H···N6(A) H-bonds) around the exocyclic C6N6 bond. In 
TSs of these conformational transitions the pyramidality of the amino group of A significantly increases: this 
causes increase of the energy of the N3H···N6 H-bond and decrease of the energy of the intermolecular N6H/
N6H′···O4/O2 H-bond. The transitions states of these reactions – TScys

А·Т(wWC)↔А·Т(wН), TStrans
А·Т(wWC)↔А·Т(wН) and 

TScys
А·Т(wrWC)↔А·Т(wrН), TStrans

А·Т(wrWC)↔А·Т(wrН) – have close energy in corresponding conformational transforma-
tions (14.9 and 15.0 kcal∙mol−1, accordingly). Thus, these TSs of the mutual conformational transformation of 
the wobble intermediates – А∙Т(wWC) ↔ А∙Т(wH) and А∙Т(wrWC) ↔ А∙Т(wrH) of the classical А∙Т DNA bps – 
А∙Т(WC)/А∙Т(rWC) ↔ А∙Т(H)/А∙Т(rH) – determine their conformational transformations.

Computational Methods
We have calculated geometries of the basic and high-energetic conformers and transition states (TSs) of their 
mutual conformational transformations together with their harmonic vibrational frequencies at the B3LYP/6–
311++G(d,p) level of theory36–40, using Gaussian’09 package41, in the continuum with ε = 4, which is typical for 
the processes in real biological complexes and taking into account the structural and functional characteristics 
of the bases in the duplex DNA and at the same time satisfactorily reflecting the environment in the essen-
tially hydrophobic base-pair recognition pocket of the high-fidelity DNA-polymerase42–66. Considered level of 
theory has been successfully applied for the calculations of the similar tasks and systems47–55. A scaling factor 
of 0.966855–61 has been used in order to correct the harmonic frequencies of all bps and TSs of the transitions 
between them. The local minima or TSs, localized by Synchronous Transit-guided Quasi-Newton method62, have 
been appointed to the complexes on the potential energy landscape containing any or one imaginary frequency 
in their vibrational spectra, accordingly. We used TS theory in order to estimate the activation barriers of the 
conformational transformations63. Electronic energy calculations have been performed at the single point at the 
MP2/aug-cc-pVDZ level of theory67,68.

The Gibbs free energy G for all structures has been received at the MP2/6-311++G(2df,pd) level of theory by 
the formula:

= +G E E , (1)el corr

where Eel – electronic energy, while Ecorr – thermal correction.
The electronic energies of interaction ∆Eint have been obtained at the MP2/6-311++G(2df,pd) level of theory 

as a difference between the BSSE-corrected69–72 electronic energy of the bp and electronic energies of the isolated 
bases.

Bader’s quantum theory of Atoms in Molecules (QTAIM)73–78 has been applied for the analysis of the elec-
tron density distribution by AIMAll program package79, using wave functions calculated at the B3LYP/6-
311++G(d,p) level of theory. We considered the presence of the (3, −1) bond critical point (BCP), a bond path 
between the donor and acceptor of the intermolecular contact and positive value of the Laplacian at this BCP 
(Δρ > 0) as criteria for the existence of the H-bond or attractive van der Waals contact formation73–84.

The energies of the attractive van der Waals contacts85,86 in TSs of the conformational transitions have been 
estimated by the Espinosa-Molins-Lecomte (EML) formula87,88:
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= . ⋅E 0 5 V(r), (2)

where V(r) – value of a local potential energy at the (3, −1) BCP.
The energies of the conventional AH···B H-bonds have been calculated by the Iogansen’s formula89:

E 0 33 40 , (3)AH B··· ν= . ⋅ Δ −

where Δν – frequency shift of the stretching mode of the H-bonded AH group involved in the AH···B H-bond 
relatively the unbound group. We applied the partial deuteration in order to avoid the effect of vibrational 
resonances90,91.

In this study the numeration for the DNA bases is generally accepted92.
In this study we have provided investigations at the basic, but sufficient level of the isolated H-bonded pairs 

of nucleotide bases, that adequately simulates the processes in real biological systems93–95, in particular in the 
base-pair recognition pocket of the high-fidelity DNA-polymerase42–46. At this, we have relied on the experience 
received in the previous works11,96–98 on the related topic and systems, in which the negligibly small impact of the 
stacking and sugar-phosphate backbone on the tautomerisation processes has been shown.

Results and Their Discussion
In our previous paper11 we have succeed to establish in the classical А∙Т DNA bps with Cs symmetry – 
Watson-Crick (WC), reverse Watson-Crick А·Т(rWC), Hoogsteen А·Т(Н) and reverse Hoogsteen А·Т(rН) DNA 
bps – novel high-energetic, dynamically-stable, mirror-symmetrical А∙Т(wWC)R,L, А∙Т(wH)R,L, А∙Т(wrWC)R,L and 
А∙Т(wrH)R,L conformational states. Their distinguished feature independently of the pair, in which they are real-
ized, is significantly non-planar structure (С1 symmetry), caused by the pyramidal structure of the ≥C6N6H2 
amino fragment of the A DNA base, in which the amino group acts simultaneously as a donor and an accep-
tor of the specific intermolecular interaction with T through the two (Т)N3H···N6(A) and (A)N6H/N6H′···O4/
O2(T) H-bonds. Each of the four А∙Т Watson-Crick DNA bps transfers into the aforementioned conformer 
via two mirror-symmetric pathways through the TSА∙Т(WC)↔А∙Т(wWC)R,L, TSА∙Т(rWC)↔А∙Т(wrWC)R,L, TSА∙Т(H)↔А∙Т(wrH)R,L 
and TSА∙Т(rH)↔А∙Т(wrH)R,L (C1 symmetry). At this, the structures, which names differ from each other only by the 
subscripts R and L, are mirror-symmetrical, that is enantiomers. It is well known that enantiomers have identical 
scalar physico-chemical characteristics and differ only by the direction of the dipole moment.

Let analyze the biological significance of these non-usual conformers of the classical А∙Т DNA bps.
In this context it was fixed important result – these conformers are responsible for the two different WC/

rWC ↔ H/rH mechanisms of the non-dissociative conformational transformation of the А∙Т DNA bps (Fig. 1, 
Tables 1–3).

First of these conformational transformations, which are the most energetically favorable mechanisms, are 
controlled by the soft TSА∙Т(wWC)R,L↔А∙Т(wH)R,L and TSА∙Т(wrWC)R,L↔А∙Т(wrH)R,L (C1 symmetry) with low values of imag-
inary frequency (7.7 i and 16.1 i cm−1, accordingly). Both of them are joined by the one-single intermolecular 
(T)N3H···N6(A) H-bond (~4 kcal∙mol−1) between the imino group of T and pyramidilized amino group of A. 
In this case, conformational transformations of the А∙Т DNA bps are realized by the following non-dissociative 
scenario (each of them – by the mirror-symmetric pathways): А∙Т(WC) (0.00) ↔ TSА∙Т(WC)↔А∙Т(wWC)

R,L (7.13) ↔  А∙Т(wWC)R,L (5.36)11 ↔  TSА∙Т(wWC)R,L↔А∙Т(wH)R,L (7.33) ↔  А∙Т(wH)R,L (5.35) ↔  TSА∙Т(wH)

R,L↔А∙Т(H) (7.24) ↔ А∙Т(H) (−0.44)11 and А∙Т(rWC) (0.00) ↔ TSА∙Т(rWC)↔А∙Т(wrWC)R,L (7.26) ↔ А∙Т(wrWC)R,L 
(5.97)11 ↔ TSА∙Т(wrWC)R,L↔А∙Т(wrH)R,L (7.81) ↔ А∙Т(wrH)R,L (5.79) ↔ TSА∙Т(wrH)R,L↔А∙Т(rH) (7.41) ↔ А∙Т(rH) 
(−0.03)11. Notably, obtained energetic barriers are in good coincidence with the molecular-dynamic data for the 
А∙Т(WC) ↔ А∙Т(H) transition (10-11 kcal∙mol−1 under normal conditions8).

Herewith, some R structures transform into the other R structures, the same concerns L-structures. Saying 
in other words, pathways of these dipole-active conformational transformations are mirror-symmetric. In fact, 
the TSА∙Т(wWC)R,L↔А∙Т(wH)R,L and TSА∙Т(wrWC)R,L↔А∙Т(wrH)R,L, which pairwise link the А∙Т(wWC)R,L and А∙Т(wH)R,L, 
А∙Т(wrWC)R,L and А∙Т(wrH)R,L conformers, are transition states of the WC/rWC ↔ H/rH conformational transfor-
mations of the classical А∙Т DNA bps.

High-energetic mechanism of the WC/rWC ↔ H/rH conformational transitions of the А∙Т DNA bps is con-
nected with anisotropic rotation of the amino group of A around the exocylic С6-N6 bond35 and is controlled by 
the TScys

А∙Т(wWC)R,L↔А∙Т(wH)L,R, TStrans
А∙Т(wWC)R,L↔А∙Т(wH)L,R and TScys

А∙Т(wrWC)R,L↔А∙Т(wrH)L,R, TStrans
А∙Т(wrWC)R,L↔А∙Т(wrH)

L,R, that have non-planar structure (С1 symmetry) and quite high values of the imaginary frequencies (~252 i 
cm−1). These TSs are joined by the two anti-parallel intermolecular (Т)N3H···N6(A) and (A)N6H/N6H′···O4/
O2(T) H-bonds; notably, first of them is significantly stronger than the second one. The attractive O2···N7 and 
O4···N7 van der Waals contacts with weak energy (~0.18 kcal∙mol−1) also participate in the stabilization of the 
TScys

А∙Т(wWC)R,L↔А∙Т(wH)L,R and TScys
А∙Т(wrWC)R,L↔А∙Т(wrH)L,R, accordingly.

In this case, the R structures transform into the L structures and vice versa and WC/rWC ↔ H/rH conforma-
tional transitions of the classical А∙Т DNA bps occur in such a case (each of them through two energetically and 
topologically non-equivalent ways):

А∙Т(WC) (0.00) ↔ TSА∙Т(WC)↔А∙Т(wWC)R,L (7.13) ↔ А∙Т(wWC)R,L (5.36)11 ↔ TScys
А∙Т(wWC)R,L↔А∙Т(wH)L,R 

(14.89) ↔ А∙Т(wH)L,R (5.35) ↔ TSА∙Т(wH)L,R↔А∙Т(H) (7.24) ↔ А∙Т(H) (−0.44)11;
А∙Т(WC) (0.00) ↔ TSА∙Т(WC)↔А∙Т(wWC)R,L (7.13) ↔ А∙Т(wWC)R,L (5.36)11 ↔ TStrans

А∙Т(wWC)R,L↔А∙Т(wH)L,R 
(14.88) ↔ А∙Т(wH)L,R (5.35) ↔ TSА∙Т(wH)L,R↔А∙Т(H) (7.24) ↔ А∙Т(H) (−0.44)11;

А∙Т(rWC) (0.00) ↔ TSА∙Т(rWC)↔А∙Т(wrWC)R,L (7.26) ↔ А∙Т(wrWC)R,L (5.97)11 ↔ TScys
А∙Т(wrWC)R,L↔А∙Т(wrH)L,R 

(15.01) ↔ А∙Т(wrH)L,R (5.79) ↔ TSА∙Т(wrH)L,R↔А∙Т(rH) (7.41) ↔ А∙Т(rH) (−0.03)11 and
А∙Т(rWC) (0.00) ↔ TSА∙Т(rWC)↔А∙Т(wrWC)R,L (7.26) ↔ А∙Т(wrWC)R,L (5.97)11 ↔ TStrans

А∙Т(wrWC)R,L↔А∙Т(wrH)L,R 
(15.00) ↔ А∙Т(wrH)L,R (5.79) ↔ TSА∙Т(wrH)L,R↔А∙Т(rH) (7.41) ↔ А∙Т(rH) (−0.03)11 (relative Gibbs free energy is 
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Figure 1.  Geometrical structures of the stationary points on the reaction pathways of the discovered 
conformational transitions of the four biologically important А·Т DNA bps. Electronic energies of 
the interaction ΔEint (MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, in kcal∙mol−1), relative 
Gibbs free energies ∆G and electronic energies ∆E (in kcal∙mol−1), imaginary frequencies νi at the TSs of the 
conformational transitions (MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory in the continuum 
with ε = 4 at T = 298.15 К) are presented below complexes in brackets. Dotted lines indicate AH···B H-bonds 
and attractive A···B van der Waals contacts – their lengths are presented in angstroms (for their more detailed 
physico-chemical characteristics see Table 2); carbon atoms are in light-blue, nitrogen – in dark-blue, hydrogen – 
in grey and oxygen – in red. Exclusively enantiomers of one type are presented.

Conformational transition νi
a ∆Gb ∆Ec ∆∆GTS

d ∆∆ETS
e ∆∆Gf ∆∆Eg

А·Т(wWC)R,L ↔ А·Т(wН)R,L 7.7 −0.01 −0.19 1.97 0.08 1.98 0.28

А·Т(wWC)R,L 
cys

⟷ А·Т(wН)L,R 250.9 −0.01 −0.19 9.53 9.00 9.54 9.19

А·Т(wrWC)R,L ⟷
trans

 А·Т(wrН)L,R 252.7 −0.01 −0.19 9.52 9.15 9.53 9.34

А·Т(wrWC)R,L ↔ А·Т(wrН)R,L 16.1 −0.18 −0.24 1.84 0.41 2.02 0.64

А·Т(wrWC)R,L ⟷
cys

 А·Т(wrН)L,R 252.3 −0.18 −0.24 9.12 8.86 9.30 9.09

А·Т(wrWC)R,L 
trans
⟷ А·Т(wrН)L,R 253.7 −0.18 −0.24 9.28 9.24 9.46 9.48

Table 1.  Energetic characteristics (in kcal∙mol−1) of the discovered conformational transitions of the four 
biologically important А·Т DNA bps obtained at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of 
theory in the continuum with ε = 4 (see Fig. 1). aImaginary frequency at the TS of the conformational transition, 
cm−1. bThe Gibbs free energy of the product relatively the reactant of the conformational transition (T = 298.15 
K). cThe electronic energy of the product relatively the reactant of the conformational transition. dThe Gibbs 
free energy barrier for the forward conformational transition. eThe electronic energy barrier for the forward 
conformational transition. fThe Gibbs free energy barrier for the reverse conformational transition. gThe 
electronic energy barrier for the reverse conformational transition.
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presented after each structure in brackets at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory 
in the continuum with ε = 4 under normal conditions).

It should be noted that the orientation of the methyl group of the T DNA base does not alter in the course of all 
reactions of conformational transitions. At this, the heterocycles of the DNA bases, capable for the out-of-plane 
bending99–101, stay planar.

So, obtained by us results launch the conception of the “mechanics” of the non-dissociative WC/rWC ↔ H/rH 
conformational transformations of the classical А∙Т DNA bps.

Complex/Base

Dihedral angle, degree

C5C6N6H′ N1C6N6H HN9N1H

А·Т(wWC)R,L −13.8 14.9 −44.4

TSА·Т(wWC)R,L↔А·Т(wН)R,L −22.8 22.1 −5.0

TScys
А·Т(wWC)R,L↔А·Т(wН)L,R 123.8 60.4 −49.1

TStrans
А·Т(wWC)R,L↔А·Т(wН)L,R 57.3 120.3 −57.1

А·Т(wН)R,L −16.8 12.9 25.0

А·Т(wrWC)R,L −14.2 15.4 99.4

TSА·Т(wrWC)R,L↔А·Т(wrН)R,L −23.4 20.8 −130.3

TScys
А·Т(wrWC)R,L↔А·Т(wrН)L,R 124.0 60.3 63.9

TStrans
А·Т(wrWC)R,L↔А·Т(wrН)L,R 57.4 120.8 −75.6

А·Т(wrН)R,L −18.2 14.0 −88.0

A −7.2 6.6 —

Acys ±57.9 ∓122.1 —

Atrans ±122.5 ∓57.5 —

Table 3.  Selected geometrical parameters, characterizing the non-planarity of the discovered conformers 
with wobble geometry of the four biologically important А·Т DNA bps and TSs of their conformational 
interconversions, obtained at the B3LYP/6-311++G(d,p) level of theory in the continuum with ε = 4. Note: 
Signs of the dihedral angles are presented exclusively for one type of enantiomers.

Complex
AH···B H-bond/
A···B vdW contact ρa Δρb 100·εc dA∙∙∙B

d dH∙∙∙B
e ∠AH∙∙∙Bf EAH···B/°EA···B

g μh

А·Т(wWC)R,L
11

N6H∙∙∙O4 0.022 0.076 2.10 2.988 2.028 156.2 4.11
3.97

N3H∙∙∙N6 0.010 0.030 31.69 3.337 2.484 141.1 1.75

TSА·Т(wWC)R,L↔А·Т(wН)R,L N3H∙∙∙N6 0.019 0.055 3.09 3.184 2.161 180.0 4.02 5.20

TScys
А·Т(wWC)R,L↔А·Т(wН)L,R

N6H∙∙∙O4 0.014 0.045 11.55 3.083 2.288 133.5 1.81

5.25N3H∙∙∙N6 0.026 0.076 3.24 2.976 2.019 153.3 5.52

O2∙∙∙N7 0.001 0.005 83.95 4.093 — — 0.17*

TStrans
А·Т(wWC)R,L↔А·Т(wН)L,R

N6H′∙∙∙O4 0.011 0.037 18.97 3.134 2.397 128.3 1.29
3.32

N3H∙∙∙N6 0.029 0.081 2.33 2.953 1.978 156.4 5.88

А·Т(wН)R,L
11

N6H′∙∙∙O4 0.021 0.075 2.64 2.983 2.033 154.4 4.01
8.29

N3H∙∙∙N6 0.009 0.028 34.33 3.370 2.527 140.1 1.55

А·Т(wrWC)R,L
11

N6H∙∙∙O2 0.020 0.072 1.98 3.000 2.049 154.6 3.85
3.71

N3H∙∙∙N6 0.010 0.030 26.08 3.332 2.484 140.6 1.81

TSА·Т(wrWC)R,L↔А·Т(wrН)R,L N3H∙∙∙N6 0.019 0.056 3.16 3.157 2.156 165.7 3.94 5.43

TScys
А·Т(wrWC)R,L↔А·Т(wrН)L,R

N6H∙∙∙O2 0.011 0.036 19.20 3.143 2.406 128.4 1.05

4.88N3H∙∙∙N6 0.027 0.076 2.09 2.979 2.017 154.4 5.54

O4∙∙∙N7 0.001 0.005 235.50 4.052 — — 0.19*

TStrans
А·Т(wrWC)R,L↔А·Т(wrН)L,R

N6H′∙∙∙O2 0.011 0.036 17.71 3.137 2.393 129.0 1.21
5.20

N3H∙∙∙N6 0.028 0.079 2.26 2.962 1.995 155.0 5.74

А·Т(wrН)R,L
11

N6H′∙∙∙O2 0.020 0.069 2.88 2.998 2.072 150.5 3.71
8.26

N3H∙∙∙N6 0.010 0.032 21.42 3.308 2.455 141.1 1.55

Table 2.  Electron-topological, geometrical and energetic characteristics of the intermolecular specific contacts in 
the investigated conformers of the А·Т DNA bps and TSs of their conformational transformations obtained at the 
B3LYP/6-311++G(d,p) level of theory (ε = 4) (see Fig. 1). aThe electron density at the (3, −1) BCP of the specific 
contact, a.u. bThe Laplacian of the electron density at the (3, −1) BCP of the specific contact, a.u. cThe ellipticity at 
the (3, −1) BCP of the specific contact. dThe distance between the A and B atoms of the specific contact, Å. eThe 
distance between the H and B atoms of the AH···B H-bond, Å. fThe H-bond angle, degree. gEnergy of the AH···B 
H-bond or attractive A···B van der Waals (vdW) contact, calculated by Iogansen’s or Espinose-Molins-Lecomte 
(marked with an asterisk) formulas, kcal∙mol−1. The dipole moment of the complex, D.
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Of course, in the composition of DNA these conformational transitions represent a self-consistent trans-
formation of the bps, the anti ↔ syn transition of A around the glycosidic bond (ΔΔGTS = 3.4 kcal∙mol−1 at 
χTS = 121◦ for BI-conformer of the isolated 2′-deoxyadenosine102) and reorganization of stacking and hydra-
tation8. Simple comparison of the energetics, determining these processes, clearly indicates that the first two of 
them plays a leading role. This fact gives hope that obtained in this paper data are closely related to the nature of 
the А∙Т(WC) ↔ А∙Т(H) thermal fluctuation process, which occurs in DNA1–7. This conclusion can be verified, 
applying the newest methods of ab initio dynamics for the short fragments of DNA.

Conclusions
By applying developed by us novel ideas according the high-energetic conformers of the classical А∙Т DNA bps11, 
we offered novel non-dissociative mechanisms of the А∙Т(WC) ↔ А∙Т(H) and А∙Т(rWC) ↔ А∙Т(rH) conforma-
tional transitions, that do not require for their realization energy-consuming anisotropic rotation of the amino 
group of the A DNA base around the C6-N6 exocyclic bond. Figuratively speaking, at the transformation of 
the A base from the anti- to syn-conformation leading to the formation of the Hoogsteen А∙Т(H) and reverse 
Hoogsteen А∙Т(rH) bps, it dynamically relies as on the support on the T DNA base through the pyramidilized 
amino group of A, interacting with it in the TS region by one single (Т)N3H···N6(А) H-bond.

In the light of the obtained by us results, it could be suggested that the А∙Т(WC) ↔ А∙Т(H) conformational 
transition in DNA duplex, which was registered experimentally1–7, most likely occurs by the non-dissociative 
mechanism: A, rotating from the anti- to syn-configuration, interacts with T via the intermolecular H-bonds 
along the entire process of the conformational transformation.
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