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Abstract
The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary

balance between the positive and potentially deleterious effects of recombination. We have

perturbed that balance, generating RecA variants exhibiting improved recombination func-

tionality via randommutagenesis followed by directed evolution for enhanced function in

conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-

Ala137), encompassing an extensive subunit-subunit interface region, was subjected to de-

generate oligonucleotide-mediated mutagenesis. An iterative selection process generated

at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three

of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized

based on their prominence. Relative to wild type RecA, the selected RecA variants exhib-

ited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition

by the RecX regulator protein, and in general displayed a greater persistence on DNA. The

enhancement in conjugational function comes at the price of a measurable RecA-mediated

cellular growth deficiency. Persistent DNA binding represents a barrier to other processes

of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the func-

tionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to

processes like replication and transcription. RecA regulation by RecX protein is important

in maintaining an optimal balance between recombination and other aspects of DNA

metabolism.

Author Summary

The genetic recombination systems of bacteria have not evolved for optimal enzymatic
function. As recombination and recombination systems can have deleterious effects, these
systems have evolved sufficient function to repair a level of DNA double strand breaks typ-
ically encountered during replication and cell division. However, maintenance of genome
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stability requires a proper balance between all aspects of DNAmetabolism. A substantial
increase in recombinase function is possible, but it comes with a cellular cost. Here, we use
a kind of directed evolution to generate variants of the Escherichia coli RecA protein with
an enhanced capacity to promote conjugational recombination. The mutations all occur
within a targeted 59 amino acid segment of the protein, encompassing a significant part of
the subunit-subunit interface. The RecA variants exhibit a range of altered activities. In
general, the mutations appear to increase RecA protein persistence as filaments formed on
DNA creating barriers to DNA replication and/or transcription. The barriers can be elimi-
nated via expression of more robust forms of a RecA regulator, the RecX protein. The re-
sults elucidate an evolutionary compromise between the beneficial and deleterious effects
of recombination.

Introduction
A given segment of chromosomal DNA may be subjected to repair, transcription, replication,
and recombination, some or all of these processes occurring within a single cell cycle. Each of
these processes poses real or potential molecular problems for the others, and many sources of
genome instability lie at the interfaces [1–4]. The interface between replication and transcrip-
tion has been the subject of numerous studies [5–7]. The role of collisions between replication
forks and transient template discontinuities created by DNA repair events in the creation of
double strand breaks is now well appreciated, as is the importance of recombinational DNA re-
pair of those breaks [8–16]. In contrast, the potentially negative effects of recombinational
DNA repair on other aspects of DNA metabolism have not been systematically investigated.
The study described here is based on the following premise: (a) recombination systems can
have negative impacts on DNAmetabolism; (b) for that reason, recombinases such as RecA
have not evolved to promote their characteristic DNA pairing and strand exchange activities
optimally, but instead reflect an evolutionary compromise between the positive and negative
effects of recombination; (c) substantial increases in recombinase functionality should be possi-
ble; and (d) since they were not selected during evolution, increases in recombinase functional-
ity may have deleterious effects on cellular DNA metabolism.

The bacterial RecA recombinase plays a key role in recombinational DNA repair in E. coli
[11, 17–23]. Inactivation of recombination functions results not only in DNA repair defects,
but also in more general genomic instability such as stalled or collapsed replication forks [12,
14, 16, 24–29]. The major activity of RecA protein in homologous genetic recombination reac-
tion is the promotion of DNA strand invasion and strand exchange [30–36]. RecA functions as
a helical nucleoprotein filament, which assembles on and dissociates from DNA in several
steps [37–41], and displays a diversity of conformations and dynamics [42, 43]. RecA has sev-
eral additional cellular functions. Its filaments, when formed on DNA, act as a coprotease to
promote the autocatalytic cleavage of the LexA repressor leading to induction of the bacterial
SOS response [44–54]. RecA also activates the mutagenic DNA polymerase V, a function in-
duced late in the SOS response [45, 55–59]. In this final role, RecA again acts as a coprotease to
promote the autocatalytic cleavage of the UmuD subunit [60–62], and acts itself as an essential
subunit of the final activated enzyme [63–67].

In vitro, RecA protein is a DNA-dependent ATPase and promotes DNA strand exchange re-
actions that mimic its presumed roles in vivo [18–20, 36, 68–70]. RecA filament formation on
single-stranded DNA (ssDNA) begins with a slow nucleation step, followed by rapid 50 to 30 ex-
tension. RecA filament extension occurs predominantly at the 30-proximal end. When ATP is
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hydrolyzed, RecA monomers disassemble primarily at the 50-proximal end [71–75]. For the
strand exchange reaction, RecA filaments form on ssDNA first, followed by pairing with a ho-
mologous double-stranded DNA (dsDNA) [30, 35, 76]. Exchange of strands ensues and can
encompass thousands of DNA base pairs as ATP is hydrolyzed [34, 36, 70, 77–79].

Whereas recombination is necessary for double strand break repair and can produce genetic
advantages via conjugation, recombination can also lead to genomic damage; e.g., by aberrant
elimination of genomic segments due to recombination between repeated sequences. In princi-
ple, the RecA protein can also harm cells and contribute to genome instability in at least three
other ways. First, RecA could inappropriately induce the SOS response, with its accompanying
cell division regulation and mutagenesis, when it is not needed [80, 81]. Second, if RecA fila-
ments were not efficiently removed from the DNA when no longer needed, replication and/or
transcription could be inhibited. Third, a replication fork or transcription bubble collision with
a branched DNA segment undergoing recombinational DNA repair could have a myriad of del-
eterious consequences. A multi-level regulatory system thus constrains and directs productive
RecA-mediated recombination processes in the cell [25]. Several regulatory proteins, RecFOR
[72, 82–87], RecX [88–92], DinI [91, 93, 94], RdgC [95], PsiB [96], DinD [97], RadA [80], and
UvrD [98–100] are known to be involved in the regulation of RecA activity through interactions
with the RecA nucleoprotein filament. An understanding of this regulation network is one pre-
requisite to an optimal in vivo harnessing of the recombination capacity of RecA.

A particular focus of the current study is the E. coli RecX protein, a conserved and well-char-
acterized RecA regulator expressed from a gene located immediately downstream of the recA
gene in E. coli and many other bacteria. The RecX protein is a negative regulator of RecA, re-
quired to overcome deleterious effects of overexpression of RecA protein [101–104]. Deletion
of the recX gene does not cause a clear phenotype in E. coli [105], but overexpression reduces
induction of the SOS response [106]. In vitro, the E. coli RecX (EcRecX) protein inhibits RecA-
mediated ATPase and strand exchange activities [106]. The EcRecX protein binds deep within
the major helical groove [107] and blocks the extension of a RecA filament by capping its 30-
proximal end while allowing filament disassembly to proceed at the 50-proximal end [88]. The
RecX protein from the bacterium Neisseria gonorrhoeae (NgRecX) exhibits a substantially
more robust inhibition of RecA protein [90]. Instead of simply capping the growing filament
end, the NgRecX appears to create breaks in the filament and increase the number of disassem-
bling ends [90]. In spite of the often modest phenotypes seen in E. coli strains lacking recX
function, interaction with RecX protein may be one of the key mechanisms that regulate the
stability and recombination function of RecA nucleoprotein filaments in most bacteria.

The bacterial RecA protein was first identified from the analysis of mutagenized colonies of
an F- culture that were unable to form recombinants after conjugation with an Hfr strain [21].
Conjugational recombination is thus a classic function of RecA that helps define its recombina-
tion potential. During bacterial conjugation, once the mating pairs are established, rolling circle
replication initiates at the F- plasmid oriT site. Then a nascent single stranded Hfr DNA with a
50 end enters the F- recipient where it provides a template for lagging strand synthesis [108].
Transfer of DNA ceases at random points and leaves a linear double-stranded Hfr DNA frag-
ment with a leading end and a single stranded overhang of variable length at the distal 30 end
because of the failure to complete synthesis of the complementary strand [109]. In the recipi-
ent, genetic crossovers promoted by RecA protein and auxiliary proteins integrate the Hfr frag-
ment into the host genome. Two or more recombination events may occur concurrently or
divergently, and the size of the integrated Hfr DNA varies.

The recA gene has the capacity to evolve to meet extraordinary cellular challenges such as
radiation damage [110–117]. Specific amino acid changes at the subunit-subunit interface pro-
duce RecA variants that promote higher levels of conjugational recombination [118]. These
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results are the basis for the hypothesis that RecA has not evolved for optimal recombination
function but instead for an optimal balance between the necessary and potentially damaging
consequences of recombination within a particular environmental context. We therefore set
out to explore the limits of RecA recombination function. Conjugational recombination has
been employed as a selection for RecA variants with the potential to generate higher numbers
of crossovers between unlinked genetic markers. Based on the demonstrated functional en-
hancement observed in some RecA variants with alterations at the subunit-subunit interface
[118], our first effort has focused on this region. In this study, we demonstrate a facile genera-
tion of RecA variants that enhance recombination function. The results begin to define some of
the resulting biochemical changes that potentially contribute to the enhancement and highlight
some of the constraints placed on RecA function in vivo. We also explore the sometimes delete-
rious cellular consequences of these functional enhancements.

Results

Overview
Three questions are addressed below in three successive sections. (1) Can increases in RecA
functionality be obtained? This involves a directed evolution experiment focused on increasing
conjugational recombination function. (2) What changes in RecA activity give rise to the func-
tional enhancements? A thorough in vitro characterization of several RecA variants is carried
out to address this question. (3) What are the cellular consequences of a functionally enhanced
RecA recombinase? Cell growth deficiencies associated with RecA functional enhancements
are documented and explained.

Directed evolution of RecA proteins with enhanced function in
conjugation

Rationale. The first goal of this study was to systematically generate RecA protein variants
with an enhanced capacity to promote conjugational recombination and to explore the limits
of RecA function in bacteria. We used degenerate oligonucleotide synthesis to mutagenize a 59
codon stretch of the recA gene, with the segment size constrained by commercial limitations
on oligonucleotide length. The region from codon 79 to 137 was chosen as a target in this initial
study. This region of the gene encodes an expansive part of the subunit-subunit interface (resi-
dues 111–140) [119], and includes codons whose alteration demonstrably improves the recom-
bination potential of the RecA protein [118]. To screen this region comprehensively, a plasmid
library was constructed containing expressed recA genes with every possible single nucleotide
change within that 59 codon region. Note that due to the structure of the genetic code [120,
121], single nucleotide changes do not provide access to every possible amino acid substitution,
but our library should include over a third of them. The plasmid library is hosted by the F– re-
cipient for a conjugational cross designed to be restrictive. That F– recipient includes an inacti-
vated chromosomal recA gene, so that the only RecA protein expressed in a given cell is
contributed by a library plasmid. The selection is scalable: using different media, we can require
two, four, or six conjugational crossovers to produce a viable recombinant. Recipients hosting
plasmids expressing nonfunctional RecA proteins simply die because they do not recombine in
the selectable traits. Every recombinant colony that appears has a plasmid expressing an active
RecA protein, either wild type or variant. The plasmids present in recombinants from the first
cross are collected, isolated, and introduced into a fresh culture of recA– recipient cells. By car-
rying out the selection iteratively, RecA variants with an increased capacity for conjugational
recombination should increase as a percentage of the overall population with successive cycles.
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Since the successful RecA-expressing plasmids are isolated after each cycle and installed in new
recipient hosts, background genomic mutations that might contribute to recombination profi-
ciency are eliminated. The overall scheme is similar in rationale to the SELEX method for gen-
erating RNAs that bind to a particular ligand [122–125], and is illustrated in Fig 1A.

E. coli RecA library construction. The synthesis of degenerate DNA molecules using dif-
ferent molar ratios of four nucleotides in mixtures was technically limited to 100 nucleotides.
To extend the range of recA gene mutagenesis, two degenerate oligonucleotides were annealed
in tandem to a 200 nucleotide complementary oligonucleotide with wild-type sequence. To
synthesize the mutagenized oligos, each nucleotide addition included either 98.5% or 99% of
the correct nucleotide, plus 0.5% or 0.33% of each of the incorrect nucleotides. This permitted
a random mutagenesis of the codons encoding residues 79 to 137 calculated to maximize the
presence of single nucleotide substitutions and minimize multiple base substitutions within the
resulting library. The library was characterized in several ways. More than 70% of the plasmids
expressed wild type RecA protein. Single mutants comprised 16.6%, with the remainder

Fig 1. The directed evolution trials. (A) Scheme for directed evolution of RecA variants with improved functionality in conjugational recombination. (B)
Genetic markers used in the conjugation trials. A series of genetic markers were added or deleted from Hfr donor and recipient strains in order to establish
scalable stringency of the conjugation trials. Depending on the types of growing media, the number of crossovers required to produce transconjugant can be
varied from 2 to 6. (C) The appearance of prominent RecA protein variants in the selected libraries after the 4th, 5th and 6th cycle of selection in the first
directed evolution trial. Results are based on deep sequencing of each plasmid pool purified after the respective cycles. The 8 most prominent RecA variants
are summarized. (D) Improved yield of transconjugants utilizing several prominent RecA variants from the directed evolution trials. The individual plasmid
bearing a particular mutated recA gene expressing one of four RecA variants (RecA V79L, RecA D100A, RecA I102L and RecA N113I) was introduced into
new recA- recipient cells. Conjugational recombination efficiency was measured for each RecA variant. The previously reported RecA D112R [118] and wild
type RecA protein were tested as well, In one case, two mutations were introduced in combination (RecA D100A/I102L) to test for synergistic effects.

doi:10.1371/journal.pgen.1005278.g001
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double, triple, and quadruple mutants (S1A Fig). The library included a total of 27,500 colonies
with plasmids of all types, and approximately 4565 with single recAmutations. A Monte
Carlo-based analysis indicated that there was a greater than 90% confidence that the library in-
cluded all possible single mutations in the targeted region (S1B Fig)

Selection of active RecA variants with enhanced recombination activity. The conjuga-
tional cross used for selection featured a range of markers (metA,metB1,metE, TetR, ilv, aroB,
and StrR) spread over a 16 min chromosomal region. Multiple genetic exchanges are required
to generate a recombinant bacterium that can grow on a particular selective medium (Fig 1B).
An Hfr-recipient pair should undergo 6 recombinational crossovers during conjugation to gen-
erate the cell able to grow on minimal media supplemented with tetracycline and streptomycin.
The number of required crossovers can be reduced to 4 or 2 by selecting transconjugants on
minimal media or methionine supplemented minimal media, respectively. In this system, re-
combination stringency is thus scalable. In the experiments requiring 4 crossovers, and recipi-
ents with plasmids expressing the wild type RecA protein, about 100–150 recombinant
colonies per 1,000,000 donors were generated. When higher recombination stringency was ap-
plied (requiring 6 crossovers), the number of transconjugant colonies was reduced to 10–50.

The first conjugation carried out with recipient cells hosting library plasmids utilized the 4
crossover requirement. The recombination frequency was 100 transconjugants per 1,000,000
donors, similar to the experiment with recipients expressing the wild type RecA protein. More
than 2,000 recombinant colonies were generated and combined in a pool. The population of
recA gene-bearing plasmids was isolated and introduced into a new batch of recA– recipient
cells for the next conjugation. At a second round of conjugation, recombination frequency in-
creased nearly five folds, resulting in approximately 500 recombinants per 1,000,000 donors. A
total 10,000 colonies was generated, combined and the plasmids isolated as before. For subse-
quent cycles, the recombination stringency was increased to 6 crossovers and this continued
for an additional 4 consecutive cycles of selective conjugation. The frequency of successful re-
combination substantially declined to 40 transconjugants per 1,000,000 donors after the third
cycle due to the increased stringency. More than 800 colonies were harvested. Successful re-
combination increased to 75 transconjugants after the fourth and fifth cycles, declining again
to 40 per 1,000,000 donors after the sixth cycle. An archival sample of the recA plasmid popula-
tion was taken and stored after each cycle. From each of 4th, 5th and 6th round of conjugation,
20–30 recombinant colonies were selected at random for sequencing to get an approximate
mutation pattern. Based on this profile, recA genes on the archived plasmid population pools
from 4th, 5th and 6th round of conjugation were subjected to deep Illumina sequencing that al-
lowed for detection of any mutation present as more than 0.5% of the total population.

The ratio of sequences expressing wild type RecA protein versus sequences expressing mu-
tant RecA protein from 4th, 5th and 6th round of conjugation are presented in S2 Fig. In the
initial cell library, the wild type recA gene represented more than 70% of the population. Wild
type genes represented only 25.7% after the 6th round of conjugation. The portion of recA se-
quences with mutations increased from 60.5% (4th conjugation) to 69.2% (5th conjugation)
and reached 74.3% after the 6th round of conjugation. These results infer the presence of RecA
variants that are more proficient at promoting the recombination events required to generate
transconjugants in this cross. Sequences from 4th, 5th and 6th round of conjugation were
translated to determine specific amino acid changes arising with prominence in the population.
All mutations arising above the 0.5% threshold in the selection are shown in S3 Fig. The popu-
lations for the eight most prominent variants after the 4th, 5th, and 6th cycles of conjugation
are summarized in Fig 1C. All amino acid changes which emerged from the 4th round of con-
jugation (V79L, E86G, C90G, I93L, H97Y, D100A, I102L and N113I) were consistently found
through the 6th round of conjugation. The portion of the population with each of these
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mutations continued to increase with successive cycles except H97Y and N113I. The V79L and
I102L single changes were the most prominent after every conjugation cycle, representing 7.5%
and 10.8% of the population, respectively, after the 6th cycle of conjugation. The E86G/C90G
double mutant was less than 2% of the population until the 5th conjugation cycle, but remark-
ably increased to 7.0% after the 6th round conjugation (S3 Fig).

Beginning with the original library, the entire selection procedure was repeated to determine
reproducibility. A total of 7 cycles of selective conjugation were carried out in this 2nd selection
experiment. Amino acid changes found after 5th, 6th and 7th round of conjugation in this sec-
ond selection experiment are shown in S4 Fig. The I93L variant was most prominent after the
seventh cycle (13.0% of the population), and the A131G variant was the second most promi-
nent at 8.9%. The V79L and I102L changes that dominated the first experiment were 3.7% and
0.5% of the population, respectively. Importantly, most of the RecA variants selected for in the
second experiment were also found in the first experiment (S5 Fig). The exceptions were limit-
ed to two variants (D100A and G136R) found only in the first experiment, and three others
(A81V, A104V and D110A) found only in the second. The results suggest that the selection
protocol is near saturation with respect to identifying RecA variants with improved recombina-
tion capacity in this region of the recA gene.

To confirm that the increased prominence of certain mutations after selection can be con-
sidered as a gain of recombination function in these mutant proteins, conjugational recombi-
nation frequencies were directly tested for the most prominent RecA variants and compared to
the wild type protein. Each plasmid harboring prominent mutations after the 6th round of con-
jugation was separately introduced to new recipient cells and the conjugation recombination
assay requiring 4 crossovers was carried out. In this test, the recipient expressing wild type
RecA protein was able to generate 125.3 ± 15.4 recombinant colonies per 106 donors (Fig 1D).
The RecA D112R variant, a previously reported hyper RecA mutant protein [118], was also test-
ed as reference and produced 377.3 ± 14.5 recombinants in this conjugational test. RecA vari-
ants selected from our conjugation screening exhibited similar recombination activities. The
recipient with RecA V79L, D100A, I102L and N113I variants made 352.8 ± 23.3, 342.8 ± 7.3,
382.3 ± 18.0 and 330.2 ± 28.8 transconjugants, respectively, per 106 donors. The mutations are
not necessarily additive in their effects. We constructed a double mutant protein that combined
mutations D100A and I102L. The double mutant protein generated 316.0 ± 53.0 recombinant
colonies (Fig 1D), somewhat less than each of the single mutants alone.

In vitro characterization of RecA protein mutants with enhanced
functionality

Enhanced capacities of RecA protein variants to hydrolyze ATP and displace SSB on cir-
cular ssDNA. From the first directed evolution trial, the most prominent three mutants from
the 6th cycle of conjugation, I102L, V79L and the E86G/C90G double mutant, were selected
for in vitro characterization. Each of these RecA variant proteins was expressed and purified.
The characterization reflects standard RecA activities. The focus here is on activities that
helped to define the deleterious effects of the RecA variants in section 3 below.

To provide some baselines and an initial comparison, DNA binding and its associated ATP
hydrolytic activity was examined with a short oligonucleotide cofactor, (dT)60 (Fig 2A). When
bound to short linear single strands, RecA filaments are in a dynamic equilibrium in which
new RecA filaments are constantly being formed, and existing ones are disassembling [18,
126]. In this reaction, a stoichiometric amount (1.7 μM) of each RecA protein was used with
5.1 μM of the (dT)60 oligomer. The apparent kcat for the wild type, RecA I102L, V79L and
E86G/C90G proteins was 15.7 ± 0.1, 19.5 ± 0.7, 30.1 ± 0.6 and 24.0 ± 0.3 min–1, respectively. In
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all cases, the measured kcat values were lower than those measured on circular single stranded
DNA (cssDNA) with single stranded DNA binding protein (SSB) added last, a number we gen-
erally associate with the state where all or nearly all of the DNA is bound. With the short oligos,
the dynamics of filament assembly and disassembly prevent full binding of the DNA under
these conditions. However, rates of ATP hydrolysis associated with (dT)60, as a fraction of the
apparent maximum rate, were greater for the RecA variants than for the wild type. The wild

Fig 2. DNA-dependent ATPase activity of selected RecA variant proteins. (A) ATPase activity of RecA
variant proteins on (dT)60 oligomeric DNA and inhibition effects of SSB protein on re-nucleation of RecA
variant. Reactions contained 1.7 μMRecA variant, 5.1 μM (dT)60 oligomeric DNA and 3 mMATP. The sub-
saturating concentration of each RecA variant was incubated with DNA for 10 min and ATP was added to
initiate the reaction. In a separate set of experiment, SSB protein was added (0.1 μM) at 10 min after the
reaction was initiated to inhibit the re-assembly of free RecA variant in the solution (denoted by “with SSB”),
and ATP hydrolysis was again monitored. (B) ATPase activity of RecA variant proteins on M13mp18 cssDNA
and effects of SSB protein. Reactions contained 3 μMRecA variant, 5 μMM13mp18 ssDNA, 0.5 μMSSB,
and 3 mMATP. The E. coli SSB protein was added with ATP at 10 min after RecA variants filaments
assembled (SSB listed second), or incubated with DNA for 10 min prior to the addition of RecA variant (SSB
listed first).

doi:10.1371/journal.pgen.1005278.g002
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type, RecA I102L, V79L and E86G/C90G proteins promoted ATP hydrolysis at 54.7, 57.0, 68.3,
and 68.4%, respectively, of the rates seen on cssDNA. The results suggest that more of the
DNA is bound by the RecA variants than by the wild type RecA protein under these
conditions.

On short single-stranded DNA, SSB protein can bind to (dT)60 oligomer as an existing fila-
ment disassembles and suppresses re-nucleation of new RecA filaments. When 0.1 μM of SSB
protein was added after RecA filaments had been formed, the apparent kcat of wild type RecA
protein declined by 27.6% to 11.4 ± 0.8 min−1. The reductions in ATP hydrolysis (and by infer-
ence of overall DNA binding) were less for the RecA variants: 16.2% and 15.6% for the RecA
I102L and E86G/C90G mutant proteins and only 10.9% for RecA V79L. The apparent attenua-
tion in SSB inhibition for the RecA variants could be explained either by an improvement in
re-nucleation on SSB-coated ssDNA or a reduction in filament disassembly, or both.

We then examined the filament formation and ATP hydrolytic activities of the selected
RecA protein variants on cssDNA (Fig 2B). M13mp18 cssDNA was first incubated with the dif-
ferent RecA proteins to allow them to nucleate and form filaments on the DNA, followed by
addition of ATP and SSB. When added after RecA, SSB protein promotes RecA protein fila-
ment extension by melting secondary structure in the DNA. Full filaments are formed (reflect-
ing complete or nearly complete binding of the available DNA), and the resulting rates thus
better represent the intrinsic ATPase activity of a given variant. RecA I102L, V79L and E86G/
C90G exhibited apparent kcat values of 34.2 ± 0.6, 44.1 ± 0.8, and 35.1 ± 1.3 min−1, respectively,
again displaying the higher ATPase levels associated with the RecA variants and providing a
baseline for additional studies. These rates were consistently higher than the rates of wild type
RecA protein, at 28.7 ± 0.2 min−1, a value consistent with previous findings [89, 127–133]. The
increases in the intrinsic capacity of the RecA variants to hydrolyze ATP are unusual for this
protein. In these studies, we measure apparent kcat which reflects the observed rate of ATP hy-
drolysis divided by the concentration of available RecA protein binding sites (assuming a RecA
subunit binds to 3 nucleotides). When the apparent kcat values decline in other situations, as in
the continuing studies below, this generally reflects a decrease in the fraction of the DNA
bound by the protein. The merits of using the indirect measurement of ATP hydrolysis as a
measure of DNA binding have been vetted for the E. coli RecA protein in numerous studies
[71, 85, 87, 126, 128, 134–138], although an exception to the rule has been found recently for
the RecA protein from Deinococcus radiodurans [114].

SSB inhibits the nucleation of RecA filament formation on ssDNA when it is present prior
to RecA, leading to a substantial lag in binding as reflected in the DNA-dependent ATPase ac-
tivity [87, 139]. Fig 2B shows a lag period of 28.6 ± 0.5 min for wild type RecA protein and
much shorter lags of 12.8 ± 1.1, 4.7 ± 1.1 and 12.1 ± 1.9 min for I102L, V79L and E86G/C90G
mutant RecA proteins, respectively. The final rates of ATP hydrolysis after SSB protein addi-
tion were observed and converted to a percentage of the maximum rate observed when RecA is
bound prior to SSB addition. The wild type RecA protein attained 48.8% of its maximum rate,
whereas RecA V79L, I102L and E86G/C90G reached higher rates of 74.6%, 98.6% and 80.9%
of the maximum under these conditions, respectively. Displacement of SSB protein by the
RecA protein variants appeared to be both faster and more complete than for wild type RecA
protein. The results in Fig 2 represent the first of several indications that the RecA variants
bind to DNAmore persistently than the wild type protein.

The RecA variants exhibit only modest changes in several key RecA activities. For the
wild type RecA protein, the exchange of RecA subunits between free and bound forms is limit-
ed when RecA filaments are formed on closed circular ssDNA and SSB is added after RecA.
The exchange between free and bound forms increases substantially when DNA strand ex-
change is initiated [42, 43, 114, 140]. For the RecA variant proteins, these properties exhibited
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only a modest reduction in filament dynamics during DNA strand exchange (S6 Fig). We mon-
itored a standard DNA strand exchange between circular ssDNA and homologous linear
dsDNAs [36, 70] as promoted by the various RecA variants (S7 Fig). Reaction intermediates
were produced at higher levels with the RecA variant proteins, particularly RecA I102L. How-
ever, those intermediates were converted to final products more slowly than was the case with
the wild type protein. The results suggest a reduction in the observed coupling between ATP
hydrolysis and DNA strand exchange [43, 126, 128, 141, 142] in the variants. Overall, the ca-
pacity of the RecA variants to promote DNA strand exchange was altered only slightly. DNA
pairing by the RecA variants was also assessed directly, using a D-loop forming reaction assay
(S8 Fig). Again, the RecA variants showed wild type levels of activity in most cases, although
the RecA V79L mutant exhibited a higher capacity to promote D-loop formation at higher pHs
(S8 Fig).

RecA variants are more resistant to the inhibitory effects of RecX protein. The RecX
regulator protein and the UvrD helicase both play cellular roles in removing RecA protein
from the DNA when it is no longer needed, as described in the Introduction. As the RecX pro-
tein plays a role in ameliorating the effects of RecA overexpression [101–104], we tested the
RecA variants for sensitivity to this RecA regulator. The role of RecX becomes important in
section 3 below. We first used the RecA-mediated ATPase activity to indirectly monitor RecA
binding to ssDNA, and challenged reactions with EcRecX protein (Fig 3A). Addition of 100
nM of EcRecX protein after wild type RecA protein filaments had been formed resulted in an
almost complete suppression of ATP hydrolysis that occurred within 20 min. This suggested
that little cssDNA was left coated with wild type RecA protein because of the RecX protein
binding, which blocked filament extension and caused net disassembly of the RecA filament.
This pattern is consistent with a previous study in which the effect of RecX protein saturated as
the RecX concentration approached 80–100 nM [88]. The RecA variants were much less sensi-
tive to the EcRecX challenge. After the same 100 nM RecX protein addition, the rates of ATP
hydrolysis by the three RecA variants, RecA V79L, E86G/C90G, and I102L, were 58.2 ± 1.4,
43.0 ± 3.1, and 32.7 ± 1.5 μM/min, respectively. These rates represented declines of between 20
to 45% relative to rates without RecX addition. Considerably more of the RecA variant proteins
remained bound to cssDNA after RecX protein treatment. The least sensitive of the RecA vari-
ants, RecA V79L, was further tested for sensitivity to the more active RecX protein from Neis-
seria gonorrhoeae, NgRecX (Fig 3B). After addition of NgRecX, the wild type RecA protein
settled into a lower rate of ATP hydrolysis. Importantly, the change occurred over a much
shorter time span than is seen with an EcRecX challenge (compare with Fig 3A). For RecA
V79L, a challenge with NgRecX also resulted in a rapid shift to a lower rate of ATP hydrolysis,
indicating that the NgRecX has a greater effect on RecA V79L filaments than does the
EcRecX protein.

The reduced sensitivity of the RecA variants to EcRecX was confirmed by electron micros-
copy (Fig 4, Tables 1 and 2). RecA filaments were formed on M13mp18 ssDNA with or without
RecX protein. When there is no RecX protein added, more than 87% of the observed molecules
were full filaments in the reactions with wild type RecA protein as well as the RecA variants
(Fig 4A and 4C). However, when 100 nM RecX protein was added to the reactions, the effect
on the wild type RecA filaments was dramatic, whereas the effect on the RecA variant filaments
was significantly reduced (Fig 4B and 4D). In the reaction of wild type RecA protein with RecX
treatment, only 1.3% of the total molecules remained as full filaments, 10.3% were medium size
filaments, 52.0% were small filaments, and 30.2% were very small filaments with large gaps.
Approximately 3.8% of the DNAmolecules had only SSB bound. In contrast, 58.3% of the mol-
ecules remained as full filaments after the RecA I102L mutant protein was treated with RecX.
The remaining molecules had shorter RecA I102L filaments with very few SSB bound DNA
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Fig 3. The effect of RecX proteins on ATPase activity of RecA variant proteins. (A) Effects of EcRecX protein. Reactions contained 3 μMRecA variant,
5 μMM13mp18 ssDNA, 0.5 μMSSB, and 3 mMATP. The ATP hydrolysis by RecA protein was initiated by the addition of ATP and SSB protein. After 7 min,
100 nM of RecX protein was added and hydrolysis reaction was monitored as shown above. (B) The effect of NgRecX protein on ATPase activity of WT
RecA and RecA V79L variant proteins. Reactions were carried out as in panel A, with NgRecX substituted for EcRecX protein where noted.

doi:10.1371/journal.pgen.1005278.g003
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molecules. The effect of RecX protein on RecA V79L filaments was particularly limited, as
86.9% of total molecules remained as full filaments after RecX treatment. The effect of RecX
protein on RecA E86G/C90G variant filaments was slightly less than that seen with RecA
I102L. The linear filaments (broken circles) were commonly observed about 9 to 11% in all ex-
periments except the case of wild type RecA with RecX addition (2.4%) (Table 1). The average
length of full, medium, small and very small filaments were measured from 10 randomly select-
ed molecules and summarized in Table 2.

The DNA strand exchange activities of the RecA variants were also examined after a chal-
lenge with 50 nM RecX protein delivered at 7 min of reaction (S9 Fig). Here, both the wild type
and variant RecA proteins exhibited strong reductions in activity, although the variants did
produce somewhat higher levels of strand exchange products. To determine the extent to
which the reduction in RecX inhibition affects the improvement in conjugational recombina-
tion exhibited by the RecA variants, a null recX (ΔrecX) mutant strain was created and tested as
a recipient in the previously established conjugational recombination assay. In the experiment

Fig 4. Electronmicroscopy of RecA variant protein filaments on cssDNA, with and without treatment by RecX protein. Electron micrographs show
filament formation of wild type RecA and RecA variant proteins on M13mp18 ssDNA (A) without RecX protein and (B) with 100 nM RecX protein. RecA
filaments were placed into 5 different categories based upon the size and completeness of filaments. (C) The composition of filaments in the various
categories without RecX protein and (D) with RecX protein.

doi:10.1371/journal.pgen.1005278.g004
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with a plasmid encoding the wild type RecA protein, a deletion of the recX gene (EAW537) did
not produce a significant change as shown in S10 Fig. This suggests that the RecX protein is
not a limiting factor in conjugation promoted by the wild type RecA protein. However, when
the plasmid expressed RecA V79L (EAW542), eliminating RecX increased the production of
transconjugants slightly (~1.3 fold) using the reaction protocol requiring 4 crossovers. When
the RecA V79L mutant protein was expressed from the recipient chromosome, 3.7 and 5.0
times more transconjugants were produced than wild type RecA protein in the presence of
wild type recX and in the ΔrecX context, respectively. Thus, in the cell, the gains in conjugation-
al recombination seen with the RecA V79L variant are actually limited somewhat by the
EcRecX protein, in spite of its relatively modest effects on the RecA V79L protein.

RecA variants with enhanced conjugation function are barriers to other
processes in DNA metabolism

Enhancement of RecA-mediated conjugational recombination does not correlate with
positive or negative effects on other RecA cellular functions. Why has nature not produced
further improvements in RecA recombination function via evolution? We wished to determine
if the recAmutations that conferred a conjugational enhancement had deleterious effects on
the cell. We first tested the UV radiation and ciprofloxacin sensitivity of mutant strains ex-
pressing the RecA variants in order to determine if the enhancements in conjugational

Table 1. Effect of EcRecX on RecA and RecA variant filaments.

Total molecules
counted

Full filaments
(%)

Medium filaments
(%)

Small filaments
(%)

Very small
filaments (%)

SSB/DNA
(%)

Linear
(%)

WT 1382 87.8 1.7 0.4 0 0 10.1

WT + EcRecX 3653 1.3 10.3 52.0 30.2 3.8 2.4

I102L 1458 87.2 1.7 0.4 0 0 10.7

I102L + EcRecX 1626 58.3 13.2 10.4 7.0 0.7 10.4

V79L 1147 90.6 0.2 0 0 0 9.1

V79L + EcRecX 1056 86.9 1.7 0 0 0 11.4

E86G/C90G 1125 88.4 0 0 0 0 11.6

E86G/C90G
+ EcRecX

1157 64.4 19.0 6.1 0.6 0 10.0

Quantitation of electron microscopy results. The fraction of observed molecules in each category described in the text and in Fig 4 are summarized.

doi:10.1371/journal.pgen.1005278.t001

Table 2. Measurements of RecA filaments of different size categories.

Full filaments Medium filaments Small filaments Very small filaments SSB/DNA

WT RecA 3.72±0.07 – – – –

WT + EcRecX – 2.33±0.21 1.46±0.23 0.34±0.16 –

RecA I102L 3.70±0.09 – – – –

I102L + EcRecX 3.70±0.08 2.35±0.31 1.12±0.26 0.49±0.23 –

RecA V79L 3.71±0.09 – – – –

V79L + EcRecX 3.71±0.13 – – – –

RecA E86G/C90G 3.63±0.09 – – – –

E86G/C90G + EcRecX 3.75±0.10 2.49±0.21 1.51±0.39 – –

Measurements of RecA filament lengths for each category were carried out as described in Materials and Methods. Lengths are reported in μm.

doi:10.1371/journal.pgen.1005278.t002
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recombination output were mirrored in other cellular functions requiring RecA protein. In all
cases, the RecA variant proteins were expressed on the chromosome at the normal recA locus.

As shown in Fig 5A, some of the mutant strains exhibited defects in viability relative to an
isogenic wild type recA strain (EAW 105) after UV exposure. The mutant strain expressing
RecA V79L (EAW 394) was most sensitive to UV radiation after both the 50 and 100 J/m2

doses. The other mutant strains, EAW 334 and EAW 410, expressing RecA I102L and E86G/
C90G, respectively, showed a less severe effect than the EAW 394. We conclude that an en-
hancement in conjugational function is not carried over into other RecA functions in the cell,

Fig 5. The effects of RecA variants on UV radiation and ciprofloxacin sensitivity. (A) Mutant strains expressing wild type RecA or the indicated RecA
variant proteins were plated and exposed to UV radiation as described in Materials and Methods. The colonies were counted to obtain viability data, which
was normalized against the zero dose point to obtain percent survival. (B) Cells were grown to log phase, serially diluted 1:10, and spot plated on LB plates
either with or without 0.01 μg/ml ciprofloxacin as indicated.

doi:10.1371/journal.pgen.1005278.g005
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and in fact can be deleterious to the normal DNA repair functions of RecA protein in at least
some cases.

To further explore the effects of the RecA variants in vivo, we tested for sensitivity to the
double strand break inducer ciprofloxacin. Ciprofloxacin is an inhibitor of gyrase that traps co-
valent protein-DNA adducts resulting in double-strand breaks during replication, transcrip-
tion, or proteolysis. In this experiment, quantitative analysis was not available since colonies
grown on ciprofloxacin plates were of widely varying sizes, making colony counting impracti-
cal. However, dot pictures employing serial dilutions were clear enough to show differences in
survival conferred by the wild type RecA protein and variants. As shown in Fig 5B, wild type
RecA exhibited a serious growth defect at 0.01 μg/ml ciprofloxacin concentration. Expression
of the RecA I102L appeared to increase viability somewhat. For the other two variants the
changes were negligible. Thus, an enhancement of conjugational recombination activity does
not alter other aspects of RecA in vivo function in predictable ways. The aspects of RecA func-
tion that are most important in conjugational recombination are not the same as those most
critical to DNA repair and other RecA-dependent processes.

Expression of the RecA variants produces a growth defect explained by more persistent
DNA binding. In early trials, strains expressing the various RecA variants appeared to grow
somewhat more slowly in culture, implying a modest growth deficiency that is further explored
here. As already noted, cellular toxicity could in principle arise due to extreme levels of genetic
exchange. In the absence of a large increase in a key recombination intermediate (single strand-
ed DNA gaps or ends), it seemed unlikely that the RecA variants would generate levels of ge-
netic exchange sufficient to slow cell growth. In addition, the in vitro work revealed no
systematic and substantial increases in the DNA pairing and strand exchange functions of
RecA that might elevate genetic exchange levels sufficiently to account for a growth deficiency.
We thus focused on two additional explanations for the growth deficiency: a potentially delete-
rious constitutive expression of the SOS response or the creation of barriers to replication and/
or transcription by persistently bound RecA filaments.

The induction of the SOS response is examined in Fig 6. GFP expression from the SOS recN
promoter was used to monitor this function. None of the RecA variants produced a constitutive
SOS response that rose above levels normally seen in wild type cells under normal growth con-
ditions (Fig 6A). The RecA E38K mutant (RecA 730), in which the SOS response is demonstra-
bly constitutive [143–146], was included in the experiment as a positive control. All of the
RecA variants displayed a capacity to induce the SOS response when the cells were challenged
by addition of ciprofloxacin (Fig 6B), although the levels achieved by the E86G/C90G variant
were substantially reduced relative to the other two variants and the wild type protein.

We then examined the possibility that the RecA variants simply bound too tightly to the
DNA, generating a barrier to replication and other aspects of DNAmetabolism. To provide a
more sensitive measurement of any deleterious effects of the recAmutations on cell growth
and survival, we carried out direct competition assays between strains expressing wild type and
mutant RecA proteins all present at the same normal chromosomal locus [147] (Fig 7). Wild
type or mutant cells were modified to carry a neutral Ara– mutation (which confers a red color
on colonies when grown on tetrazolium arabinose (TA) indicator plates) to permit color based
scoring of mixed populations [147]. Overnight cultures of cells expressing one of the three recA
variants most thoroughly characterized above were mixed in a 50/50 ratio with isogenic wild
type cells carrying the Ara– mutation, or vice versa. A sample of each mixture was diluted 10−6

and plated on TA indicator plates to generate approximately 200 colonies. The cell mixtures
were diluted 1/100 into fresh L broth and grown overnight. Plating, dilution, and overnight
growth were repeated two more times, and each of the four experiments was done in triplicate.
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Red and white colonies were counted for each plating, and the percentage of cells expressing
the mutant RecA protein was determined for each successive plating.

As shown in Fig 7A and in earlier work [116, 147], the Ara–mutation does not affect growth
rates by itself. Ratios of red (Ara–) and white cells remained in an approximate 50/50 ratio for
three days after the experiment was initiated. We also tested the RecA E38K mutant that

Fig 6. SOS response of RecA variant proteins. RecA variant strains containing a plasmid expressing GFP under SOS control (utilizing the recN promoter)
were grown in LB. Specific fluorescence, defined as measured fluorescence divided by the OD600, is shown. (A) The SOS response in cells expressing RecA
variant proteins without treatment with any DNA damaging agent. (B) The SOS response in cells expressing RecA variant proteins after induction by adding
0.005 μg/ml ciprofloxacin at 180 minutes. Due to the error inherent in dividing very small numbers, specific fluorescence is not displayed for times prior to 200
and 230 min in panels A and B, respectively.

doi:10.1371/journal.pgen.1005278.g006
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Fig 7. Cell growth competition assays. Assays were carried out as described in Materials and Methods.
(A) Two trial competitions. The top trial shows a competition between two wild type cultures, one of which
carries the Ara–mutation. The lower one shows a competition between wild type cells and cells expressing
RecA E38K. As is the case for the RecA variants studied here, RecA E38K also confers a growth
disadvantage on cells in which it is expressed. Colony counts revealing the % of cells expressing the mutant
RecA proteins with enhanced conjugational function are plotted as a function of the daily growth cycle of the
experiment. (B) Competitions between cells expressing each of the three variant proteins and wild type cells.
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displaces SSB rapidly and induces the SOS constitutively (see Fig 6A) to determine its effects
on cell growth. Cells expressing RecA E38K on the chromosome in place of the WT RecA pro-
tein were eliminated from the competition after two days of growth.

In all competition experiments, cells expressing the wild type RecA protein rapidly displaced
the cells expressing each of the three RecA variant proteins (each expressed at the normal recA
locus on the chromosome), such that few cells with the mutant proteins remained after 2–3 cy-
cles of overnight competitive growth (Fig 7B). The results were identical whether the Ara– mu-
tation was present in the mutant or WT cells within the competition.

We carried out an additional experiment with the V79L variant to determine the cause of
the growth deficiency (Fig 7C). As already noted, the effects of EcRecX on the RecA V79L pro-
tein are relatively modest. However, we wished to determine if the more robust NgRecX could
alleviate the growth deficiency. In this experiment, all of the “white” strains had NgRecX re-
placing the EcRecX on the chromosome, and are placed in competition with wild type “red”
cells. As shown in Fig 7C (open symbols), the presence of the NgRecX expressed from the chro-
mosome had a modest deleterious effect on cells expressing the WT RecA protein, and did not
alleviate the growth deficiency seen in cells expressing RecA V79L. However, when a plasmid
was introduced that expressed the NgRecX at higher levels, the situation changed. Cells with
the wild type RecA protein declined precipitously due to toxic effects of the NgRecX protein.
Given the strong effects of NgRecX on the EcRecA protein [90], cells expressing high levels of
NgRecX (as here) may be effectively recA–. In contrast, the growth deficiency of cells expressing
RecA V79L was almost entirely alleviated. The separate negative effects of expression of RecA
V79L and high levels of NgRecX come together here to create a new balance that permits the
cells to grow at normal rates. An example of plates before and after the growth cycles of one
competition is provided in Fig 7D.

We conclude that expression of the RecA variant proteins, even from the normal recA locus,
confers a significant growth disadvantage. In at least the case of RecA V79L, the growth defi-
ciency appears to be caused by an overly persistent binding of the RecA variant to DNA, lead-
ing to a presumed barrier to other aspects of DNAmetabolism. Forced disassembly of the
RecA filaments by the robust NgRecX protein is detrimental to the wild type RecA protein, but
is sufficient to bring DNA binding and filament disassembly back into balance for the RecA
V79L variant. The positive effect of high levels of NgRecX implies that cell growth rates can be
restored by breaking up DNA-bound filaments of the RecA V79L protein.

Discussion
There are three main conclusions to this work. First, the wild type E. coli RecA protein has not
evolved to optimize the genetic exchanges required for conjugational recombination. Substan-
tial increases in recombinase function can be obtained. Second, the observed functional im-
provements in conjugational recombination may involve many, sometimes subtle changes in
protein activity. In this study, not all the changes are subtle. The one feature found in common
for the three RecA variants arising most prominently in this study is a more persistent binding
to DNA. This is reflected in substantially more rapid displacement of SSB for nucleation onto
ssDNA (Fig 2), and a greatly reduced sensitivity to the RecX inhibitor protein (Figs 3 and 4).

Two competitions are shown for each, with the Ara–mutation either in the mutant or wild type cells. (C)
Competitions between wild type cells (red) and cells with a gene expressing NgRecX protein from the normal
recX locus on the E. coli chromosome. The cells expressed either the wild type RecA or RecA V79L from the
recA locus as indicated. In two cases, a plasmid also expressing the NgRecX protein at higher levels
(pEAW947) was included (NgRecX++). (D) Examples of competition plates from an earlier trial, showing the
mixtures of red and white colonies before and after the three days of growth cycles.

doi:10.1371/journal.pgen.1005278.g007
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Third, the improvements in conjugation function come only at the cost of a growth deficiency
evident for all three RecA variants in competition experiments. For RecA V79L, that growth
deficiency reflects the increased DNA binding persistence. Normal growth is restored by over-
expression of the more robust RecX protein from Neisseria gonorrhoeae (Fig 7). The growth de-
ficiencies displayed by cells expressing the other two RecA variants might be explained by a
similar mechanism. The work reveals a critical evolutionary compromise between necessary
DNA repair processes and potentially deleterious genomic effects.

We previously noted the existence of RecA mutant proteins with enhanced recombination
potential [118]. In the current study, we have used a selection to generate variants with this
same capacity for greater recombination. The selection protocol is robust and reproducible.
The improved function of these RecA variants may provide a more robust platform for the
continued investigation of key recombinase activities. The increases in recombination docu-
mented in this study are reflected in many changes in RecA protein activities, but many of
them are subtle and unlikely to account for the enhancement on their own. ATP hydrolytic
rates are increased, but the coupling between ATP hydrolysis and DNA strand exchange ap-
pears to be reduced (DNA strand exchange actually proceeds slower rather than faster). DNA
pairing is improved for some of the RecA variants, but this is evident only at high pH. Our
working hypothesis is that the enhanced conjugational recombination reflects an overall in-
crease in RecA filament persistence on the DNA. This is seen in multiple assays in which the
rates of filament nucleation on SSB-coated ssDNA are increased for the RecA variants, and the
rates of RecA filament disassembly (in the presence of RecX or RecA K72R) are decreased.
Since ATP hydrolysis rates increase, a reduction in filament disassembly must come about via
a decreased coupling between ATP hydrolysis and RecA subunit dissociation at the 5'-proximal
end. That persistence in binding is perhaps best encapsulated by the greater overall binding of
the RecA protein variants to short oligonucleotide DNA substrates.

To promote conjugational recombination, RecA protein must bind to the transferred single
stranded DNA and carry out a complete genomic search for homology. In this context, more
persistent binding by a RecA filament makes sense. Improvements in this parameter should in-
crease the length of time available for a homology search and improve chances that a produc-
tive pairing will occur. In the context of recombinational DNA repair at a replication fork,
persistent binding of a RecA filament to DNA is not necessary and probably detrimental. At a
replication fork, the homologous DNAs to be paired are generally in close proximity; a wide-
spread genomic search for homology is not needed. A RecA filament that overstays its welcome
will simply be a barrier to productive replication restart.

A substantial reduction in sensitivity to the inhibitory EcRecX protein, seen for all three
characterized RecA variants, makes a significant contribution to the overall DNA binding per-
sistence that would occur in the cell. Elimination of recX function does not have major pheno-
typic consequences in wild type E. coli cells [105]. RecX helps to maintain an optimal balance
between active (bound) and disassembled RecA protein in the cell. A decline in sensitivity to
EcRecX helps lead to growth deficiencies, and expression of a more robust version of RecX pro-
tein can restore balance. The evolutionary significance of RecX is thus rendered more apparent.
In addition to RecX, the UvrD helicase has a major role in removing RecA filaments from the
DNA to keep them from impeding other aspects of DNAmetabolism [98–100, 148, 149]. Re-
cent work has shown that UvrD is defective in displacing RecA variants with enhanced DNA
binding properties such as RecA E38K [100]. This might also help explain the observed growth
deficiencies in strains expressing our RecA variants.

The current work begins to build a case that RecA filaments can represent substantial barri-
ers to replication and possibly to transcription, and that those barriers have cellular conse-
quences. An earlier and extreme example of RecA as a barrier came in the form of the RecA
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K250R mutant, which hydrolyzes ATP six times more slowly than the wild type protein [126].
This leads to a six-fold decrease in rates of filament dissociation from DNA, and an accompa-
nying six-fold decline in cell growth rate [126]. Suppressors arise quickly in strains expressing
RecA K250R, most of them inactivating the mutant recA gene [126]. Collisions between repli-
cation forks and bound recombinase filaments could have genome instability implications in
all cells.

The mutagenesis and selection method used here focused on one region of the protein rep-
resenting about 17% of the amino acid residues in RecA. Within this region, we have queried
every possible single base substitution with 90% confidence, and the library included some
double, triple, and quadruple mutant proteins (the library did not cover nearly all the possible
combinations of multiple mutations). The region selected, between residues 79 and 137, is not
the only part of the protein with the potential to generate variants with increased recombina-
tion potential. It was selected due to the presence of changes in the region that were previously
shown to produce the desired phenotype. A complete assessment of changes that could affect
RecA function in this way will require screens focusing on other recA gene segments.

RecA was originally discovered due to its effects on conjugational recombination [21], and
many early studies of recA were carried out in this context. The lack of optimization for conju-
gation during evolution, coupled to the growth deficiency that accompanies enhancement of
this process, provides yet another argument that recombinases did not evolve to promote chro-
mosomal genetic exchanges per se [11–14, 16, 126, 150]. Instead, recombination evolved to re-
pair double strand breaks [11–14, 16, 126, 150]. Genetic exchanges during conjugation, and
perhaps eukaryotic meiosis, reflect an evolutionary repurposing of pre-existing systems. The
functional compromise between the positive and negative effects of recombinases and recombi-
nation seems likely to take different forms in different species.

The residues affected by the more prominent mutations identified in our two separate selec-
tive screens are highlighted in Fig 8 (orange/red). Key residues bracketing the ATPase active
site at the subunit-subunit interface (K72 on one side [151, 152] and K248 and K250 on the
other [126, 136]) are shown in blue. Some of the residues identified in this study are at the sub-
unit-subunit interface (D100, D102, E86, C90, A131), but others are not (V79, I93). We hy-
pothesize that the variants in all of these residues may affect coupling of ATP hydrolytic events
to conformational changes and/or general allosteric communication between subunits. This
communication may in turn affect rates of filament disassembly. Continued work should eluci-
date subtle structure-function relationships that affect all aspects of the coupling of ATP hydro-
lysis to RecA function. The wild type RecA protein of Escherichia coli seems to have evolved to
do its job quickly and get out of the way.

Materials and Methods

DNA substrates and strains
Supercoiled double-stranded DNA and circular single-stranded DNA fromM13mp18 bacteri-
ophage were prepared as described previously [153]. Linear double-stranded DNA for strand
exchange reactions was generated by complete digestion of supercoiled DNA with PstI restric-
tion endonucleases. For D-loop forming reaction assays, 8 units of T7 exonucleases per μg of
DNA were used for an additional digestion of double-stranded DNA to form 150 nt long 3'
overhang. The concentration of dsDNA and ssDNA substrates were determined using absor-
bance at 260 nm and the conversion factors 108 μMA260-1 and 151 μMA260-1, respectively.
DNA concentrations are expressed in terms of total nucleotides.

Donor EAW175 and recipient EAW188 strains were constructed by P1 transductions from
several strains. EAW175 was made by a consecutive P1 transduction of, first, the Δ (metA)::kan
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llele from SS6311 into CAG5052 (KL227 btuB3191::Tn10 metB1 relA1 890!60) to obtain an in-
termediate strain EAW173, checked by Tetr and Kanr phenotypes, then followed by kan flip-
ping out and, second, the ilvO::kan allele from SS4761 into EAW173 strain, checking for both
Tetr and Kanr phenotypes.

To make recipient strain, kan was flipped out first from SS338 (Δ (attB)::psulA-gfp Δ (metE)
100::kan) strain and intermediate strain EAW174 was made by P1 transduction of the Δ
(aroB)::kan allele from SS2495 to SS3388. The ΔrecA::kan allele from EAW20 was then trans-
ferred to EAW174 by P1 transduction to make recipient EAW188. EAW188 was transformed
with pT7POL26.

EAW334 = MG1655 with recA I102L on the chromosome in the recA locus EAW334 was
constructed using a variation of the procedure of Datsenko and Wanner [154]. A plasmid with
the MG1655 region from the 200 bases upstream of the recA gene to 210bp downstream of the
stop of the recX gene was constructed. A cassette containing the KanR gene flanked by a mu-
tant FRT and a wt FRT was added just downstream of the stop of the recX gene to use as a re-
movable marker. This plasmid was designated pEAW675. A plasmid containing the recA gene
with an I102L mutation was digested with NcoI and EcoRI and the mutant DNA fragment was
ligated into pEAW675 digested with the same enzymes. The plasmid, designated pEAW884
was directly sequenced to confirm the presence of recA I102L. pEAW884 was used as a tem-
plate in a PCR with primers consisting of bases 200–180 before the start of recA, and 210–192
after the end of recX. The PCR product was electroporated into EAW20, which is MG1655Δ

Fig 8. RecA protein amino acid residues affected in RecA variants with increased recombination potential. Three RecA subunits in a RecA-ssDNA
nucleoprotein filament (from coordinates provided by Pavletich and coworkers [165]) are shown, with a surface contour rendering in which each subunit is
transparent but differently colored. The path of the ssDNA within the filament is shown by the black helical line. ADP residues are shown in green. The
ATPase active site is at the subunit-subunit interface. Three residues at the ATPase active site (K72 on one face and K248 and K250 on the opposing face)
are shown in blue. Prominent residues in which amino acid changes bring about enhanced recombination potential are shown in red/orange.

doi:10.1371/journal.pgen.1005278.g008

Recombination as an Evolutionary Compromise

PLOS Genetics | DOI:10.1371/journal.pgen.1005278 June 5, 2015 21 / 39



recA, containing the plasmid pKD46. A Kanamycin resistant colony was used as template in a
PCR, and the product was sequenced to confirm the presence of recA I102L. The KanR cassette
was popped out by transforming the strain with the FLP expression plasmid pLH29, and incu-
bating with IPTG.

EAW394 = MG1655 with recA V79L, and EAW410 = MG1655 with recA E86G+C90G on
the chromosome in the recA locus. EAW394 and 410 were constructed in a manner similar to
EAW334, with the plasmid containing recA V79L, or E86G/C90G digested with NcoI and
EcoRI and ligated into pEAW675 digested with the same enzymes.

pEAW947 = Ng recX in pBAD/Myc-HisA. Plasmid Ng recX (Siefert Lab) was used as the
template in a PCR with a primer consisting of a BspHI site followed by the bases 5–32 of the
Ng recX gene. The BspHI site contains bases 1–4 of the start of the Ng recX gene. A change was
made for better codon use at Leu7. The other primer consisted of a BamHI site followed by the
last 24 bases of the Ng recX gene. The PCR product was digested with BspHI and BamHI and
ligated to pBAD/Myc-HisA(Invitrogen) digested with NcoI and BglII, enzymes having com-
patible cohesive ends with BspHI and BamHI. The resulting plasmid, designated pEAW947
was directly sequenced to confirm the presence of Ng recX.

Construction of ΔaraBAD strains EAW214, 564, 568, 569. EAW214 was constructed using
a variation of the procedure of Datsenko and Wanner [154]. pEAW507, a plasmid containing a
mutant FRT-KanR- wt FRT cassette, was used as a template in a PCR. The primers consisted of
the 51 bases before the start of the araBAD promoter +20 bases before the mutant FRT, and
the 51bases after the stop of araD+21 bases after the other FRT. The PCR product was electro-
porated into MG1655/pKD46, and a Kanamycin resistant colony was selected. DNA from this
colony, designated EAW214, was used as a template in a PCR to confirm the presence of the
FRT-Kan R-FRT replacing the araBAD promoter and genes on the chromosome. P1 transduc-
tion was used to transfer the araBAD deletion into EAW394, 334, and 410. The resulting
strains were designated EAW564, 568, and 569. DNA from these strains was used as templates
in PCRs to confirm the presence of the FRT-Kan R-FRT replacing the araBAD promoter and
genes on the chromosome.

EAW575, and 578 = Gc recX on the chromosome in the Ec recX locus of wt recA, and recA
V79L. EAW575, and 578 were constructed using a variation of the procedure of Datsenko and
Wanner [154]. The mutant FRT-KanR- wt FRT cassette from pEAW507 was excised by EcoRI
and SalI digestion, and inserted after the end of the Gc recX gene of plasmid pEAW947, which
was digested with the same enzymes. The resulting plasmid, designated pEAW1016, was used
as template in a PCR with primers consisting of the 51bp of the E. coli chromosome before the
start of recX +the first 21 bp of the Gc recX gene, and the 51bp of the E. coli chromosome after
the end of recX+21 bases after the wt FRT of pEAW1016. The PCR product was electroporated
into MG1655, and a kanamycin sensitive version of EAW394, both containing the plasmid
pKD46. DNA from these strains was used as templates in PCRs, and sequenced to confirm the
presence of wt recA + Gc recX for EAW575, and recA V79L+Gc recX for EAW578.

Proteins
The E. coli RecX, Neisseria gonorrhoeae RecX [90], SSB [90] and the wild type RecA protein
[155, 156] were purified as previously described. The RecA V79L, RecA I102L, RecA E86G/
C90G mutant proteins were purified by the same means as the wild type RecA protein with the
following modifications. The plasmids encoding the mutant recA genes were transformed into
the ΔrecA and nuclease-deficient strain STL2669. The Polyethylenimine pellet was washed
with R Buffer (20 mM Tris-Cl buffer (80% cation, pH 7.5), 0.1 mM EDTA, 10% (w/v) glycerol,
1 mM dithiothreitol) and extracted twice with R Buffer plus 300 mM ammonium sulfate. After
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precipitation by ammonium sulfate to 50% saturation, the pellet was resuspended in R buffer
plus 1 M ammonium sulfate. Proteins were purified using chromatography on some combina-
tion of Butyl-Sepharose, Ceramic HAP, Source 15S, Source 15Q, DEAE sepharose columns.
Between columns, peak fractions were identified by SDS-PAGE and pooled together before di-
alyzing, if necessary. The concentrations of E. coli RecX, SSB and RecA proteins were deter-
mined from the absorbance at 280 nm using the native extinction coefficient 2.57 × 104 M−1

cm−1 [88], 2.38 × 104 M−1 cm−1 [157] and 2.23 × 104 M−1 cm−1 [158], respectively. The puri-
fied proteins were free of detectable nuclease activities on double stranded DNA and single
stranded DNA.

Library constructions
The oligonucleotide cassettes-directed method [159] from earlier study was modified to create
randomized libraries for E. coli RecA protein. The cassette mutagenesis procedure involves
the synthesis of a small, double-stranded DNAmolecule that can be ligated into a larger vector
fragment to reconstruct the gene of interest [160]. As an in vivo expression vector, the plasmid
pACYC184 with T7 promoter and recA gene was digested with restriction enzymes SapI and
PstI to generate a backbone fragment. A double-stranded DNA fragments corresponding to
the region between sites SapI and PstI was made by annealing three separate oligonucleotides.
Only two oligonucleotides were randomly mutated through incorporation of degenerate DNA
sequence using different molar ratios of four nucleotides as mixtures during synthesis. The ra-
tios were 99% to 0.33% and 98.5% to 0.5%, corresponding to wild-type base to each of the
other bases. These two oligonucleotides were placed abreast and annealed to the other com-
plementary oligonucleotide to make randomized double-stranded DNA molecule. The last
oligonucleotide was synthesized without mutations to avoid too many mismatches, thus in-
crease annealing efficiency between complementary strands. This small DNA inserts were
then ligated to the backbone fragment to generate the mutagenized plasmid library, which
was transformed into the DH5α cells by electroporation. More than 27,500 grown colony iso-
lates were combined in a pool and the population of recA gene-bearing plasmid was purified.
The recipient cells were transformed with the purified plasmid DNA pool for conjugational
assay.

Confidence intervals
In order to determine the number of clones necessary to achieve 90 and 95 percent confidence
of the presence of all 531 clones, a Monte Carlo simulation was designed. A simple code was
written, using Python (http://www.python.org), to pick a number out of 531 at random and
keep picking numbers until the entire set of numbers 1 to 531 was selected. The total number
of selections needed to complete the set was recorded for each trial, with the trial ending when
the entire set of numbers was selected. With each number from 1 to 531 representing a differ-
ent possible mutation, the total number of clones needed to get all 531 mutations for each trial
was represented by this total.

One million trials were run using this code. A 90 percent confidence level that all 531 muta-
tions are present in a group of clones means that more than 900,000 trials must have a number
of clones less than the group in question. Similarly, to be 95 percent confident, 950,000 trials
must have a number of clones less than the group in question. This was done in Excel by total-
ing up the histogram data from the simulation and finding the minimum number of clones
needed to obtain the entire set of 531 mutations in at least 900,000 and 950,000
trials, respectively.

See the supplementary materials for the source code for this simulation.
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Conjugational recombination assays
Conjugation was carried out essentially as described before [161] with following exceptions.
Donor strain was grown at 37°C in Luria-Bertani (LB) broth with Tetracycline until an optical
density (OD600) of 0.7 was reached. Recipient strain was grown with Chloramphenicol, Kana-
mycin and Streptomycin until an optical density (OD600) of 0.4 was reached and then induced
for 40 minutes with Isopropyl β-D-1-thiogalactopyranoside (IPTG) of final 40 μM. The con-
centration of IPTG was optimized for producing about 700–800 recombinant colonies per
1,000,000 donors at a cross requiring transfer of one marker (two crossovers), using recipients
expressing wild type RecA protein from the same expression used in library construction. Both
strains were spun down and gently resuspended in the amount of initial volume of fresh LB
broth to remove antibiotics. Mating was carried out by mixing 200 μl of donor cells with
1800 μl of recipient cells and incubating 100 min at 37°C. The 200 μl of the mating mixture was
mixed with 3 ml of pre-warmed 0.7% Bacto agarose solution to prevent additional mating and
immediately poured onto a selective media plate. The plate was sat for a few minutes at a room
temperature and turned upside down and incubated for 40 hours at 37°C.

During repeated rounds of conjugation, all of mating mixtures were poured onto selective
media plates. After each round, the resulting recombinant colonies were combined in a pool
and the population of recA gene-bearing plasmids was isolated and stored. The isolated plas-
mid pool was introduced into a new batch of recA- recipient cells for the next round of
conjugational cross.

Illumina sequencing preparation and analysis
The plasmid population pools isolated after 4th, 5th and 6th rounds of conjugational assay
were selected and subjected to Illumina deep sequencing. Each pool of mutated recA gene was
PCR-amplified with lower number of cycles and submitted to University of Wisconsin Biotech-
nology Center (UWBC) for amplicon library preparation and sequencing using the Illumina
genome analyzer. Libraries were prepared for sequencing according to the manufacturer’s in-
structions with the following modifications. The initial input into each reaction was 100 ng of
amplicon DNA, size selection procedure was omitted since library samples were single PCR
products and PCR amplification was performed with 11 total cycles.

Data analysis was performed at the UWBC Bioinformatics Resource Center as following.
Paired-end HiSeq data was merged using FastqJoin (http://code.google.com/p/ea-utils/wiki/
FastqJoin). The un-joined reads were trimmed for low quality bases using the fastx toolkit
(http://hannonlab.cshl.edu/fastx_toolkit) and joined by concatenating the reverse complement
of reverse read to the end of forward read. The merged and joined sequences were then aligned
to the recA sequence using the classic Smith—Waterman algorithm. The alignment adjusted
for gaps and missing sequence data to produce a nucleotide counts by position summary. The
unique reads were also counted and translated using the standard codon translation table. Se-
quences and the corresponding translations were evaluated for the variant and effects and then
ranked according to the number of supporting combined reads.

Electron microscopy (EM) experiments
Amodified Alcian method was used to visualize RecA filaments on cssDNA. Activated grids
were prepared as described previously [133]. All reactions were prepared by pre-incubating
3 μMRecA and 5 μMM13mp18 cssDNA, 25 mM Tris-OAc (80% cation) buffer, 5% (w/v)
glycerol, 3 mM potassium glutamate, and 10 mMMg (OAc)2. All reactions were carried out at
37°C. For an ATP regeneration system, 10 units/ml pyruvate kinase and 3.0 mM phosphoenol-
pyruvate were also added to pre-incubation mixture. After 10 min pre-incubation, 3 mM of
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ATP and 0.5 μM of SSB were added. After another 7 min, the RecX protein to a 100 nM or the
equivalent volume of RecX storage buffer was added. ATPγS was then added to 3 mM, followed
by 1 minute incubation. The reaction solution was then diluted to a final DNA concentration
of 0.0004 μg/μl with 200 mm ammonium acetate, 10 mm HEPES (pH 7.5) and 10% glycerol
and adsorbed onto Alcian grids for 3 min. The grid was then touched to a drop of the above
buffer, followed by floating on a drop of the same buffer for 1 min. The sample was then
stained by touching to a drop of 5% uranyl acetate followed by floating on a fresh drop of 5%
uranyl acetate for 30 seconds. Finally, the grid was washed by touching to a drop of double dis-
tilled water followed by immersion in two 10 ml beakers of double distilled water. After the
sample was dried, it was rotary-shadowed with platinum. This protocol is designed for visuali-
zation of complete reaction mixtures, and no attempt was made to remove unreacted material.
Although this approach should yield results that provide insight into reaction components, it
does lead to samples with a high background of unreacted proteins.

To determine the proportion of the molecules observed that were either fully or partially
coated by RecA protein or bound only by the SSB protein, at least two separate regions of two
to three independent experiments were counted at an identical magnification for each sample.
"Full" filaments completely encompassed the circular DNA molecule or had small discontinui-
ties in the regular striated pattern of the filament. A molecule was considered gapped if it had a
detectable region of SSB-coated DNA of any size. Imaging and photography were carried out
with a TECNAI G2 12 Twin Electron Microscope (FEI Co.) equipped with a GATAN 890
CCD camera. Digital images of the nucleoprotein filaments were taken at X 15,000 and X
26,000 magnification as is evident from the scale bar.

The observed lengths of the RecA filaments and the length of SSB-coated DNA were used
to assign counted molecules to five categories: full filaments, medium filaments, small fila-
ments, very small filaments or SSB/DNA molecules. Linearized DNA molecules, likely origi-
nating from shearing force during pipetting, were also counted. A RecA filament was
considered a full filament if it does not have a detectable region of SSB coated DNA or a re-
gion that appeared to reduce the filament length by less than 10%. Medium filaments were
smaller in length than full filaments, but still had substantial regions of nucleoprotein fila-
ment. Small filaments were generally less than half the length of full filaments, and often had
regions of obvious SSB binding. Very small filamented molecules are those with just detect-
able segments of RecA filamented regions, with the rest of the molecule coated with SSB.
With the total number of molecules counted as 100%, the percentage of each type of nucleo-
protein filament was calculated. At least four separate regions of the grids encompassing at
least 500 DNA molecules for each time point were counted at the identical magnification for
each sample.

For each RecA variant, length measurements were carried out using Metamorph analysis
software on 10 molecules selected at random from each of the five categories (excepting linears)
that represented more than 10% of the total molecules in a given sample. In total, between 20
and 70 molecules from each of these five classes were measured, bound to the same ssDNA
substrate. The complete set of measurements is provided in Table 2. Each filament was mea-
sured three times, and the average length was calculated. The 500 μm scale bar was used as a
standard to calculate the number of pixels per μm. Each nucleoprotein fragment length, origi-
nally measured by Metamorph in pixels, was thus converted to μm.

ATP hydrolysis (ATPase) assays
A coupled spectrophotometric enzyme assay [162, 163] was used to measure the DNA-depen-
dent ATPase activities of the RecA protein. In this assay, the regeneration of ATP from ADP
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by pyruvate kinase and phosphoenolpyruvate was coupled to the oxidation of NADH by lactate
dehydrogenase. The conversion of NADH to NAD+ was monitored as a decrease in absorbance
at 380 nm rather than 340 nm, in order to remain in the linear range of the spectrophotometer
for the duration of the experiment. The amount of ATP hydrolyzed over time was calculated
using the NADH extinction coefficient at 380 nm of 1.21 mM-1cm-1. The assays were carried
out on either a Varian Cary 300 dual beam spectrophotometer equipped with a temperature
controller and a 12-position cell changer or Perkin Elmer Lambda 650UV/Vis spectrometer
with 9+9 cell changer. The cell path length was 1.0 cm and the band pass was 2 nm. All reaction
samples contained 25 mM Tris-OAc (80% cation, pH 7.4), 1 mM DTT, 3 mM potassium gluta-
mate, 10 mMMg(OAc)2, 5% (w/v) glycerol, an ATP regeneration system (10 units/ml pyruvate
kinase and 3.0 mM phosphoenolpyruvate), 10 units/ml lactate dehydrogenase, 2.0 mM
NADH, 5 MM13mp18 cssDNA or poly(dT) and 3 μMRecA proteins unless otherwise speci-
fied in the Fig legends.

DNA three-strand exchange reaction experiments
DNA three-strand exchange reactions were carried out at 37°C in 25 mM Tris-OAc (80% cat-
ion, pH 7.4), 1 mM DTT, 3 mM potassium glutamate, 10 mMMg(OAc)2, 5% (w/v) glycerol,
an ATP regeneration system (10 units/ml pyruvate kinase and 2.0 mM phosphoenolpyruvate).
The final pH after the addition of all reaction components was 7.4. The wild-type RecA pro-
tein and RecA mutant proteins (3.5 μM) were preincubated with 10 μMM13mp18 cssDNA
for 10 min. The mixture of SSB protein (1 μM) and ATP (3 mM) was then added, followed by
10 min of incubation. DNA strand exchange reactions were initiated by the addition of
M13mp18 lds (20 μM). Strand exchange reactions with EcRecX proteins were also carried out
with the same concentration of DNA and proteins. For this reaction, RecX protein (0.1 μM)
was added and incubated for 10 min before the reactions were initiated by adding ldsDNA. A
15 μl reaction aliquots were mixed with 5 μl of a solution containing 3 μl of Ficoll (0.4% bro-
mophenol Blue, 0.4% xylene cyanol, 25% Ficoll, 120 mM EDTA) and 2 μl of 10% (w/v) SDS,
and incubated for 40 min at 37°C to stop the reaction. Aliquots were loaded on a 0.8% agarose
gel, and electrophoresed at 50 mA overnight at room temperature. The DNA was visualized
by ethidium bromide staining and exposure to UV light. Gel images were captured with GE
Typhoon FLA 9000 biomolecular imager and quantified using ImageQuant TL software from
GE healthcare.

D-loop forming reaction assays
D-loop forming reaction assays were carried out at 37°C in 25 mM Tris-OAc (80% cation, pH
7.4), 1 mM DTT, 3 mM potassium glutamate, 10 mMMg(OAc)2, 5% (w/v) glycerol, an ATP
regeneration system (10 units/ml pyruvate kinase and 2.0 mM phosphoenolpyruvate). The
final pH after the addition of all reaction components was 7.4. The wild-type RecA protein and
RecA mutant proteins (2 μM) were preincubated with 10 μM 3' overhung M13mp18 ldsDNA
for 10 min. The mixture of SSB protein (1 μM) and ATP (3 mM) was then added, and incubat-
ed for an additional 10 min. The reactions were started by adding 10 μMM13mp18 cds. A
15 μl reaction aliquots were mixed with 5 μl of a solution containing 3 μl of Ficoll (0.4% bromo-
phenol Blue, 0.4% xylene cyanol, 25% Ficoll, 120 mM EDTA) and 2 μl of 10% (w/v) SDS, and
incubated for 40 min at 37°Cto stop the reaction. Aliquots were loaded on a 0.8% agarose gel,
and electrophoresed at 50 mA overnight at room temperature. The DNA was visualized by
ethidium bromide staining and exposure to UV light. Gel images were captured with GE Ty-
phoon FLA 9000 biomolecular imager and quantified using ImageQuant TL software from
GE healthcare.
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UV radiation and ciprofloxacin sensitivity tests
For UV irradiation sensitivity test, cells (EAW 105, 334, 394 and 410) were grown, serially di-
luted, and 100 μl of appropriate dilutions were spread onto LB plates. Dilutions for samples/
treatments were empirically determined. The plates were then exposed to UV in a calibrated
Spectrolinker XL-1000 UV crosslinker (Spectronics Corp) to the dose indicated. After incubat-
ing at 37°C overnight, the colonies were counted and divided by the dilution factor to get cfu/
ml. For percent survival, colony counts on the treated plates were divided by the counts on un-
treated plates.

For ciprofloxacin experiments, plates were poured with LB agar containing the ciprofloxacin
(0.01 μg/ml). Cells were grown, serially diluted, and spot plated (10 μl, 10−2 through 10−6) on
the ciprofloxacin-containing plates. Pictures were taken after growing overnight at 37°C.

Cell competition assays
Wild type cells, and in cells expressing any of several variant forms of RecA protein at the nor-
mal recA chromosomal locus, were modified to carry a neutral Ara– mutation (which confers a
red color on colonies when grown on tetrazolium arabinose (TA) indicator plates) to permit
color based scoring of mixed populations [147]. Cells from a fresh single colony of each strain
were cultured in LB broth [161] at 37°C with aeration. After growth overnight, competition
cultures were started by inoculating 3 ml fresh LB broth with 30 μl of competition Ara+ or
Ara– strains and grown overnight at 37°C with shaking. Equal amounts of strains to be com-
pared were mixed. A sample of the mixture was taken, diluted by a factor of 10−6, and plated
on tetrazolium arabinose indicator plates. Then, 3 ml fresh LB broth was inoculated with 30 μl
of the mixture, and grown overnight. The plating, inoculation, and growth cycle was repeated
two more times. For experiments using cells containing plasmid pEAW947 (expressing
NgRecX protein from the araBAD promoter), media was supplemented with 1% arabinose.
White and red colonies were counted on plates containing 40–300 colonies, and the % of cells
expressing mutant RecA proteins was determined. For counting colonies, plates with fewer
than 20 colonies of either competitor were excluded to reduce the effect of outliers caused by
low counts [164].

SOS response assay
Overnight cultures were diluted 1:100 in fresh LB, and 200 μl was added to the wells of a black-
walled, clear-bottom 96 well plate (Corning). For each sample, three overnights were grown
from separate colonies, and each overnight filled three wells in the plate (three biological and
three technical replicates, for nine total wells per sample). The plate was inserted into a Tecan
infinite M1000 Pro plate reader. A program was used to incubate the plate at 37°C with orbital
shaking. Every 10 min, the plate was briefly shaken linearly, and the OD600 and 509 nm emis-
sion (with 474 nm excitation) was read. SOS response was induced by adding ciprofloxacin
(0.005 μg/ml) 3 hours after inoculation.

Supporting Information
S1 Text. Source code for confidence determination (in Python).
(DOCX)

S1 Fig. Characterization of the RecA mutant library. (A) Number of base substitutions in
mutagenized recA genes and corresponding frequencies. Once recipient cells were transformed
with the mutagenized recA plasmid pool, 42 randomly chosen single colony isolates were se-
quenced to estimate the actual recAmutation frequency. More than 70% of sequenced plasmids
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had no substitution, 16.6% had single substitutions, and sequences with more than two substi-
tutions were below 5%. More than 27,500 single colonies, each transformed with a library plas-
mid, were combined together to make an initial cell library possessing more than 4,565
colonies (16.6% of the 27,500) with independent single base substitutions. (B) Determination
of the number of colonies required to include all 531 single substitutions. A Monte Carlo simu-
lation (see methods) was designed and run to determine the probability that our 4,565 mutant
colonies included all 531 of the possible single substitutions that could occur within this 177
nucleotide (59 codon) region. The code was set up to choose a number at random from 1 to
531, and keep picking numbers until the entire set of numbers 1 to 531 was selected. The total
number of random selections needed to accumulate the entire set of 531 was recorded for each
trial, with each trial ending when the entire set of numbers was selected. One million trials
were run using this code. “Number of trials requiring X mutants” is the number of total trials
in which the number of random selections shown on the X axis was required to obtain all 531
possible mutations. The histogram shown details the output of these trials. This exercise de-
fined the 90% confidence level as 4, 521 colonies, and the 95% confidence level as 4,904 colo-
nies. With approximately 4,565 colonies with single base substitutions collected, our library
meets the 90% confidence criterion.
(TIF)

S2 Fig. Mutant to wild type RecA ratio as a function of selection cycle. The plasmid pools
isolated from a broad sample of the pool of recombinant colonies generated after 4th, 5th and
6th round of conjugation were subjected to deep sequencing and summarized. The complete
sequences were translated and placed in one of two categories, sequences with missense muta-
tion and sequences with no or silent mutations.
(TIF)

S3 Fig. Mutants detected after deep sequencing of the first directed evolution trial after the
4th, 5th and 6th cycle of selection.Heights of the bars reflect the percentage of the overall
population represented by that mutant. The height of the light blue portion of each bar denotes
the fraction of a particular mutant present as a single mutant. The medium blue and dark gray
indicate the fraction of a particular mutation that were present as part of a double or triple mu-
tant variant, respectively. All mutants representing more than 0.5% of the total recA genes are
shown. Sequences from 4th, 5th and 6th round of conjugation in the first trial were translated
to determine specific amino acid changes arising with prominence in the population. All
amino acid changes which emerged from the 4th round of conjugation (V79L, E86G, C90G,
I93L, H97Y, D100A, I102L and N113I) were consistently found through the 6th round of con-
jugation. The portion of the population with each of these mutations continued to increase
with successive cycles except H97Y and N113I. Several amino acid changes (E127A, C129V,
A131G, A131V, L132V and G136R) generated near the carboxyl-terminus of the mutated re-
gion appeared at detectable levels only after the 5th round of conjugation, and all occurred as
part of double or triple mutants, such as E127A/A131G or C129V/A131V/L132V. The V79L
and I102L single changes were the most prominent after every conjugation cycle, representing
7.5% and 10.8% of the population, respectively, after the 6th cycle of conjugation. The E86G/
C90G double mutant was less than 2% of the population until the 5th conjugation cycle, but re-
markably increased to 7.0% after the 6th round conjugation.
(TIF)

S4 Fig. Mutations detected after deep sequencing of the second directed evolution trial
after the 5th, 6th and 7th cycle of selection.Many of the same mutants were detected in both
trials. Beginning with the original library, the entire selection procedure was repeated to
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determine reproducibility. A total of 7 cycles of selective conjugation were carried out in this
2nd selection experiment. The first three cycles were set up to require 4 crossovers, and the last
four cycles required 6 crossovers. The amino acid changes found after 5th, 6th and 7th round
of conjugation in this second selection experiment are shown in panel B. The I93L variant was
most prominent after the seventh cycle (13.0% of the population), and the A131G variant was
the second most prominent at 8.9%. The V79L and I102L changes that dominated the first ex-
periment were 3.7% and 0.5% of the population, respectively. Bar coloring is as in S3 Fig.
(TIF)

S5 Fig. The results after the final round of selection in both the 1st and 2nd directed evolu-
tion trials are aligned for comparison. Importantly, most of the RecA single mutants selected
for in the second experiment were also found in the first experiment. The exceptions were lim-
ited to two variants (D100A and G136R) found only in the first experiment, and three others
(A81V, A104V and D110A) found only in the second. The results suggest that the selection
protocol is near saturation with respect to identifying RecA variants with improved recombina-
tion capacity in this region of the recA gene. Bar coloring is again as in S3 Fig.
(TIF)

S6 Fig. Exchange of RecA variant protein between free and bound forms during three
strand exchange reactions. RecA variant protein (0.8 μM) and M13mp18 ssDNA (2.4 μM)
were incubated for 10 min to form nucleoprotein filament and ATP (3 mM) and SSB protein
(0.24 μM) mixture was added to initiate reaction. The ATPase activity was monitored for 10
min before addition of the indicated amounts of RecA K72R mutant protein. RecA K72R addi-
tion (arrow) represented 0–80% of the concentration of the wild type RecA protein. The reac-
tion was monitored another 20 min and M13mp18 ldsDNA (4.8 μM) was then added to
initiate the DNA strand exchange reactions (second arrow). (A) ATP hydrolysis of wild type
RecA protein during the reaction, (B) RecA V79L, (C) RecA I102L and RecA E86G/C90G and
(D) wild type RecA and all variants with 0% or 80% K72R challenges. For the wild type RecA
protein, the exchange of RecA subunits between free and bound forms is limited when RecA
filaments are formed on closed circular ssDNA and SSB is added after RecA. The exchange be-
tween free and bound forms increases substantially when DNA strand exchange is initiated
[42, 43, 114, 140]. This set of challenge experiments was carried out to assess RecA filament dy-
namics for the wild type and mutant proteins during strand exchange reactions. In this experi-
ment, M13mp18 cssDNA was incubated with a stoichiometric concentration of either wild
type or one of the selected mutant RecA proteins and ATP hydrolysis was initiated with addi-
tion of ATP and SSB protein mixture. After 10 min incubation, RecA K72R mutant protein,
which binds but does not hydrolyze ATP [151], was added in amounts equivalent to 0%, 20%,
40%, 60% or 80% of the prebound RecA protein. After 20 min, the addition of M13 lds DNA
was followed to trigger a strand exchange reaction. The RecA K72R mutant protein was used
to detect RecA protomer exchange in the filament interior, as replacement of the bound RecA
with the K72R mutant will lead to a decline in the measured ATPase [42]. The addition of
RecA K72R at different levels prior to ldsDNA addition only slightly affected the rate of ATP
hydrolysis as seen in the small decline during the last 7~8 min before adding ldsDNA, indicat-
ing a relatively low level of RecA protomer exchange. However, when homologous dsDNA was
added to initiate strand exchange reaction, the rate of ATP hydrolysis noticeably declined due
to the replacement of wild type protein with RecA K72R mutant protein [140]. The rates re-
ported here reflect reaction velocities rather than apparent kcat values. Panel A illustrates the
immediate decline ATP hydrolysis rate of the wild type RecA protein proportional to the
amount of added RecA K72R protein after the addition of M13 ldsDNA. At the highest level of
added RecA K72R protein, the rate of ATP hydrolysis of wild type RecA protein declined by
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nearly 87% over the course of the 70 min time course. The rates seen with the RecA variants de-
clined as well, but the declines were somewhat reduced, ranging from a 70.5% reduction by the
RecA V79L variant (20.1 ± 2.6 μM/min (before adding lds) to 5.9 ± 2.0 μM/min (at 50~70
min) to an 84.4% reduction for the RecA E86G/C90G mutant (from 10.5 ± 4.9 to 1.6 ± 0.6 μM/
min). The results suggest a modest reduction in filament dynamics during strand exchange for
the RecA variants.
(TIF)

S7 Fig. RecA-mediated DNA strand exchange by RecA variant proteins. RecA variant pro-
teins were incubated with M13mp18 ssDNA to form nucleoprotein filaments and ATP hydro-
lysis began with addition of ATP and SSB protein mixtures. After another 10 min, three strand
exchange reactions were initiated by adding M13mp18 ldsDNA. (A) The reactions were moni-
tored by the agarose gel assay. The symbols mean: I, reaction intermediates; P, nicked circular
DNA reaction products; S, linear duplex DNA substrates; and ss, circular ssDNA substrates.
(B) Quantification of products and intermediates formed in the reactions. The capacity of the
RecA variant proteins to promote DNA strand exchange was examined in this experiment.
The reaction used is a standard assay in which RecA filaments formed on closed circular
ssDNA promote strand exchange with homologous linear duplexes to yield a nicked circular
duplex product. Branched DNA structures migrating above the product band in an agarose gel
are intermediates in these reactions. As shown in panel A, the production of reaction interme-
diates was greater with the RecA variant proteins, particularly RecA I102L. However, those in-
termediates were converted to products more slowly than was the case with the wild type
protein. The results suggest a modest reduction in the observed coupling between ATP hydro-
lysis and DNA strand exchange [43, 126, 128, 141, 142] in the variants.
(TIF)

S8 Fig. D-loop formation promoted by RecA variant proteins at two different pHs. For the
reaction, the RecA variant was incubated for 10 min with M13mp18 ldsDNA with 30 extension
on which the RecA protein was bound. ATP and SSB protein were added, and incubation con-
tinued for another 10 min before the addition of M13mp18 cdsDNA to initiate the reaction.
The same reaction was carried out at both pH 7.5 and pH 8.8. (A) Agarose gel assay of reac-
tions carried out in pH 7.5 buffer and quantification of D-loops formation. (B) Same reaction
in pH 8.8 buffer and corresponding quantification. The decline in D-loops seen with time in
some reactions reflects a D-loop cycle described by Radding and colleagues in the early 1980s
[166, 167]. In this assay, RecA protein was first incubated with the M13mp18 linear dsDNA
(ldsDNA) with a 3' single-stranded DNA extension to which the RecA bound, and then
M13mp18 circular and supercoiled dsDNA (cdsDNA) was added to initiate reaction. RecA fil-
ament formation along the 3' tail led to strand invasion within a homologous cdsDNA, result-
ing in a D-loop. The wild type RecA began to form D-loops within 2 min and accumulated D-
loop products up to 24.3 ± 1.1% after 15 min of reaction, followed by decrease of product. The
RecA I102L mutant protein generated 25.5 ± 1.7% of final D-loop product at pH 7.5, suggest-
ing little change in DNA pairing activity. The RecA V79L and RecA E86G/C90G mutant pro-
teins exhibited somewhat lower D-loop forming activity than wild type RecA protein in that
total amount of final products were 21.1 ± 3.6% and 21.0 ± 2.9%, respectively. The D-loop
forming reaction assay was also carried out at higher pH, which was reported to inhibit RecA
protein binding to dsDNA [37, 168, 169]. At pH 8.8, the D-loop forming activity of the wild
type RecA protein declined by 56%. The reduction was substantially smaller for the RecA
I102L and E86G/C90G mutant proteins, with 28.2% and 1.9% less D-loop product, respective-
ly. The RecA V79L mutant protein produced a 10% gain in total product in pH 8.8, and pro-
moted the reaction substantially better than the wild type protein. In general, the RecA variants
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exhibit a slightly enhanced DNA pairing activity, but only at high pH. It is not clear that this
would translate into an activity advantage in the cell.
(TIF)

S9 Fig. The effect of the RecX protein on three strand DNA exchange by RecA variant
proteins. These experiments are identical to those in S7 Fig except for the addition of RecX
protein (50 nM) at 7 min after the ATP and SSB were added and followed by 10 min incuba-
tion with RecX prior to the initiation of the strand exchange reaction. (A) Reactions moni-
tored by the agarose gel assay. Symbols are as in S7 Fig legend. (B) Quantification of products
and intermediates formed in the reactions. In this reaction, the wild type RecA protein began
to form very small amounts of final products after 30 min incubation with the ldsDNA and
only 2.4 ± 0.1% of total DNA substrates were resolved to final products after 100 min of reac-
tion. For the RecA variants, some products appeared earlier, after 20 min reaction. Forma-
tion of intermediates also increased. Approximately 4.2~6.9% were transformed to final
products. These results also indicate an improved capacity of the RecA variants to resist the
inhibitory effects of RecX, although extensive strand exchange does exhibit substantial inhi-
bition.
(TIF)

S10 Fig. Conjugational recombination activity test for RecA V79L in the presence or ab-
sence of recX gene on the recipient chromosome. To investigate in vivo RecX function on
conjugational recombination activity of wild type RecA protein and RecA V79L mutant pro-
tein, the recX gene was deleted (EAW537) from the recipient strain expressing wild type RecA
and RecX protein(EAW174). A strain expressing RecA V79L variant (EAW530) was also tested
in a ΔrecX context (EAW542).
(TIF)
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