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Simple Summary: Despite the breakthrough in human cancer immunotherapy, colorectal cancer,
except for the small subset of microsatellite instable colorectal cancer (MSI, ~4% total cases), is one
of the few human cancers that does not respond to current immune checkpoint inhibitor (ICI) im-
munotherapy. CTLs are present in both MSI and microsatellite stable (MSS) human colon carcinoma,
suggesting that PD-L1-independent mechanisms may exist and suppress CTL activation in the colon
tumor microenvironment. We determined that osteopontin (OPN) inhibits tumor-specific cytotoxic T
lymphocyte (CTL) lytic activity to promote colon tumor growth in vivo. Accordingly, OPN blockade
immunotherapy using OPN neutralization monoclonal antibodies 100D3 and 103D6 suppressed
colon tumor growth in vivo. Our findings indicate that 100D3 and 103D6 has the potential to be
further developed for colorectal cancer immunotherapy.

Abstract: Human colorectal cancers are mostly microsatellite-stable with no response to anti-PD-1
blockade immunotherapy, necessitating the development of a new immunotherapy. Osteopontin
(OPN) is elevated in human colorectal cancer and may function as an immune checkpoint. We
aimed at elucidating the mechanism of action of OPN and determining the efficacy of OPN blockade
immunotherapy in suppression of colon cancer. We report here that OPN is primarily expressed in
tumor cells, myeloid cells, and innate lymphoid cells in human colorectal carcinoma. Spp1 knock out
mice exhibit a high incidence and fast growth rate of carcinogen-induced tumors. Knocking out Spp1
in colon tumor cells increased tumor-specific CTL cytotoxicity in vitro and resulted in decreased
tumor growth in vivo. The OPN protein level is elevated in the peripheral blood of tumor-bearing
mice. We developed four OPN neutralization monoclonal antibodies based on their efficacy in
blocking OPN inhibition of T cell activation. OPN clones 100D3 and 103D6 increased the efficacy
of tumor-specific CTLs in killing colon tumor cells in vitro and suppressed colon tumor growth
in tumor-bearing mice in vivo. Our data indicate that OPN blockade immunotherapy with 100D3
and 103D6 has great potential to be further developed for colorectal cancer immunotherapy and for
rendering a colorectal cancer response to anti-PD-1 immunotherapy.

Keywords: osteopontin; immune checkpoint; cytotoxic T lymphocytes; MSS; OPN neutralization; PD-L1

1. Introduction

Human colorectal cancer is a type of highly immunogenic tumor [1,2], but only the
small subset of microsatellite instable (MSI) colorectal cancer, which accounts for only ap-
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proximately 4% of human colorectal cancer cases, responds to anti-PD-1 immunotherapy [3].
High tumor mutation burdens (TMB) may serve as neoantigens to generate tumor-reactive
cytotoxic T lymphocytes (CTLs) in MSI colorectal cancer [3,4]. However, CTL infiltrates are
present in both MSI and microsatellite stable (MSS) human colon carcinoma [5], suggesting
that other immune checkpoints may compensate for PD-L1 function in suppression of
tumor-infiltrating CTL effector function in human colorectal carcinoma [4].

Osteopontin (OPN), a phosphorylated glycoprotein, was first identified as a secreted
protein in bone and later discovered as an intracellular protein [6]. It has since been
determined that OPN is often overexpressed in cells of the tumor microenvironment to
promote tumor growth and progression in human cancer patients [7–10]. OPN protein
is elevated in the peripheral blood of human cancer patients and OPN overproduction is
associated with worse prognosis in human cancers [10–15]. OPN may directly regulate
tumor cell proliferation, migration through binding to CD44 or the integrin receptors on
tumor cell surface [16–19]. Tumor-secreted OPN also binds to αVβ3 integrin and CD44
on fibroblasts to reprogram normal fibroblasts into tumor-promoting cancer-associated
fibroblasts in mammary carcinoma [20]. OPN also modulates immune cell function in
various disease settings [16,21]. In fact, OPN was also initially identified as a regulator of T
cell activation and was termed the early T cell activation gene (Eta-1) [22]. Early studies
have determined that OPN regulates type-1 immunity to viral and bacterial infection
through regulation of IL-12 and IL-10 expression in myeloid cells and T cells [23,24]. In
addition, OPN-deficient mice exhibit altered invariant NKT (iNKT) cell maturation and
function with downregulation of the iNKT cell receptor, reduced IL-4 production and
decreased Fas ligand expression, leading to reduced Fas/FasL-dependent cytotoxicity
against hepatocytes [25].

Emerging experimental data indicate that, unlike its functions as an immune acti-
vator under physiological conditions, OPN functions as an immune suppressor in the
tumor microenvironment through regulating myeloid cells and T cells [9,26–29]. OPN
induces M2 macrophage polarization, maintains M2 macrophage phenotypes, and acts as a
chemoattractant for tumor-associated macrophages [26,30,31]. In return, tumor-associated
macrophages produce abundant OPN that not only directly targets tumor for migration and
progression [32,33], but also suppresses T cell activation and function [26,27,34,35]. These
findings suggest that OPN may function as an immune checkpoint in T cells in the tumor
microenvironment, which underlies colorectal tumor immune evasion and non-response
to anti-PD-1 immunotherapy [26,27,36]. We aimed at testing this hypothesis by generating
OPN neutralization monoclonal antibodies to block OPN and T cell interactions. Our data
indicate that OPN blockade immunotherapy increases tumor-specific CTL effector function
and decreases colon tumor growth in vivo.

2. Materials and Methods
2.1. Human Colorectal Carcinoma Specimens

Human colorectal carcinoma and matched adjacent non-neoplastic colon were pro-
vided by Cooperative Human Tissue Network Southern Division (CHTN, Duke University
Medical Center) (Table S1).

2.2. Patient Dataset Analysis

OPN mRNA level and survival datasets were extracted from the TCGA and ON-
COLNC databases. OPN mRNA expression level between tumor tissues and the respective
normal tissues was plotted. Kaplan–Meier survival curves were generated at a 50:50 ex-
pression high and low cut off. Single cell RNA sequencing (scRNA-Seq) of human colon
and breast cancer raw datasets were extracted from the GEO database (GSE146771 and
GSE114727) [37,38]. The datasets were analyzed using R package.
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2.3. Mice

Balb/c, C57BL/6, and Spp1 KO mice were purchased from Jackson Laboratory (Bar
Harbor, ME). Both male and female mice were used. All mice used in this study were
2–3 months old at the start of the experiment.

2.4. Methylcholanthrene (MCA) Induction of Tumor Development

The chemical MCA is a highly carcinogenic polycyclic aromatic hydrocarbon and
induces immunogenic fibrosarcoma [39,40]. MCA was dissolved in peanut oil and injected
to the right flank of mice (100 g/100 L). A single tumor nodule forms approximately
2–3 months later at the site of MCA injection. Mice were monitored for tumor growth.

2.5. Colon Tumor Mouse Model

CT26 cells were injected to mice (2 × 105 cells/mouse) through the lateral tail vein.
For quantification experiments, mice were sacrificed at the experimental endpoint and
tumor nodules were quantified as described [41].

2.6. OPN Neutralization Monoclonal Antibody Generation

Five C57BL/6 mice were immunized with 50 g/mouse recombinant OPN protein
(Biolegend, San Diego, CA, USA). The immunized mice were boosted with 25 g OPN
protein/mouse at days 14, 28, 35, and 50 after initial immunization. Mice serum was
tested 7 days after each boost for immune response to OPN protein by ELISA assay. The
three mice with the highest OPN antibody titer were selected for spleen cell electro-fusion
with SP2/0 myeloma cells. Fused cells from each cell fusion was plated into 96-well
plates. A total of 90 plates were screened for binders by ELISA with OPN protein. The top
126 parental clones were screened by ELISA for binding to OPN and by T cell proliferation
rescue assay in anti-CD3/CD28/OPN-coated plates. The top four positive primary clones
were subcloned by limited dilution to generate four single cell clones (89G9, 100D3, 100G2,
and 103D6). These four monoclonal antibodies are deposited in Bio X Cells and purified in
Bio X Cells to low endotoxin.

2.7. Cell Lines

The mouse colon carcinoma CT26 cell line and mammary carcinoma 4T1 cell line
were obtained from American Type Culture Collection (ATCC) (Manassas, VA). ATCC
characterized these cells by morphology, immunology, DNA fingerprint, and cytogenetics.
To create the OPN Ko cell line, HEK293FT cells were co-transfected with pCMV-VSV-G
(#8454, Addgene, Watertown, MA, USA), psPAX2 (#12260, Addgene, Watertown, MA,
USA) and lentiCRISPRv2 (Genscript, Piscataway, NJ, USA) plasmids using Lipofectamine
2000 (Life Technologies, Carlsbad, CA, USA). Scramble and OPN sgRNA sequences are 5′-
CTCGTATCTTTTCCCACGGC-3′, and 5′-AAGGTGAAAGTGACTGATTC-3′, respectively.
After forty-eight hours, lentiviral particles were harvested and cell lines were transduced
with polybrene. Seventy-two hours post-transduction, cells were harvested and puromycin-
selected (5 µg/mL) for three days. Cell phenotype was confirmed by measuring culture
supernatant OPN protein level.

2.8. Co-Culture System

Unless otherwise stated, CT26 cells were seeded 1 × 105/well into a 96-well U-bottom
plate. The gp70 antigen-specific T-cell line 2/20 was added at 0:1, 1:16, 1:8, 1:4, 1:2, and
1:1 ratios (E:T). For the OPN mAb blocking assay, tumor cells were cultured for 24 h, OPN
neutralization mAbs and IgG were added and cultured overnight. Floating and adherent
cells were collected, stained, and analyzed by flow cytometry.

2.9. T Cell Proliferation Assay

CD3+ T cells were purified from BALB/c mouse spleen cells with the MojoSort mouse
CD3 T cell isolation kit (Biolegend, San Diego, CA, USA) according to the manufacturer’s in-
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structions. For T cell proliferation assay, a 96-well culture plate was coated with anti-mouse
CD3 (8 g/mL), anti-mouse CD28 MAbs (10 g/mL), and recombinant protein overnight.
The purified T cells were labeled with CFSE (Life Technologies, Carlsbad, CA, USA) and
then seeded in the plate at a density of 1.5 × 105 cells/well in 150 µL medium for 3 days.
Cells were analyzed by flow cytometry.

2.10. Immunohistochemistry

The formalin fixed paraffin-embedded tissue sections were stained with anti-human
OPN antibody (R and D System, Minneapolis, MN, USA) as previously described [5].

2.11. OPN ELISA and OPN Antibody Binding to OPN Protein Analysis

Cell culture supernatant and mouse serum were analyzed for OPN protein concen-
tration using the mouse OPN ELISA kit (R and D System, Minneapolis, MN) according
to the manufacturer’s instructions. To determine antibody binding affinity. Recombinant
OPN protein was coated at 1 µg/mL in 100 µL PBS/well overnight. The wells were
washed, blocked, and then hybridoma culture supernatant was added to the coated wells
at various dilutions. Peroxidase-AffiniPure Goat Anti-Mouse IgG was used as secondary
antibody and the assay was performed using the ELISA kit (Biolegend, San Diego, CA,
USA) according to the manufacturer’s instructions.

2.12. Flow Cytometry

General flow cytometry staining protocol is as follows. Samples were incubated at
4 ◦C for 30 min. Samples were then washed with PBS, fixed in 2% paraformaldehyde,
and acquired on a FACSCalibur with CellQuestPro or LSRFortessa with BD Diva 8.01
(BD Biosciences, San Jose, CA, USA). All flow cytometry data analysis was conducted
with FlowJo v10.6.0 (BD Biosciences, San Jose, CA, USA). Annexin V-APC was obtained
from Biolegend.

2.13. Statistical Analysis

Unless otherwise indicated, all statistical analysis was conducted using Prism8 (Graph-
pad, San Diego, CA, USA) and p-values were calculated by a two-tailed Student’s t-test.
Significance between survival groups was computed by two-sided log-rank test.

3. Results
3.1. OPN Expression Is Elevated in Human Cancers

OPN expression datasets were compared between tumor tissues and the respective
normal tissues in human cancer patients. The OPN expression level was significantly higher
in tumor tissues than in normal tissues in twenty-eight of the thirty human cancers analyzed
(Figure S1). Analysis of correlation between OPN mRNA level and patient survival data
revealed that the OPN mRNA expression level is inversely correlated with patient survival
time in six cancers including colon and rectum cancer (Figure 1A). Immunohistochemical
analysis of human colorectal tumor and matched adjacent non-neoplastic colon tissues
indicates the OPN protein level is dramatic higher in the tumor tissues than in the matched
non-neoplastic colon in all five colorectal cancer patients (Figure 1B).

To investigate the cellular source of OPN in colorectal cancer patients, we mined
scRNA-Seq raw datasets deposited in the GEO database (GSE146771) [37]. Colorectal
tumor-resident immune cells were annotated (Figure 2A). Cellular subtype analysis demon-
strated that principally myeloid cells, as well as innate lymphoid cells (ILCs) and malignant
cells, drove increased OPN levels (Figure 2B). Expression of SPP1 was enriched in colorectal
tumor tissues compared to matched PBMC and healthy colon (Figure 2C). We then sought
to elucidate whether SPP1 expression was driven by expansion of a subset of myeloid
cells, such as myeloid-derived suppressor cells, with high expression of SPP1 at baseline,
or was due to a tumor-resident state. To do so, myeloid cells were re-extracted and re-
clustered. Cluster identity was determined by SingleR, a nonbiased, automatic cell-type
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annotator, by comparison to HPA reference transcriptomic data (Figure 2D) [42]. Elevation
of SPP1 expression was globalized across myeloid cell states, with all sub-clusters showing
increased SPP1 levels in colorectal tumor relative to normal colon, suggesting that tumor
residency is sufficient for inducing SPP1 expression across the myeloid lineage (Figure 2E).
To examine the cell-type associated with enhanced SPP1, myeloid cells were sub-grouped
into SPP1-high and low populations and scored for GSEA hallmark pathway enrichment.
Comparative analysis across these cells showed that SPP1-high cells demonstrated en-
hanced transcription of genes associated with IFNγ signaling, cholesterol metabolism,
adipogenesis, and glycolysis (Figure 2F,G).Cancers 2021, 13, x 5 of 16 
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Figure 1. OPN protein level in non-neoplastic colon and colon carcinoma. (A) OPN mRNA expression
level and survival datasets were extracted and plotted for survival. CESC: Cervical squamous cell
carcinoma and endocervical adenocarcinoma; COAD: Colon adenocarcinoma; LGG: Brain lower
grade glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; READ: Rectum
adenocarcinoma. (B) Human colon carcinoma (n = 5) and matched non-neoplastic colon (n = 5) were
stained with OPN-specific antibody. Green arrows indicate normal colon epithelium. Yellow arrows
indicate myeloid cells. Red arrows indicate carcinoma cells. Shown are representative images. Scale
bar = 100 µM.

Based on the scRNAseq results correlating OPN expression with IFNγ signaling path-
ways, we hypothesized that OPN may contribute to ‘adaptive immune resistance’ as PD-L1,
in which tumor-immune interactions induce a counterregulatory program that protects
tumor cells from immune clearance. In this model, tumor PD-L1, among other proteins,
is upregulated by CTL-derived IFNγ, which is thought to prevent CTL-mediated killing.
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To test this hypothesis, we treated CT26 cells with IFNγ in vitro. As expected, CD274
expression was robustly induced following IFNγ treatment. Supporting our hypothesis,
SPP1 was similarly increased (Figure 2H).Cancers 2021, 13, x 7 of 16 
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Figure 2. OPN expression profiles in the single cell level in human colorectal cancer patients.
(A) UMAP projection of GSE146771 CRC 10× scRNA-seq data. Cells are annotated according to
author’s designation. (B) Expression of SPP1 in indicated cells, sub-grouped by tissue of origin. N:
Normal Colon; P: PBMC; T: CRC. (C) UMAP projection of SPP1 expression, with cells sub-grouped
by tissue of origin. (D) Sub-grouping and re-clustering of author-designated myeloid cells. Cluster
identities were determined by comparison to Human Protein Atlas reference samples by SingleR.
(E) Expression of SPP1 in indicated cell clusters, sub-grouped by tissue of origin. (F) Density plot of
SPP1 expression across all myeloid cells. Cells with expression level of SPP1 > 1 were designated as
SPP1.hi; the remainder designated as SPP1.lo. (G) Comparison of hallmark gene signature scores
computed by VISION between SPP1.hi and SPP1.lo cells. **** p < 1 × 10−15. (H) CT26 cells were
treated with IFNγ for approximately 24 h, and analyzed by qPCR for Cd274 and Spp1 expression.
β-actin was used as internal control.

Analysis of scRNA-Seq dataset from human breast cancer patients (GSE114727) [38]
validated cellular OPN expression profiles in tumor-resident cells (Figure 3A–E). As in
colorectal cancer, elevation of SPP1 expression was localized to and globalized across
myeloid cell states, with all sub-clusters showing increased SPP1 levels (Figure 3F–H).
Comparative analysis across SPP1-hi and SPP1-lo cells showed that SPP1-high myeloid cells
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also demonstrated modulation of IFN signaling, cholesterol metabolism, and adipogenesis
(Figure 3H,I).
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Figure 3. Analysis of OPN expression profiles in cells of the human breast tumor microenvironment
in single-cell level. Datasets were extracted from the human breast tumor single-cell RNA-Seq
datasets (GEO accession: GSE114727) and analyzed using R package. (A) UMAP projection of
GSE114725 scRNA-seq data. Cluster identities were determined by comparison to Human Protein
Atlas reference samples by SingleR. (B) Expression of SPP1 in indicated cell clusters. (C) UMAP
projection of SP1 expression, with cells sub-grouped by tissue of origin. (D) Sub-grouping and
re-clustering of myeloid (macrophage, monocyte and neutrophil) cell populations. Cells labeled by
tissue of origin. (E) UMAP projection of myeloid cells, labeled by k-means cluster identity. (F) SPP1
expression in indicated cell clusters. (G) Heatmap of top 5 differentially expressed markers by each
cluster, as determined by Seurat’s “FindAllMarkers” function. (H) Density plot of SPP1 expression
across all cells identified as macrophages. Cells with expression level of SPP1 > 1 were designated
as SPP1.hi; the remainder designated as SPP1.lo. (I) Comparison of hallmark gene signature scores
computed by VISION between SPP1.hi and SPP1.lo cells. **** p < 1 × 10−15.
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3.2. OPN Promotes Tumorigenesis and Tumor Development

To functionally validate the above findings, we used carcinogen MCA to induce
sarcoma in WT and OPN KO mice. MCA induces a single tumor nodule in the site of
injection. Tumor formed in 70.27% (26/37) WT mice and 18.75% (6/32) OPN KO mice
(Figure 4A). Analysis of tumor size indicates that OPN deficiency results in a significant
decrease in the overall tumor growth rate in tumor-bearing mice (Figure 4B). These findings
validate that OPN promotes tumor initiation and growth in vivo.
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Figure 4. OPN promotes tumor development. (A) WT (n = 37) and Spp1 KO (n = 32) mice were
injected with MCA and monitored for tumor development. Shown are percentages of WT and OPN
KO mice with tumor 102 days after MCA injection. (B) The tumor sizes were measured in WT and
OPN KO mice and plotted.

3.3. OPN Inhibits T Cell Activation to Suppress CTL Cytotoxicity and Promote Tumor Growth

OPN is a secreted protein that is elevated in human cancer patient peripheral
blood [10,13,15,29,41]. Analysis of tumor-bearing mice validated that OPN is elevated
in the serum of tumor-bearing mice (Figure 5A). Furthermore, OPN exhibits potent in-
hibitory activity against T cell activation and proliferation (Figure 5B). To determine the
function of tumor-expressed OPN in tumor–T cell interaction, we knocked out Spp1 in
CT26 cells (Figure 5C). Analysis of CTL effector function in a tumor-CTL co-culture model
determined that knocking out OPN in the target tumor cells results in a significant increase
in efficacy of the tumor-specific CTL in killing the target tumor cells (Figure 5D). To deter-
mine whether this finding can be translated to tumor suppression in vivo, CT26.scramble
and CT26 OPN KO tumor cells were injected to mice. Significantly more tumor nodules
were formed in the WT mice than in the OPN KO mice (Figure 5E).
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Figure 5. OPN inhibits tumor-specific CTL lytic efficacy and promotes colon tumor growth. (A) Serum specimens collected
from tumor-free, 4T1 tumor-bearing, and CT26 tumor-bearing mice, and measured for OPN protein level by ELISA.
(B) CFSE-labelled CD3+ T cells were cultured in anti-CD3 (8 g/mL) and CD28 (10 g/mL)-coated plates in the presence of
the indicated coated OPN protein concentrations for 3 days. Cells were analyzed by flow cytometry. Shown is histograph
of CFSE intensity (top panel) and quantification of T cell division (bottom panel). (C) CT26.Scramble and CT26.OPN
KO cells were cultured for 24 h. Supernatants were collected and measured for OPN protein level. (D) CT26.Scramble
and CT26.OPN KO cells were co-cultured with the tumor-specific CTLs for 24 h. Both floating and adherent cells were
collected, stained with Annexin V and PI, and analyzed by flow cytometry. (E) CT26.Scramble and CT26.OPN KO cells
(1 × 106 cells/mouse) were injected to BALB/c mice intravenously. Lungs were examined 14 days later for tumor nodules
(left panel) and quantification of tumor nodules.

3.4. OPN Neutralization Increases CTL Lytic Activity

The literature and our above findings that OPN is expressed in various resident cells
in the tumor microenvironment suggest that targeting serum OPN protein, rather than
targeting a particular cell type, is potentially an effective approach to block OPN func-
tion in cancer patients, which provides a strong rationale to develop OPN neutralization
monoclonal antibodies. We have therefore developed four OPN monoclonal antibodies
for blocking OPN binding to T cells (Figure 6A). All four mAbs have higher OPN protein-
binding affinity (Figure 6B). Three of the four mAb clones significantly increased the lytic
activity of a tumor-specific CTL in lysing the target CT26 tumor cells in vitro (Figure 6C).
Furthermore, these OPN mAbs are effective in reversing OPN-mediated suppression of T
cell activation in vitro (Figure 6D).
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Figure 6. OPN neutralization mAbs increases CTL tumor-lysing efficacy. (A) Scheme of OPN neutralization monoclonal
antibody production as described in Materials and Methods. (B) The four OPN mAb clones were tested for binding affinity
to OPN protein by ELISA. (C) CT26 cells were seeded in 96-well U bottom plates for 24 h. IgG and the indicated OPN mAbs
and CTLs were added to the tumor cell culture for 24 h. Cell mixtures were collected, stained with CD8, Annexin V, and PI,
and analyzed by flow cytometry. Representative dot plots are shown at the left, and tumor cell death was quantified and
presented at the right. (D) CSFE-labelled CD3+ T cells were cultured in 96-well plates coated with anti-CD3, anti-CD28, and
OPN as indicated. Cells were analyzed for CSFE intensity 3 days later by flow cytometry. Shown are quantification of %
divided cells as determined by CFSE intensity.
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3.5. OPN Blockade Immunotherapy Suppresses Colon Tumor Growth In Vivo

To determine whether the above findings can be translated into colon tumor growth
suppression in vivo, we injected CT26 tumor cells to mice. The tumor-bearing mice were
then treated with OPN mAbs alone or in combination with anti-PD-1 mAb. OPN mAb
clones 100D3 and 103D6 significantly suppressed CT26 tumor growth in mouse lungs
(Figure 7A). However, 100D3 and 103D6 did not significantly increase the efficacy of anti-
PD-1 immunotherapy (Figure 7B). Nevertheless, OPN mAb clones 100D3 and 103D6 are
effective in enhancing colon tumor growth control in immune competent mice.
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tail veins of BALB/c mice. Three days later, IgG and the indicated OPN mAbs (200 µg/mouse) were injected to the
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4. Discussion

In human cancer patients and tumor-bearing mice, OPN is produced by various res-
ident cells in the tumor microenvironment [26,27,32,37,38]. Targeting OPN-producing
cells is therefore challenging. OPN is secreted to the peripheral blood in cancer pa-
tients [10,13,15,29,43]. An OPN neutralization mAb is thus potentially an effective agent to
block OPN function in both tumor promotion and in immune suppression [9,13,31,32,44].
OPN neutralization antibodies were initially developed for inflammation-mediated dis-
eases, including osteoporosis, hepatitis, arthritis, and osteoporosis [16,45,46]. The OPN
monoclonal antibody 23C3 treatment decreased bone loss associated with oophorec-
tomies [45]. 23C3 was found to be effective in reducing pro-inflammatory cytokines
and promoted the apoptosis of type-II collagen activated T cells to suppress osteoporo-
sis [47]. Another OPN neutralization mAb, C2K1, was able to decrease collagen-induced
arthritis in monkeys [46]. These studies demonstrated the efficacy of OPN neutralization
mAbs in blocking OPN function in pro-inflammatory diseases primarily through target-
ing inflammatory cells [47,48]. However, these antibodies targets OPN interactions with
inflammatory cells to suppress activation of inflammatory cells [46,47].

In human cancer patients and tumor-bearing mice, OPN receptors are diverse and
expressed on tumor cells, T cells, and myeloid cells, and OPN uses its different domains
to interact with different receptors [26,27,29]. Targeting OPN interactions with different
cells (e.g., tumor cells, T cells, macrophages) may require different OPN neutralization
mAbs. AOM1 is an OPN neutralization mAb that blocks the integrin αvβ3 binding site and
the thrombin cleavage site on OPN. AOM1 treatment was effective in suppressing αvβ3-
expressing tumor cell migration to suppress metastasis but not primary tumor growth [49].
OPN mAb, which targets the SVVYGLR motif in OPN protein, was effective in suppression
of adult T cell leukemia growth and progression [50]. Furthermore, OPN monoclonal anti-
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body MPIIIB10 delayed colon tumor growth and enhanced B cell-based vaccine-induced
tumor growth suppression through inhibition of tumor OPN-induced myeloporesis [29].
These findings demonstrated the efficacy of OPN blockade monoclonal antibodies in sup-
pression of tumor growth and progression through blocking OPN interactions with tumor
cells and myeloid cells in the tumor microenvironment.

OPN was originally identified as a regulator of T cell activation and was termed the
early T cell activation gene (Eta-1) [22]. In fact, suppression of cellular IFNγ production
has been used as a quality control tool for a commercial OPN product (Biolegend, San
Diego, CA, USA). We have recently determined that OPN directly engages T cells to
suppress T cell activation [27]. These findings provide a strong rationale to block the OPN
interaction with T cells to suppress tumor immune evasion. We have now developed
four OPN neutralization mAbs. Two of these OPN monoclonal antibodies, 100D3 and
103D6, are effective in blocking OPN-mediated inhibition of T cell activation and CTL
anti-tumor effector function. These two mAbs also show efficacy in suppression of colon
tumor growth in immune-competent mice. 100D3 and 103D6 are thus potentially effective
OPN neutralization antibodies for blocking OPN function in T cell suppression to suppress
colon tumor immune evasion. 100D3 also has high affinity for human OPN protein.
Humanization of 100D3 is currently under development.

Our analysis of mRNA level showed that OPN is primarily expressed in tumor
cells, various subsets of myeloid cells and ILCs in human colorectal and breast cancer
patients. The relative contributions of these cell types to the secreted OPN proteins in
the patient peripheral remains to be determined. In addition, the relative contributions
of these cell types in suppression of CTL recruitment and effector function in the tumor
microenvironment also requires further study [26,27,36,51].

CTLs are present in both MSI and MSS human colorectal carcinoma [5], but the MSS
human colorectal cancer does not respond to anti-PD-1 immunotherapy [3,4,52,53]. OPN
may compensate PD-L1 function and thus renders human colorectal tumor cell resistance
to anti-PD-1 immunotherapy. Therefore, blocking OPN may be an effective approach to in-
crease anti-PD-1 efficacy in colon cancer immunotherapy. However, although we observed
that 100D3 and 103D6 increased the efficacy of anti-PD-1 immunotherapy in suppression
of colon tumor growth, the increase is not statistically significant. There are multiple OPN
variant proteins [16,54,55]. In addition, as discussed above, there are several OPN receptors
and different OPN domains bind to different OPN receptors [16,17,26,34,36,50,51,56,57].
Further studies are therefore needed to determine the efficacy of 100D3 and 103D6 in
blocking OPN variants and different OPN–receptor interactions in the context of anti-PD-1
immunotherapy in suppression of colon tumor growth.

5. Conclusions

Human colorectal cancers are mostly microsatellite-stable with no response to anti-PD-
1 immunotherapy, necessitating the development of a new immunotherapy. Osteopontin
(OPN) is elevated in human colorectal cancer blood and its expression is correlated with
poor prognosis in human colorectal cancer patients. One of the mechanisms underlying
OPN function in tumor promotion is inhibition of T cell activation, suggesting that OPN is
another immune checkpoint that might compensate for PD-L1 function in suppression of
CTL function in colorectal carcinoma. In this study, we determined that OPN expression is
elevated in almost all major human cancers and OPN expression is inversely correlated
with survival of colon and rectal cancer patients. We have further determined that OPN
deficiency leads to increased tumor incidence and tumor growth rate in syngeneic mice,
and tumor cells produce OPN to inhibit tumor-specific CTL lytic activity. These findings
provide a strong rationale for development of OPN blockade cancer immunotherapy.
We have now developed two OPN monoclonal antibodies (100D3 and 103D6) that are
effective in enhancing tumor-specific CTL lytic activity in killing colon tumor cells and
in suppressing colon tumor growth in vivo. Our data indicate that 100D3 and 103D6 are
potentially effective immunotherapeutic agents for colorectal cancer immunotherapy.
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