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Abstract

Dexmedetomidine (DEX) is known to provide neuroprotective effect in the central nervous

system. However, the detailed mechanism remains far more elusive. This study was

designed to investigate the relevant mechanisms of DEX’s neuroprotective effect. Spra-

gue–Dawley (SD) rats were injected with dexmedetomidine and/or Lipopolysaccharide

(LPS) intraperitoneally, and inflammatory cytokines in serum and in the hippocampus were

measured by enzyme linked immunosorbent assay (ELISA). NF-κB in the brain tissue

extracts was analyzed with western-blot. Then, we investigated whether NF-κB inhibitor pre-

vents the elevation of inflammatory cytokines in rats injected with LPS. Our results indicated

that compared with the control group, the rats exposed to LPS showed significant cognitive

dysfunction. When compared to controls, the levels of TNF-α and IL-6 in the serum and hip-

pocampus homogenate were increased in rats treated with LPS. DEX pretreatment inhibited

the rats’ TNF-α, IL-6 and NF-κB levels induced by LPS. In response to LPS, PDTC pretreat-

ment restrains the production of proinflammatory cytokines (TNF-α and IL-6). Rats treated

with PDTC and DEX alongside LPS exhibited less TNF-α and IL-6 than the LPS treated

group. In combination, PDTC and DEX showed addictive effects. Our data suggest that

DEX exerts a neuroprotective effect through NF-κB in part after LPS-induced cognitive

dysfunction.

Introduction

Neuroinflammation plays a pivotal role in the pathophysiology of neurocognitive disorders

such as Alzheimer’s disease and postoperative cognitive dysfunction(POCD) [1]. Lipopolysac-

charide (LPS) is one of the most potent activators for stimulating pro-inflammatory cytokines

release in experimental animals and humans [2]. Studies have shown that systemic LPS causes

memory impairment [3], chronic neuroinflammation, and progressive neurodegeneration [4].
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As resident immune cells in the brain, microglia play an important role in various neurode-

generative diseases. Resident microglia exert protective and restorative responses to inflamma-

tion in the CNS [5]. Microglia can be activated by numerous stimulators, which exert a high

expression of brain pro-inflammatory factors (i.e., TNFα, MCP-1, IL-1β, and NF-κB p65) [4].

Therefore, inhibition of the excessive microglial pro-inflammatory response may alleviate the

symptom of neurodegenerative diseases [6, 7].

Dexmedetomidine (DEX) is a selective agonist of the α2-adrenoreceptor. It shows excellent

sedation and analgesia during anesthesia [8]. It has been shown that DEX exerts neuroprotec-

tive effects in various animal models [9, 10]. Notably, DEX also possesses a potent anti-inflam-

matory effect in many cell types through inhibition of many cytokines and chemokines,

including TNF-α, IL-6, and monocyte chemotactic protein-1 (MCP-1) [11, 12]. However, the

cellular and molecular mechanisms that trigger the anti-inflammatory effect of DEX are still

diffuse. Studies showed that LPS could stimulate proinflammatory cascades such as toll-like

receptor 4 (TLR4) and NF-κB through plasma membrane, and the activation of NF-κB leads

to the induction of genes encoding proinflammatory cytokines such as IL-6 and TNF-α [13,

14]. The present study aims to explore the relevant mechanisms involved in the neuroprotec-

tive effect of DEX.

Materials and methods

Animals and drug administration

Sprague-Dawley rats (300–350 g) were obtained from the Nanjing Medical University Animal

Center. All procedures were strictly performed in accordance with the regulations of the ethics

committee of the International Association for the Study of Pain and the Guide for the Care

and Use of Laboratory Animals (The Ministry of Science and Technology of China, 2006). All

animal research was approved by the Nanjing Medical University Animal Care and Use Com-

mittee. The rats were allowed free access to water and food. All experiments in our research

were performed in accordance with the regulations of the ethics committee of the Interna-

tional Association for the Study of Pain and the Guide for the Care and Use of Laboratory Ani-

mals (The Ministry of Science and Technology of China, 2006). LPS (Sigma, St Louis, MO,

USA) and dexmedetomidine (Hengrui, Lianyungang, China) were diluted in saline and

injected intraperitoneally (IP). Controls were injected with saline. Dexmedetomidine was

injected before LPS administration.

Experimental design

Experiment 1. Thirty-five rats were randomly divided into seven groups (n = 5): group C

(rats were intraperitoneally injected with isotonic saline); group LPS (rats were intraperitone-

ally injected with different concentrations of LPS: 10, 100, 1000 μg/kg); and group DEX (rats

were intraperitoneally injected with different concentration of dexmedetomidine: 5, 50,

500 μg/kg). At 24 h after the injection, a Y maze test was performed to evaluate the learning

ability of the rats.

Experiment 2. Forty rats were randomly divided into four groups (n = 10). For each

group of experiments, the animals were matched by age and body weight. The groups were (1)

control group; (2) LPS group; (3) different concentration dexmedetomidine group, where rats

were pretreated with various concentrations of DEX (5 and 50 μg/kg) for 1 h and then injected

IP with LPS (100 μg/kg). At 24 h after the behavioral test, the blood samples of all the rats were

obtained from the tail veins. Then, the hippocampus was collected either for Enzyme-Linked

Immunosorbent Assay (ELISA) or for Western blotting analysis.
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Experiment 3. Forty rats were randomly divided into four groups (n = 10): group LPS

(rats were intraperitoneally injected with LPS 100 μg/kg); group DEX+LPS (rats were intraper-

itoneally injected with dexmedetomidine 30 min before LPS injection); group PDTC+LPS

(rats were intraperitoneally injected with PDTC 30 min before LPS injection); group PDTC

+DEX+LPS (rats were intraperitoneally injected with PDTC 30 min before DEX injection, fol-

lowed by LPS injection). The behavioral test was performed 24 h after LPS injection. Then, the

hippocampus was collected for ELISA analysis.

Behavioral analysis

The Y maze consisted of three arms with each arm at a 120˚ angle. Two arms featured elec-

trical foot stimulation, whereas one arm was a safe region with illumination. Every arm had

a lamp at the tail end. Each rat was placed at the end of one arm randomly and allowed to

move in the maze freely. Behavioral testing of the rat was performed during the light cycle

(between 9:00 a.m. and 5:00 p.m.). The test was started for 3 minutes without disturbance,

and the safe region served as the new starting area. The stimulation and safe regions were

randomly changed. If the rat reached the safe region within 10 s, it was considered to have

learned. The learning criterion was defined as the rat reached 9 correct in 10 consecutive

foot stimulations. The learning ability was recorded as the number of stimulations to reach

the learning criterion. After the behavioral test, rats were anesthetized with inhalation of

sevoflurane (a concentration of 3% for induction and 1% for maintenance) by a nose mask

before sacrifice. The serum of rats was collected immediately, and the brains were removed

quickly. The hippocampus was carefully separated from the brains and stored at −80˚C

until use.

Level of TNF-α and IL-6 in serum and hippocampus

Enzyme-Linked Immunosorbent Assays were used to measure the levels of TNF-α and IL-6 in

serum and hippocampus homogenate. A glass homogenizer was used to make hippocampal

homogenate in saline solution in an ice bath. After centrifugation of the tissue homogenates,

supernatants were collected and immediately stored at -80˚C. Levels of TNF-α and IL-6 in

serum and supernatants were measured with commercial ELISA kits (R&D Systems, Minneap-

olis, MN, USA), according to the manufacturer’s instructions.

Western blotting

The hippocampus of the rat was homogenized in RIPA buffer. After the homogenates were

centrifuged, the concentration of the hippocampus homogenate protein in each supernatant

was measured with a BCA protein assay kit. After the proteins were loaded for electrophoresis,

the protein gels were transferred to a polyvinylidene fluoride microporous membrane (PVDF:

Millipore, Bedford, MA). The membrane was then blocked with TBS (5% skim milk) contain-

ing 0.1% Tween-20 for 1 h at room temperature. The membrane containing the transferred

proteins was incubated overnight with rabbit anti-NF-κBP65 antibody (1:200; Cell Signaling,

Beverly, MA) and anti-β-actin antibody (1:1000; Sigma) at 4˚C. Horseradish peroxidase conju-

gated secondary antibodies (1:5000; Jackson ImmunoResearch, West Grove, PA) were used to

detect immunoreactivity of the protein. The density of the protein band was determined using

an image analysis system (Image-Pro Plus version 6.0, Media Cybernetics, Silver Spring, MD,

USA).
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Statistical analysis

Results were represented as the mean ± SEM and performed in triplicate. The statistical analy-

ses were performed using ANOVA with Graphpad Prism 5 software (version 5.01, GraphPad

Software, San Diego, CA, USA), A Newman-Keuls Multiple Comparison Test was used for

post hoc analysis with significance determined at a value of P < 0.05.

Results

Dexmedetomidine improve LPS-induced cognitive impairment

To evaluate the effect of DEX on hippocampus, rats were pretreated with DEX before stimula-

tion. Rats were injected with DEX 1h prior to LPS injection, Then the Y-maze test was per-

formed to assess the rats’ memory function 1 d after LPS- injection. As shown in Fig 1, LPS

significantly impaired the cognitive function of rats, while 5μg/kg DEX did not show cognitive

protection compared to LPS group. DEX at concentration of 50 μg/kg prior to LPS hindered

the cognitive dysfunction, however, DEX at concentration of 500μg/kg alone significantly

impaired cognitive function. (Fig 1)(Table A and B in S1 File).

Effect of DEX on TNF-α and IL-6 expression in rats

Cognitive impairment is connected with neuroinflammation. To estimate the effect of DEX on

inflammatory factors, the levels of TNF-α and IL-6 in the serum and hippocampus homoge-

nate were detected by ELISA. Compared with those of the control group, the levels of TNF-α
and IL-6 in the serum and hippocampus homogenate were increased in rats after treatment

with LPS. To evaluate the influence of DEX on TNF-α and IL-6 expression in rats, rats were

pretreated with DEX before LPS stimulation. Our results indicated that DEX at concentration

of 50 μg/kg significantly inhibited rats’ TNF-α and IL-6 level induced by LPS, while 5 μg/kg

show no anti-inflammatory effect in rats (Fig 2) (Table C, D, E and F in S1 File).

Fig 1. DEX improved LPS induced memory impairment. The Y-maze test was performed to observe the cognitive function of rats. (A) Rats were injected with

DEX 1h prior to LPS injection, Then Y-maze test was performed to assess the rats’ memory function 1d after LPS-injection. LPS significantly impaired the

cognitive function of rats, DEX at concentration of 5 and 50μg/kg alone did not influence cognitive function of rats. (B) DEX at concentration of 50 μg/kg prior to

LPS hindered the cognitive dysfunction, however, DEX at concentration of 500μg/kg alone significantly impaired cognitive function.

https://doi.org/10.1371/journal.pone.0196897.g001
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Effect of DEX on NF-κB expression in rats

Based on above results, we further test the mechanism of the anti-inflammatory effect of DEX.

DEX at concentration of 50 μg/kg was used because of its anti-inflammatory effect. Rats were

pretreated with DEX(50 μg/kg) before LPS stimulation, our results showed that DEX signifi-

cantly decreased p-NF-κB and NF-κB expression induced by LPS in hippocampus (Fig 3)

(Table G and H in S1 File).

Fig 2. LPS induced TNF-α and IL-6 increased in rats’ serum and hippocampus homogenate. Rats pretreated with DEX showed a decrease in TNF-α
and IL-6 level. (A,B,C,D) ELISA showed that high dose of DEX reduced TNF-α and IL-6 protein levels in serum and hippocampus homogenate. (��P<0.01

versus control group, ##P<0.01 and #P<0.05 versus control group; data represent the mean ± SEM for at least three separate experiments).

https://doi.org/10.1371/journal.pone.0196897.g002
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Effect of NF-κB inhibitor on TNF-α and IL-6 expression in rats

To state the mechanism of anti-inflammatory effect of DEX, PDTC (NF-κB inhibitor, 50 mg/kg)

was used by intraperitoneal injection before DEX and LPS stimulation. 24h after LPS treatment,

rats were estimated with Y-maze, our results showed that the LPS decrease cognitive function as

before (Fig 4A). Rats treated with LPS showed a significant attenuation of cognitive function.

DEX and PDTC, each alone showed attenuation of LPS-induced cognitive impairment; in combi-

nation, PDTC and DEX showed significant additive effects(Table I in S1 File).

Rats treated with DEX showed a significant attenuation of TNF-α and IL-6 (19% and 17%)

compared to LPS group. Rats treated with PDTC alone accumulated 39% and 36% less TNF-α
and IL-6 than rats treated with LPS alone (Fig 4B and 4C). Rats treated with PDTC and DEX

alongside LPS stimulation accumulated 61% and 57% less TNF-α and IL-6 than rats treated

with LPS alone and significantly less than cells treated with either drug alone(Fig 4B and 4C)

(Table J and K in S1 File). In combination with PDTC and DEX showed addictive effects.

Therefore, DEX and PDTC can additively suppress LPS-induced TNF-α and IL-6 increase.

Discussion

Our results showed that DEX inhibited TNF-α and IL-6 level induced by LPS in SD rats, and NF-

κB might be involved in the anti-inflammatory effect of DEX. Accumulating evidence has indi-

cated the release of pro-inflammatory cytokines plays an important role in inflammation in the

CNS and cognitive impairment. LPS is a potent inflammatory cytokine stimulator. It is often used

as a model to study sepsis, neuroinflammation and cognitive impairment. Several dosages of LPS

were used in our study, and 100 μg/kg of LPS could stimulate moderate inflammation. Moreover,

it has been reported that 100 μg/kg of LPS does not affect motor activity [15].

DEX has been widely used for its sedative effect. Recent studies demonstrated that besides

the sedative effect, DEX also reduced post-operative delirium and POCD, which is correlated

with post-operative cognitive impairment [16, 17].

Fig 3. Rats pretreated with DEX showed a decrease in p-NF-κB and NF-κB expression. Western blotting showed

that high dose of DEX reduced p-NF-κB and NF-κB protein levels in the hippocampus. (��P<0.01 versus control

group; # P<0.05 versus LPS group).

https://doi.org/10.1371/journal.pone.0196897.g003

Fig 4. Pretreatment of PDTC and DEX in rats attenuated LPS-induced cognitive impairment and elevation of TNF-α and IL-6. Rats were treated with

PDTC before DEX and LPS stimulation. Y-maze was used to estimate cognitive function of rats and expression of TNF-α and IL-6 was measured by ELISA. LPS

decrease cognitive function and rats treated with LPS showed a significant attenuation of cognitive function. DEX and PDTC, each alone showed attenuation of

LPS-induced cognitive impairment; in combination, they showed significant additive effects. Combined treatment with PDTC and DEX decreased LPS-induced

TNF-α and IL-6 expression. (Mean ± SEM; ��P< 0.01 compared with corresponding control group; #P< 0.05; ##P< 0.01 compared with LPS group).

https://doi.org/10.1371/journal.pone.0196897.g004
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Animal studies confirmed that post-operative cognitive impairment may be connected with

neuroinflammation [18]. Selective inhibition of proinflammatory factors induced significantly

reversed hippocampus-dependent cognitive deficits [19]. Neuroinflammation is also associ-

ated with melancholia and may account for multiple sclerosis (MS) and Alzheimer’s disease

(AD) in older adults [20].

DEX has been proven to have neuroprotective effects in neuron impairment [21], and this

effect may be partly via the activation of the PI3k/Akt/GSK3β pathway in the hippocampus of

neonatal rats [22] and by up-regulating hypoxia-inducible factor-1α (HIF-1α) [23]. Some find-

ings suggest it may be via inactivation of the TLR-4/NF-κB pathway in part [24], and inhibi-

tion of the NF-κB pathway may be a mechanism underlying the neuroprotective action of

DEX against focal cerebral I/R injury [21]. However, the neuroprotective dosage of intrave-

nous infusion of DEX is diverse in these studies. We found that 50 μg/kg DEX could exert neu-

roprotective effects in the hippocampus of adult rats. This result is probably due to the

different stimulus position of transient ischemia and LPS in the brain. Our data also indicated

that DEX at a higher dose (500 μg/kg) is harmful to the cognitive function of the rats. There-

fore, we did not include this dosage in the following experiment.

Cytological experiments also verified that DEX is a potent suppressor of LPS-induced

inflammation in astrocytes and microglia through α2A-adrenergic receptors [25, 26]. Our data

demonstrated that LPS activated the NF-κB pathway and induced pro-inflammatory cytokines.

This process could infer that LPS could bind toll-like receptor 4s (TLR-4) on the cell surface

[27], activating NF-κB, leading to TNF-α and IL-6 mRNA synthesis. As the primary receptor

for LPS, TLR4 was involved in pro-inflammatory cytokine releases induced by LPS in astrocytes

[28]. This study also indicated that in combination with a specific NF-κB inhibitor (PDTC),

DEX could enhance the attenuation of TNF-α and IL-6 in LPS-induced rats. These data are in-

consistent with the study showing that DEX preconditioning suppresses retinal I/R injury and

shows an effective anti-inflammatory effect by inhibiting TLR4/NF-κB expression [29].

Our study also suffers from several noteworthy limitations. The Y-maze was used to assess

cognitive impairment in this study, and several other methods such as trace fear conditioning

(TFC) should be applied as a supplement to confirm memory impairment. Another limitation

is the concentrations of DEX. We found that 50 μg/kg could exert anti-inflammatory effects,

while the clinical concentration is 0.5–10 μg/kg [30, 31], and the use of DEX at high concentra-

tions (5–15 μg/kg) may be clinically practicable[32, 33]. Further studies are needed to confirm

the optimal concentrations of DEX in animals.

In conclusion, our data demonstrated that DEX exerts a neuroprotective effect through NF-

κB in part after LPS-induced cognitive impairment.
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