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ABSTRACT

There has been progress towards decreasing
malaria prevalence globally; however, Plasmod-
ium vivax has been less responsive to elimina-
tion efforts compared with Plasmodium
falciparum. P. vivax malaria remains a serious
public health concern in regions where it is the
dominant species (South and South-East Asia,
the Eastern Mediterranean region, and South
America) and is increasingly recognized for its
contribution to overall morbidity and mortality
worldwide. The incidence of P. vivax decreases
with increasing age owing to rapidly acquired
clinical immunity and there is a disproportion-
ate burden of P. vivax in infants and children,
who remain highly vulnerable to severe disease,
recurrence, and anemia with associated devel-
opmental impacts. Diagnosis is sometimes dif-
ficult owing to the sensitivity of diagnostic tests
to detect low levels of parasitemia. Additionally,
the propensity of P. vivax to relapse following

reactivation of dormant hypnozoites in the liver
contributes to disease recurrence in infants and
children, and potentiates morbidity and trans-
mission. The 8-aminoquinolines, primaquine
and tafenoquine, provide radical cure (relapse
prevention). However, the risk of hemolysis in
patients with glucose-6-phosphate dehydroge-
nase (G6PD) deficiency necessitates testing prior
to administration of 8-aminoquinolines, which
has limited their uptake. Additional challenges
include lack of availability of pediatric dose
formulations and problems with adherence to
primaquine owing to the length of treatment
recommended. A paucity of data and studies
specific to pediatric P. vivax malaria impacts the
ability to deliver targeted interventions. It is
imperative that P. vivax in infants and children
be the focus of future research, control initia-
tives, and anti-malarial drug development.

PLAIN LANGUAGE SUMMARY

Plasmodium vivax malaria is the most common
type of malaria in South and South-East Asia,
the Eastern Mediterranean region, and South
America. Following a mosquito bite, the P. vivax
parasite enters the blood and travels to the liver.
It may cause malaria immediately or lie dor-
mant and reactivate to cause relapses, weeks,
months, or even years later. In P. vivax endemic
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regions, population immunity develops over
time with repeated exposure to the parasite.
Children bear the burden of disease since they
have not acquired clinical immunity. Repeated
relapses can cause anemia and affect growth
and development. Radical cure refers to treat-
ment of parasites in the blood and dormant
parasites in the liver to prevent relapse. Until
recently, primaquine was the only medicine
approved for radical cure. When a primaquine
regimen (7–14 days, depending on dose) is not
completed, it is less effective. Additionally,
there is no pediatric formulation currently
available. Recently, tafenoquine, prescribed as a
single dose, was approved for radical cure in
children. Before radical cure, testing patients for
deficiency of the enzyme glucose-6-phosphate
dehydrogenase (G6PD) is necessary since
patients with this deficiency may have ruptur-
ing or destruction of red blood cells. However,
access to G6PD deficiency testing is limited,
creating barriers to treatment. Eradication of
P. vivax is challenging due to its ability to
relapse, and the treatment challenges described
above. It is imperative that future elimination
efforts focus on improving access to curative
treatments for infants and children who bear
the burden of disease.

Keywords: Plasmodium vivax; Primaquine;
Tafenoquine; Malaria; Children; Epidemiology

Key Summary Points

Malaria elimination initiatives have been
more successful at decreasing
Plasmodium falciparum than
Plasmodium vivax incidence.

Infants and children in endemic areas
have not yet acquired clinical immunity
to P. vivax through repeated exposure.
They bear the burden of P. vivax malaria
since they remain vulnerable to severe
disease, recurrence, and anemia associated
with developmental impacts.

The propensity for P. vivax to relapse from
dormant forms and lower levels of
parasitemia compared with P. falciparum
have posed diagnostic and treatment
challenges, adding complexity to
eradication efforts.

Limited access to point-of-care G6PD
testing, lack of availability of pediatric
formulations of 8-aminoquinolines for
radical cure, and challenges with
adherence to primaquine have also
hampered elimination efforts.

Availability of pediatric formulations of
8-aminoquinolines, testing for G6PD
deficiency, and adherence to treatment
must be the emphasis of future public
health initiatives.

INTRODUCTION

Plasmodium vivax has the broadest geographic
distribution of human malaria species [1, 2] and
is second in prevalence to Plasmodium falci-
parum. More than one-third of the world’s
population is at risk for P. vivax infection, with
the greatest endemicity in South and South-East
Asia, the Eastern Mediterranean region, and
South America [3, 4]. In areas of moderate-to-
low transmission, where population immunity
has not been acquired, all age groups are at risk
of P. vivax infection. In areas of high and mixed
endemicity (where both P. falciparum and P. vi-
vax are prevalent), population immunity
develops over time with repeated exposure.
Infants and children without repeated exposure
have not yet acquired clinical immunity and are
at the greatest risk of infection and severe and
recurrent disease; therefore, children and ado-
lescents account for a significant global burden
of infection [5–10].

The propensity of P. vivax to relapse follow-
ing reactivation from the dormant liver stage of
the parasite increases transmission potential,
and contributes to clinical caseloads and to the
disproportionate burden of P. vivax in infants
and children. Standard malarial control
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methods used for P. falciparum,, which are tar-
geted at children, are not effective for P. vivax
owing to biological differences between the two
species and challenges related to the treatments
to prevent relapse [11]. Available diagnostic
testing is not always sensitive enough to detect
non-P. falciparum species, and artemisinin-
based combination therapies (ACTs) do not
prevent relapses characteristic of P. vivax [12].

While emphasis placed on P. falciparum in
childhood is appropriate owing to its high
morbidity and mortality, P. vivax should also be
recognized as an important cause of pediatric
morbidity owing to severe and recurrent dis-
ease, and associated impact on children’s
development [13–15]. This review highlights
the biological features and diagnostic and
treatment challenges of P. vivax that adversely
affect malaria control campaigns, and the
resulting disproportionate burden of morbidity
and mortality that P. vivax poses to infants and
children.

METHODS

Search Strategy and Selection Criteria

References for this targeted literature review
were identified through searches of PubMed,
Embase, and Google Scholar. Search terms
included (malaria, Plasmodium vivax) OR
(malaria, vivax) OR (msp1, P vivax) OR (P vivax
msp1) OR (Plasmodium vivax) AND (children) OR
(adult children) OR (adolescent) OR (infants) OR
(infants, newborn) OR (neonate) OR (neonates) OR
(paediatrics) OR (hospital, pediatric). Articles
published from January 2000 to November 2021
were screened for relevance by title and abstract.
Relevant references cited in those articles were
also reviewed. One hundred forty-six articles
published in English and Spanish were ulti-
mately included. In addition to the reference
list, Supplementary Table 1, entitled ‘‘Refer-
ences in Alphabetical Order by Section’’, is
provided.

This review manuscript is based on a litera-
ture search of previously published studies and
does not include any new studies with human

participants or animals and therefore does not
require ethics approval.

RESULTS/DISCUSSION

Epidemiology of Plasmodium vivax
in Children

Age Distribution
Surveillance data and epidemiological modeling
approaches have been used to estimate P. vivax
cases, but the actual global number of cases in
children is not known [6].

In nonendemic regions such as Europe and
North America, and low transmission settings
such as Thailand, the Solomon Islands, and sub-
Saharan and central Africa, the burden of P. vi-
vax malaria spans all age groups, since clinical
immunity has not been attained during child-
hood [7]. Conversely, while migrant work and
proximity to forested areas confer some risk in
endemic areas with high P. vivax prevalence
(large portions of South and South-East Asia, the
Eastern Mediterranean region, and South
America), children and adolescents bear the
greatest burden of P. vivax disease, with the
parasite rate in children aged 2–6 years approx-
imately four times that in adults, and the inci-
dence of clinical infection decreases
significantly with increasing age [8, 16–20]. A
prospective cohort study in Papua New Guinea
determined that P. vivax monoinfections as well
as mixed Plasmodium infections were associated
with severe malaria, with most cases occurring
in children less than 5 years old [13]. P. vivax
morbidity in a study in Vanuatu peaked in
children aged 0–2 years and declined after the
age of 6 years [21]. In Brazil, a study demon-
strated that the risk of infection and disease
decreased significantly with increasing age [22].
Continued efforts to accurately quantify the
burden of disease by age group will help to
improve targeted interventions.

Acquired Clinical Immunity
Over time, acquired immunity achieved
through repeated exposure to the parasite
reduces clinical symptoms and the risk of a
severe outcome [23]. The host mechanisms for
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development of acquired clinical immunity are
better understood for P. falciparum than for
P. vivax [23–26]. In areas of high endemicity,
clinical immunity patterns follow distribution
of disease prevalence by age group owing to the
rapid acquisition of immunity following repe-
ated parasitemia [7, 8, 23, 27–31]. A study con-
ducted in Papua New Guinea demonstrated that
the incidence of clinical P. vivax episodes
decreased with age in children aged 1–4 years,
and that the acquisition of clinical immunity to
P. vivax was significantly faster than for P. falci-
parum [30]. Similarly, in a study conducted on
the western border of Thailand, there was a
decline of P. vivax malaria incidence with
increasing age, whereas the incidence of P. fal-
ciparum increased with age [32]. P. vivaxwas also
more prevalent in younger age groups (1–4 and
5–9 years of age) than P. falciparum in another
study in Thailand [31]. The reasons for faster
acquisition of protective immunity with P. vivax
compared with P. falciparum are unclear
[25, 33, 34]. High transmissibility due to the
production of gametocytes concurrent with a
blood stage infection, regular relapses from
reactivated hypnozoites, and biological differ-
ences in parasite interactions with host
hematopoietic cells may contribute
[30, 33, 35]. The rapid relapse rate of the Ches-
son strain of Papua, Indonesia, Papua New
Guinea, and the South Pacific contributes to the
number of acute P. vivax episodes in this region,
with relapse occurring approximately 3 weeks
from the time of the primary infection and
continuing for more than 18 months [35, 36]. A
rapid relapse rate may contribute to faster
acquisition of clinical immunity.

Repeated P. vivax infections at a young age
may also contribute to earlier acquisition of
immunity. Infants (\ 6 months of age) are
thought to benefit from innate or maternal
protection from P. falciparum infection, but less
is known about P. vivax and maternal protec-
tion in infancy. Studies in Papua, Indonesia, a
mixed endemicity setting, have shown that a
higher proportion of malaria cases in infants is
due to P. vivax [37, 38].

More research is needed to clarify whether
the effectiveness and durability of acquired
clinical immunity to P. vivax is age dependent.

The development of an adaptive B- and T-cell
immune response appears to be dependent on
continuous antigenic exposure and the dura-
bility of acquired immunity in the absence of
concurrent infection has been variable across
studies [23, 39]. In addition to patient age,
durability may depend on antigenic variation,
the level of transmission, or the number of
previous malarial infections [23]. This has
implications for resurgent infection risk in
children born in an area in which disease has
previously been eradicated and where there is
limited antigen diversity [40].

Risk Factors
In addition to lack of acquired clinical immu-
nity (associated with younger age in endemic
settings), household proximity to vector breed-
ing site is associated with increased risk for
acquiring P. vivax in pediatric populations
(Fig. 1) [41, 42]. A variety of socioeconomic
factors, including maternal education level and
travel to or residence in a rural area, have also
been linked with a greater burden of disease,
although these associations have varied across
studies [43–48]. The risk of infection increases
during rainy seasons in tropical agricultural
communities, greatly affecting productivity and
impacting families [7]. Additionally, the geo-
graphic distribution of malaria largely affects
lower income countries where socioeconomic
factors are more pronounced, limiting access to
preventative measures [43, 49].

Pathogenesis

Plasmodium vivax Lifecycle
Following inoculation and initial clinical
symptoms during the blood stage of P. vivax
infection, sporozoites may enter a dormant,
nonreplicating, hypnozoite stage in the liver,
from which they can reactivate weeks to years
later following the initial infection to cause a
relapse of infection (Fig. 1) [50]. Overall, the
pathophysiology of P. vivax is similar in chil-
dren versus adults; however, infants with con-
genital P. vivax infection are not known to
experience relapse, presumably as sporozoites
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do not enter the fetal circulation to form liver
hypnozoites [51].

Clinical Features

Uncomplicated Plasmodium vivax Malaria
Uncomplicated acute P. vivax malaria episodes
present similarly in children as in adults,

ranging from asymptomatic to an undifferenti-
ated febrile illness. Asymptomatic illness is less
likely in children\ 1 year of age [37]. After a
short period of irregularity, fever paroxysms
coincide with schizogony and occur approxi-
mately every 24–48 h depending on the Plas-
modia strain, previous exposure, and host
immunity [52, 53]. In both P. vivax and

Fig. 1 P. vivax lifecycle
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P. falciparum, similar nonspecific symptoms
may accompany fever, including headache,
malaise, myalgia, chills, anemia, nausea, vom-
iting, abdominal discomfort, and/or diarrhea
[53, 54]. Respiratory symptoms are common,
despite earlier misconceptions that pulmonary
complications were associated with P. falci-
parum infection but not with P. vivax [55].
Intermittent fever, where P. vivax is the pre-
dominant species, as well as combinations of
symptoms have been investigated for use as
diagnostic criteria. However, no symptom alone
or in combination has been shown to be sensi-
tive or specific enough to diagnose or discrimi-
nate between malarial species [56–59].
Laboratory findings common in P. vivax malar-
ia, including thrombocytopenia and increased
bilirubin, also lack diagnostic and discriminant
value [58, 60, 61].

Few studies have directly compared the
clinical presentation of P. vivax between chil-
dren and adults. A Colombian study reported
vomiting more frequently in children (50%
versus 35%). A study from India (where both
P. falciparum and P. vivax are prevalent) sug-
gested that headache, body pain, and chills are
more common in adults than children [57, 58].
Splenomegaly and hepatomegaly may be more
frequent in children than in adults [58].

Complicated Plasmodium vivax Malaria
The risks of severe disease and case fatality rates
vary and have not been firmly established in the
pediatric population, which suggests a need for
more detailed studies to fully understand the
risks of severe disease across age groups. A study
of complicated P. vivax malaria in Colombia
found a greater proportion of complicated cases
in individuals aged[ 15 years (76.2%) ver-
sus B 15 years (23.8%) [62]. Other studies have
indicated that morbidity and mortality are
higher for children aged\ 5 years [63, 64]. The
risk for severe P. vivax malaria in
patients\2 years of age in Papua New Guinea
is reportedly similar to that for P. falciparum in
this age group (14% versus 18%, respectively)
with risk decreasing similarly with increasing
age for both species [13]. Earlier studies in
Papua, Indonesia showed that P. vivax species
predominated over P. falciparum in infant

hospital admissions, with P. vivax accounting
for 56% of malaria infections in young infants
(0–3 months of age) versus 30% due to P. falci-
parum [65]. P. vivax accounted for nearly 20% of
all-cause hospital admissions, with severe dis-
ease risk in young infants similar to that of older
infants.

Among patients with severe P. vivax infec-
tion, anemia, thrombocytopenia, jaundice, and
acute respiratory distress syndrome (ARDS) are
common manifestations [10, 66–68]. Severe
anemia (defined as hemoglobin\50 g/L) is
considered the most common manifestation of
severe P. vivax in children [15, 52]. Rates of
severe anemia are higher in P. vivax than P. fal-
ciparum malaria, with infants and chil-
dren\ 5 years of age at greatest risk. In areas of
high endemicity such as Papua, Indonesia, up
to one third of infants admitted to the hospital
with P. vivax have severe anemia [65, 69], and in
other geographical regions, including India,
Ethiopia, and Colombia, it is common in chil-
dren with severe malaria [70–73].

Severe anemia associated with P. vivax is
likely a consequence of relapsing disease prior
to the development of clinical immunity
[74, 75]. In acute disease, hemolytic anemia
develops rapidly owing to both the destruction
of parasitized red blood cells and a high pro-
portion of nonparasitized cells [75, 76]. A shift
towards erythropoiesis (over hemolysis) typi-
cally occurs within 4–6 weeks after an acute
episode; however, in areas where high trans-
mission rates result in repeated or recurrent
infections, malarial anemia is a significant
contributor to morbidity and mortality in chil-
dren (see recurrence) [5, 69, 75, 77].

Other hematological and respiratory com-
plications of severe P. vivax infection have been
reported at a similar rate between children and
adults [60, 68]. Although rare, splenomegaly
leading to splenic rupture may be more com-
mon for P. vivax than other Plasmodium species
[78–80]. In children with severe malaria, the
proportion who experience respiratory distress
may differ between species. Compared with
severe P. falciparum, young children (\5 years
of age) in Papua New Guinea with severe P. vi-
vax malaria presented more often with respira-
tory distress (61% versus 41%, P = 0.002) [13].
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Mortality rates in patients with P. vivax infec-
tions who develop respiratory complications
resemble those of P. falciparum [68].

Recurrence

Among recurrent cases, it is not possible to
distinguish between P. vivax reinfections (new
inoculation of sporozoite), relapses (activation
of latent hypnozoites), and recrudescence (the
resurgence of erythrocytic parasites), because
molecular markers have not yet been fully val-
idated [81–83]. However, by analyzing seasonal
patterns of malaria, it is possible to estimate the
proportion of cases due to relapse versus rein-
fection [84]. Modeling to simulate the impact of
treatment to clear liver stages of disease in
P. vivax has also been used to estimate relapse
rates [85].

Relapse patterns vary by region and the level
of malaria endemicity. The proportion of P. vi-
vax infections that relapse, the time to relapse,
the interval between subsequent relapses, and
the total number of relapses also varies by strain
[35, 86]. Time to relapse ranges from approxi-
mately 3 weeks following initial infection in the
Chesson strain, to long latency for temperate
and subtropical forms of P. vivax, where there
may be approximately 8 months between the
first symptomatic infection and first relapse
[35]. Studies have reported relapse rates in
children and across age groups ranging from
approximately 20% to[80%, dependent upon
ethnicity, immunity, the sporozoite inoculum,
co-endemicity with P. falciparum, and seasonal
variations in infection rates [81, 83–87].

Although there are few studies of baseline
relapse rates of P. vivax malaria in children, it
has been suggested that both the proportion of
infections that relapse and the number of
symptomatic relapses decline with age owing to
the acquisition of clinical immunity [17, 87].
One study conducted in Papua, Indonesia esti-
mated that the cumulative risk of representa-
tion (relapse, reinfection, and recrudescence)
with clinical P. vivax infection within 1 year in
children aged 1 to\5 years was 49.6% versus
31.2% in those aged 5 to\15 years [88].

Overall, the dormant liver stage of the P. vi-
vax parasite contributes to the clinical case load,
increases the transmission potential, and com-
plicates control measures, given this potential
source of reintroduction of the parasite into the
vector population [85, 89]. Children who have
not yet acquired clinical immunity are dispro-
portionately affected since they often experi-
ence multiple relapses, as well as recurrence,
owing to reinfection or recrudescence [17, 81].
Studies in children in Papua New Guinea
demonstrated that radical cure with primaquine
reduced the risk of P. vivax episodes, and relap-
ses were considered accountable for the higher
prevalence, multiplicity, and incidence of P. vi-
vax infection and disease in early childhood
[81]. In addition, P. vivax was no longer a source
of morbidity in children of school age largely
owing to the acquisition of immunity [8]. In a
study from Papua, Indonesia, children younger
than 5 years old with P. vivax malaria were at
significant risk of multiple representations with
malaria and of dying within 1 year of their ini-
tial presentation. Children that died were gen-
erally younger than those who survived, and
the authors suggested that this was likely owing
to a lack of effective immunity, resulting in a
greater number of clinical malaria episodes
leading up to death compared with those who
survived [63].

Recurrence not only has physical impacts
with illness, sometimes requiring repeat hospi-
talization, but also affects growth, develop-
ment, and educational progress [90, 91]. School
performance may be impacted by malaria-in-
duced anemia. In a randomized trial in Sri
Lanka (where both P. vivax and P. falciparum are
prevalent), children aged 6–12 years treated
with chloroquine had higher hemoglobin levels
than the placebo group, and mathematics and
language scores on end-of-term examinations
were significantly inversely related to the
number of malarial attacks and absenteeism
from school [90]. Another study in Peru found
that children aged 0–72 months had signifi-
cantly less weight gain over 2-, 4-, and 6-month
intervals following an episode of uncomplicated
P. vivax [92].
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Diagnostics

There is little data on diagnostic test perfor-
mance in children. While patient age does not
appear to impact testing accuracy per se, the
sensitivity of rapid diagnostic tests (RDTs) is
decreased at low levels of parasitemia. In non-
immune populations (i.e., children in regions
endemic for P. vivax), symptomatic disease can
occur with low levels of parasitemia and go
undetected by standard RDTs [93]. Newer
hemozoin-based testing is more sensitive for the
detection of low levels of parasitemia, however,
field deployment is limited [94]. Microscopy is
still commonly used in endemic areas and is
considered the gold standard. However, test
sensitivity is dependent upon the experience of
the laboratory, and underdiagnosis of P. vivax
may occur in mixed infection owing to the low
density of the parasitemia [93]. While the risks
of false negative tests must be balanced with
concerns about overtreatment (in the absence
of test availability), a decision tree model for
children with P. falciparum suggested that uni-
versal access to sensitive and specific rapid
diagnostic tests could have a significant effect
on malaria morbidity and mortality in children
aged\5 years [95].

G6PD Deficiency

Reliable diagnosis of glucose-6-phosphate
dehydrogenase (G6PD) deficiency is clinically
relevant because the only available treatments
for radical cure (relapse prevention) targeting
the dormant liver P. vivax parasite are the
8-aminoquinoline compounds (primaquine and
tafenoquine) [96, 97], which can cause hemol-
ysis in individuals with G6PD deficiency
[98, 99]. The prevalence of G6PD deficiency is
high in many P. vivax endemic areas, with a
heterogeneous allele frequency that typically
ranges from below 5% to 15%, but can be as
high as 35% [99–101].

The method used to diagnose G6PD defi-
ciency in the pediatric population is identical to
that in adults. Testing may be genotypic or
phenotypic, with the latter being qualitative or
quantitative. For the purposes of malaria case

management, point-of-care quantitative tests
offer advantages over qualitative tests by precise
classification of cases with particular utility in
screening G6PD deficiency in hemizygous
males and homozygous females with two
mutant alleles associated with G6PD deficiency
[102]. While accurate G6PD testing is available,
there are practical limitations to G6PD testing
that are barriers to 8-aminoquinoline uptake,
including access to quantitative point-of-care
testing and subjectivity in applying results for
females with a heterozygote genotype
[99, 103]. Additionally, G6PD is an age-depen-
dent enzyme that does not reach maturity until
6–12 months of age, and a relatively high
reticulocyte count in infants, overestimating
G6PD activity, may contribute to the misinter-
pretation of test results [104–106]. As there is a
paucity of safety data in females with interme-
diate activity, and severe hemolytic reactions
carry a high risk of mortality in children, pri-
maquine treatment without an accurate assess-
ment of G6PD status is advisable only with
careful monitoring, and tafenoquine cannot be
administered without prior quantitative G6PD
testing [98, 105, 107, 108]. To realize the
potential of 8-aminoquinolines to minimize the
impact of relapsing disease in children, the
implementation of a reliable quantitative G6PD
point-of-care test capable of accurately differ-
entiating deficient, intermediate, and normal
G6PD activity levels (where normal is[ 70% of
the population median) is needed [105]. One
such test, capable of detecting intermediate
enzymatic activity in females that is registered
in several endemic countries, was recently
approved by the Australian Therapeutic Goods
Administration (TGA) [109]. Other quantitative
point-of-care tests are in development or have
been submitted for FDA approval [110, 111],
representing an important step towards deliv-
ering better tolerated relapse prevention.

Current Treatments

For both adults and children, the World Health
Organization (WHO) recommends treatment of
acute uncomplicated P. vivax malaria infections
with ACTs (a short-acting artemisinin derivative
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and a longer-acting partner drug) or chloro-
quine (CQ), depending on the prevalence of
resistance to CQ [112].

In areas without CQ resistance, studies across
age groups (including children) and a pooled
analysis have shown that CQ and ACTs are
equally effective for preventing recurrent para-
sitemia in the short term; however, treatment
with ACTs has been shown to have more rapid
fever reduction and parasite clearance com-
pared with CQ for blood stage treatment
[113–115]. In high-transmission settings, dihy-
droartemisinin–piperaquine (DP) is superior to
other ACTs [artesunate–amodiaquine (AS–AQ),
artesunate–mefloquine (AS–MQ), and
artemether–lumefantrine (AL)] for the treat-
ment of P. vivax in comparative trials, both with
and without primaquine. Owing to the longer
half life of piperaquine versus other partner
drugs, DP provides an improved post-treatment
protective effect that may delay relapse, allow-
ing for hematological recovery between clinical
infections. As frequent recurrences in children
are associated with repeated insults to growth
and development, this modest benefit should
be considered in areas with high transmission of
both P. vivax and P. falciparum, or where limited
diagnostics preclude species-specific treatment
[115, 116]. Pyronaridine–artesunate, a combi-
nation treatment that provides broad anti-
malarial activity, can also be considered and has
been endorsed by the European Medicines
Agency for uncomplicated P. falciparum and
P. vivax malaria [115, 117].

Underdosing is a concern with both CQ and
ACTs, potentially leading to inadequate clinical
and parasitic responses [113, 118]. The total
recommended dose of chloroquine in children
is 25 mg/kg over 3 days; however, owing to the
unavailability of scales to weigh patients in
many endemic regions, chloroquine is some-
times dispensed based on age, a practice which
may lead to suboptimal dosing [115, 119].
Additionally, to achieve clinical cure, prevent
relapse, and limit transmission, dormant hyp-
nozoites must be treated [81, 120].

Primaquine and tafenoquine are the only
therapeutic options available for radical cure.
Present recommendations are to treat children
and adults with primaquine on a mg/kg basis

[121, 122]. Primaquine is recommended for
children C 6 months of age [112]. Although a
registered formulation to facilitate appropriate
dosing in children is in development [123],
currently, primaquine tablets must be cut or
crushed to dose by weight [or a minimum
effective dose of 3.5 base (0.5 mg/kg/day) to
7 mg base (0.5 mg/kg/day), depending on plas-
modia strain] and administered over 14 days
[5, 97, 112, 124]. Crushing, cutting, or grinding
of tablets may affect the pharmacokinetic (PK)
properties of a drug, as has been reported for
other anti-infectives [125], which may in turn
affect drug efficacy (underdosing allowing for
possible recurrence of P. vivax malaria) or safety
(overdosing, possibly resulting in hemolysis or
methemoglobinemia) and underscores the need
for pediatric dosing formulations. This limits
the benefit derived by patients from primaquine
and has important public health consequences.

The effectiveness of primaquine following
CQ or ACTs for radical cure of P. vivax malaria
has previously been reviewed [113, 115]. In
studies that included children, supervised
treatment with primaquine significantly
reduced the risk of recurrent P. vivax at 42 days,
and reduced the incidence rate of malaria epi-
sodes at 1 year [113, 126].

The TGA approved tafenoquine co-adminis-
tered with CQ for pediatric patients 2 years or
older with P. vivax malaria in March 2022, and
the pediatric dossier is being submitted and
reviewed for approval in endemic countries. In
the Tafenoquine Exposure Assessment in Chil-
dren with Plasmodium vivax malaria trial
(TEACH), children (aged C 2 to\16 years)
weighing C 5 kg, with G6PD activity[70%,
who were diagnosed with P. vivax in Vietnam
and Colombia, received open-label single-dose
tafenoquine on a weight-based dosing schedule
following their initial CQ dose [127]. The initial
pediatric dosing regimen was selected using a
base population pharmacokinetic model that
included data from patients aged 16 years or
older, incorporating allometric scaling for body
weight. Recurrence-free efficacy at 4 months
was 94.7%, and adverse events were of mild-to-
moderate severity. Post-dose vomiting, which
occurred in seven patients who received a
50 mg dispersed tablet, was successfully
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mitigated by clarifying food and drink delivery,
administering the tablet undispersed, or by
substituting with a 150-mg tafenoquine tablet
in subjects[35 kg in the study. Of note, a
recently completed study in adults in Indonesia
showed no clinically meaningful benefit of
tafenoquine in combination with DP, and effi-
cacy of tafenoquine with other ACTs has not yet
been established [128].

In addition to dosing concerns stemming
from lack of pediatric drug formulations, there
are additional challenges with 8-aminoquino-
line treatment, including limited access to
point-of-care G6PD testing and problems with
adherence (see adherence). In both children
and adults, G6PD status should guide treatment
for liver stage disease. However, owing in part to
the practical limitations and uncertainties
around G6PD testing discussed above, tafeno-
quine is not approved for children\ 2 years of
age or for women breastfeeding a
child\2 years, primaquine is not recom-
mended for infants\6 months or for women
breastfeeding an infant\ 6 months, and nei-
ther tafenoquine nor primaquine is recom-
mended for pregnant women or for women
breastfeeding older infants with unknown
G6PD status [35, 96, 97, 129]. Additional studies
of 8-aminoquinolines in breastfeeding women
are warranted since 8-aminoquinolines are
contraindicated in pregnancy and in lactation
where the G6PD status of the infant is
unknown. The exclusion of many women from
receiving hypnozoitocidal treatment over years
of childbearing potential eliminates the oppor-
tunity for radical cure and impacts efforts to
curb malaria transmission [129, 130]. A study in
lactating women showed very low concentra-
tions of primaquine in breast milk, which
would be unlikely to cause adverse events in the
breastfeeding infant, even with G6PD defi-
ciency [129].

Alternate primaquine regimens have been
used with close monitoring in nonpregnant
females with intermediate G6PD activity
([30%), and studies are ongoing in which
alternative dosing has been used in patients
with\ 30% activity [98, 131]. Self-limited
decreases in hematocrit with clinically mild
signs and symptoms were observed in male and

female G6PD deficient patients in Thailand
treated with primaquine 15 mg daily for 14 days
[132]. As the degree of G6PD deficiency varies
within and across regions, caution must be
exercised in both children and adults prior to
using either primaquine or tafenoquine when
G6PD deficiency has been determined, or when
G6PD status is unknown [98, 112, 133].

There has also been concern that cyto-
chrome P450 2D6 (CYP2D6) genetic polymor-
phisms could affect radical cure efficacy for
P. vivax [134, 135]. Age, body weight, and
CYP2D6 genotype appear to influence pri-
maquine and carboxy-primaquine (the pre-
dominant measurable primaquine metabolite)
plasma levels. Patients with CYP2D6 genetic
polymorphisms may not generate sufficient
levels of the active metabolite for efficacy,
resulting in relapses despite full adherence to
primaquine [134, 136]. In one study of pri-
maquine pharmacokinetics in African children,
toddlers categorized as intermediate metaboliz-
ers had low plasma levels of primaquine versus
older children with poor metabolizer status,
suggesting that in addition to the weight of the
child, CYP2D6 metabolizer status should be
considered [137]. For tafenoquine, one study in
patients at least 16 years of age suggested that
CYP2D6 phenotype does not have a significant
effect on efficacy; however, in this study it was
not possible to distinguish between relapses and
new infections [138]. Further studies are needed
to assess differing population efficacies for rad-
ical cure and the threat posed to elimination
campaigns.

Adherence

In addition to dose and plasmodium strain, the
modest efficacy of primaquine for preventing
P. vivax recurrences observed in real-world set-
tings versus clinical trials may be due to poor
adherence to treatment [88]. Adherence varies
across studies, suggesting that adherence is
dependent on context, age, tolerability, and
education [88, 103, 139]. Although data are
limited for children alone, several studies eval-
uated adherence across age groups. In separate
studies in Ethiopia and at the
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Thailand–Myanmar border, the risk of recur-
rence was significantly higher with unsuper-
vised primaquine versus semi-supervised or
supervised therapy [126, 139]. Children aged
8–13 years were more likely than other age
groups to report nonadherence, although dif-
ferences did not reach statistical significance
[139]. Parental supervision may improve
adherence in younger children [88], and edu-
cating patients on the importance of adherence
to treatment even after symptoms have sub-
sided is critical.

To improve adherence, higher primaquine
doses for a shorter period of time (e.g., 3.5, 5, or
7 days) are sometimes utilized. Recent evidence
suggests a 7-day primaquine course (1.0 mg/
kg/day) is noninferior to a 14-day course
(0.5 mg/kg/day) [124, 140]. Since tafenoquine is
given as a single dose, nonadherence is expec-
ted to be alleviated, resulting in improved
public health outcomes [141].

Elimination Efforts
In many mixed endemicity settings (e.g.,
Southeast Asian, Eastern Mediterranean, and
Western Pacific regions), control campaigns
have led to a decrease in the incidence of
P. falciparum infections, but the proportion of
P. vivax cases has trended upwards
[3, 7, 142–145]. In sub-Saharan Africa, where
P. falciparum is the dominant species, overall
malaria prevalence has decreased in response to
elimination efforts, while the proportion of
P. vivax cases has increased [12]. Where overall
malaria incidence is the lowest in these areas of
Africa, the proportion of P. vivax cases tends to
be the highest (up to 25%). These trends are
likely attributable to the aforementioned bio-
logical differences between the two parasites
and the difference in predisposition to
interventions.

Interventions such as insecticide-treated bed
nets and the wider availability of RDTs and
effective treatments have led to decreases in
P. falciparum cases [146]. However, a focus on
the treatment of both blood and liver stages of
P. vivax malaria are necessary to achieve clinical
cure, limit transmission, and achieve malaria
elimination [115]. A recent update to the WHO
treatment guidelines also recommends mass

drug administration to prevent transmission;
however, efforts should be followed with an
effective elimination program to avoid resur-
gence after 1–3 months [112].

Despite improved diagnostics, the low para-
sitemia of P. vivax continues to pose challenges
in areas of co-endemicity with P. falciparum,
with P. vivax often going undetected and
untreated, adding complexity to elimination
efforts [12]. In response to the elusiveness of the
P. vivax reservoir to current public health ini-
tiatives, more sensitive diagnostics, with a focus
on radical cure including wider availability and
use of point-of-care G6PD testing, adherence to
current treatments, and improved availability of
pediatric formulations of 8-aminoquinolines,
must be the focus of future public health
initiatives.

CONCLUSIONS

A paucity of data and studies specific to pedi-
atric P. vivax malaria impacts the ability to
deliver targeted interventions. Although pro-
gress has been made towards malaria elimina-
tion, there remains a substantial burden of
P. vivax disease globally. Children who have not
previously acquired clinical immunity in ende-
mic areas are at greatest risk of infection with
P. vivax and carry the greatest burden of infec-
tion. The higher relapse frequency of P. vivax in
children has a serious impact on growth and
development. In many countries, malaria
elimination efforts are hampered by the capac-
ity of P. vivax to relapse. New tools to improve
compliance and to provide a better tolerated
radical cure (relapse prevention) are urgently
needed.

The single-dose regimen of tafenoquine may
have positive effects on adherence; however,
limitations exist for both primaquine and
tafenoquine related to the access and imple-
mentation of point-of-care G6PD testing,
CYP2D6 metabolizer status, and the costs of
testing and treatment in areas with limited
resources. Since primaquine and tafenoquine
are both contraindicated in pregnancy and in
young infants, this poses additional challenges
related to radical cure.
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Progress has been slow on reducing the
childhood impacts of P. vivax [120]. Studies
have highlighted the enduring consequences of
early deficits on growth and development, and
therefore it is imperative that the dispropor-
tionate burden of P. vivax in infants and chil-
dren be the focus of future control initiatives.
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