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A B S T R A C T

In the study, antifungal and ochratoxin A (OTA) production inhibitory activities of essential oils (EOs) of
Cinnamomum zeylanicum, Curcuma longa, Ocimum basilicum, Zingiber officinale, and Cymbopogon martini
were reported on Aspergillus ochraceus and Penicillium verrucosum. EOs were obtained by hydro-
distillation and GC–MS technique was chosen to deduce their chemical profile. Major chemical
compounds in EOs of C. zeylanicum, C. longa, O. basilicum, Z. officinale, and C. martini were (E)-
cinnamaldehyde (35.81 %), ar-turmerone (46.13 %), eugenol (36.58 %), geranyl proprionate (18.93 %), and
geranyl acetate (14.88 %), respectively. The EOs shown potent antioxidant activity by DPPH and ABTS
assays. The EOs presented superlative antifungal activity against P. verrucosum related to A. ochraceus. The
C. zeylanicum and C. martini EOs shown superlative antifungal activity related to other EOs. The C.
zeylanicum and C. martini EOs completely inhibited the growth and OTA production of P. verrucosum and
A. ochraceous at 1500 and 2500 mg/g in maize grains, respectively.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mycotoxins are poisonous substances and belong to metabolites
of fungi and that are naturally produced on food matrices such as
cereal products, various fruit juices, vegetables, spices, etc [1]. It has
been known that almost one-fourth of cereals consumed worldwide
are contaminated with mycotoxins and pose serious health risk to
human society [2]. Until the date, about 400 mycotoxins were
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known, and their number will be raised with advancement of the
novel analytical techniques in the forthcoming years [3]. Fungal
infestation and mycotoxin production can occur during the pre-
harvest and post-harvest seasons,and on/in the food itself often at an
opportune environmental milieu [4]. The mycotoxin occurrence in
food matrices principally relies on diversity of fungal strain, fungal
vulnerability of the plant in the field, microbial population, moisture
content, nutrient composition, temperature, aeration, and stress
factors [5]. Most of the mycotoxins are thermally stable and
conventional food-processing techniques with temperatures up to
100 �C have little or no effect on detoxification of mycotoxins [6].

The toxic effects of mycotoxins range from mild disturbance to
be acute in humans and farm animals [7,8]. The long-term
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consumption of mycotoxins contaminated food cause immune
deficiency and cancer [9]. The human exposure to mycotoxins can
occur either directly by consumption of mycotoxin contaminated
food or indirectly by consuming the animal products (milk, egg,
and meat) from animals that fed with mycotoxin contaminated
feed [10]. The major and most commonly encountered mycotoxins
in food with concern to the toxic effects on humans and farm
animals are aflatoxins, ochratoxin A (OTA), fumonisins, trichothe-
cenes, and zearalenone [11].

Among the major mycotoxins, OTA is one of the frequently
encountered mycotoxins in variety of food sources such as cereals,
coffee beans, fruits, spices, wine, beer, animal products, etc [12–
15]. OTA has shown carcinogenic properties in laboratory animals
and therefore, International Agency for Research on Cancer (IARC)
has categorized into Group 2B, which means possible to cause
cancer in humans [16]. Moreover, OTA has been shown to be fetal
nephrotoxic and immunosuppression in laboratory animals and
considered as most toxic [17]. In consequence, some nations and
regulatory bodies such as European Union (EU) and Joint Food and
Agriculture Organization (FAO)/World Health Organization (WHO)
Expert Committee on Food Additives (JECFA) have evaluated the
risk assessment of OTA and recommended regulatory level to
control or prevent OTA contamination. The allowable concen-
trations for OTA in unprocessed cereals, processed cereals for
human consumption, dried vine fruits, roasted coffee beans and
ground roasted coffee, instant coffee, wine, and grape juice are 5.0,
3.0, 10.0, 5.0, 10.0, 2.0 and 2.0 mg/kg, respectively [18]. Therefore,
OTA has received utmost special attention from professionals of
the microbiology, toxicology, and food technology.

Ochratoxin A is produced as the secondary metabolite by
certain fungal species of Aspergillus and Penicillium, and these were
regular contaminants of various food commodities such as cereals,
fruits, vegetables, spices, animal products, etc [12]. The exposure to
OTA needs to be maintained as low as likely to protect the human
society. Mycotoxins not only pose a risk to both human and animal
health, but also impact food security and nutrition by reducing
people’s access to healthy food [12,18].

Therefore, microbiologists and food technologists have a great
concern over minimization of OTA in food and feed matrices. At
present, various physical, chemical, and biological methods were
available to minimize the mycotoxins in food. The physical
methods such as irradiation, high-pressure processing, microwave,
and cold plasma were found effective in minimizing the fungal
growth and mycotoxin contamination, and nevertheless; these
have certain limitations, i.e. high-cost, unsafe, and pre-requisite of
skilled expertise [19–24]. The chemical treatments such as
ammonia, citric acid, salicylic acid, etc. partially degrades
mycotoxins and their by-products were found still toxic and usage
of these chemicals in food is in no way acceptable [25].

Captivatingly, researchers revealed that oxidative stress has
been extensively involved in the secondary metabolism of fungi.
These secondary metabolites can counteract or, on the other
hand, augment the harmful effects of oxidative stress, and thus,
fungi may well use reactive oxygen species as messengers that
induce/modulate the biosynthesis of defensive chemical agents
like mycotoxins [26]. In this context, usage of antioxidants could
overwhelm the oxidative stress and decline the biosynthesis of
mycotoxins [27]. Further, antioxidant substances with potential
antifungal activity could be highly appropriate for minimizing the
fungal growth as well as mycotoxin production in food sources
[28]. Consequently, researchers, consumers, and government are
highly opted in usage of natural antioxidants that have potent
antifungal activity for minimizing the fungal growth and
mycotoxin contamination owed to their non-toxicity and eco-
friendly [29–32]. In the scenario, essential oils (EOs) have
received great consideration as fungicides and antioxidants for
controlling the fungal growth and mycotoxin contamination in
food [32].

In the present study, EOs of C. zeylanicum, C. longa, O. basilicum,
Z. officinale, and C. martini were obtained by hydrodistillation and
GC–MS analysis was chosen to deduce their chemical profile. The
antioxidant action of EOs was measured by radical scavenging
assays. Antifungal activity of EOs on selected fungi A. ochraceus and
P. verrucosum was tested by micro-well dilution technique. Finally,
inhibitory activity of EOs on the growth and OTA content of A.
ochraceus and P. verrucosum was established in maize grains.

2. Materials and methods

2.1. Fungi cultural conditions

Fungal cultures capable to produce OTA such as A. ochraceus –

ITCC 1456 and P. verrucosum – ITCC 2986 were from The Indian
Type Culture Collection (ITCC), India, and cultured for period of 7
days at 28 �C on Sabouraud dextrose agar Petri plates (HiMedia,
Mumbai, India) [33]. Succeeding, fungal spores were obtained by
gentle scarping in peptone water containing 0.001 % Tween 80
(HiMedia, Mumbai, India) and their total count was set to 1 � 106

spores per mL using hemocytometer.

2.2. Plant materials collection and EOs extraction

The bark of C. zeylanicum, rhizome of C. longa, leaves of O.
basilicum, rhizome of Z. officinale, and leaves of C. martini were
collected during January to July of 2019 from Ooty, India. Vouchers
were identified and safeguarded in Department of Biotechnology,
University of Mysore, Mysuru, India. They were subjected to drying
in an ambient temperature for duration of couple of week under
dark and made into fine powder using blender. About, 250 g of fine
powder of each sample was distinctly subjected to hydrodistilla-
tion practice to extract EO using apparatus of Clevenger-type
(Teknik, Ambala, India). The practice was in consistent with the
way of European Pharmacopoeia [34] and followed our previous
reported technique of Kalagatur et al. [22,24].

2.3. Chemical profile of EOs

The constituents of EOs were determined by PerkinElmer Clarus
600 C GC–MS, which is connected with DB-5MS column (30 � 0.25
mm; 0.25 mm) and analysis was done as per methodology of
Kalagatur et al. and Adams [3536].

2.4. Antioxidant activity of EOs

Antioxidant activity of EOs was determined by DPPH and ABTS
radical scavenging assays (HiMedia, Mumbai, India) and as per
technique of Kalagatur et al. [35] and Lokanadhan et al. [37].
Quercetin was chosen as standard antioxidant compound.

2.5. Antifungal activity of EOs

Antifungal activity of EOs on A. ochraceus and P. verrucosum
were determined in minimum inhibitory concentration (MIC) and
minimum fungicidal concentration (MFC) by micro-well dilution
method [38].

Various dose of EOs (up to 3000 mg/mL) containing 0.001 % of
Tween 80 were added to 10 mL of fungal spores (1 � 106 per mL) in
96-well plate (Corning Inc. Technology Company, USA) and total
volume was adjusted to 100 mL with Sabouraud dextrose broth
(HiMedia, Mumbai, India). Following, plates were allowed for
incubation at 28 �C, and concentration at which fungal growth was
not observed after 3 days of incubation was determined as MIC.
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Succeeding, 10 mL was recovered from the wells of microtiter
plate and plated on Sabouraud dextrose agar Petri plates and
allowed for incubation yet again at 28 �C for 3 days. Quantity of EOs
at which fungal viability was not noticed measured as MFC. The
standard antifungal agent in the study was nystatin.

2.6. Antifungal and OTA inhibitory activities of EOs in maize

Antifungal and OTA inhibitory activities of EOs on A. ochraceus
and P. verrucosum in maize grains were studied as per methodology
of Velluti et al. [39]. From local agriculture market, fresh and dried
maize grains were collected and decontaminated by autoclave and
subjected to drying in hot air oven under sterile conditions at 60 �C.
The oven, incubation chamber, and premises were thoroughly
fumigated and maintained strict aseptic conditions. The water
activity of thoroughly dried maize grains was determined as 0.70.
Following, different concentration of EOs (up to 3500 mg/g)
containing 0.001 % of Tween 80 and 10 mL of fungal spores (1 �106

per mL) of A. ochraceus and P. verrucosum were distinctly treated to
100 g of maize in 500 mL of Erlenmeyer flask (Borosil, India) and
vigorously shaken to distribute homogeneously and incubated for
14 days at 28 �C. Maize samples distinctively inoculated with
spores of A. ochraceus and P. verrucosum were considered as control
in their respective study.

Following incubation phase, maize samples were crushed into
fine powder under sterile condition and 1 g was subjected to serial
dilution and plated on Sabouraud dextrose agar Petri plates. The
fungal growth was determined in log CFU/g. Another, 10 g of fine
powder was suspended in acetonitrile (HiMedia, Mumbai, India)
and used for immunoaffinity clean-up of OTA as per instructions of
manufacturer (Vicam, USA).

The eluent was used for determination of OTA in HPLC
(Shimadzu Corp., Kyoto, Kyoto Prefecture, Japan) equipped with
RP-C18 column (5 mm thickness, 250 mm � 4.6 mm length, 100 Å
pore size). The HPLC was performed with following conditions;
mobile phase: isocratic solution of acetonitrile, water and acetic
acid (45:54:1, v/v/v), flow rate: 1 mL/min, detector: fluorescence,
injecting volume: 25 mL, phase: reverse phase, excitation and
emission wavelength: 365/455 nm, and run time: 25 min.

Prior to OTA determination in test samples, stock solution of
OTA standard (98 % HPLC pure, Sigma-Aldrich, Bengaluru, India)
was made in acetonitrile (1 mg/mL) and following lower OTA
concentrated dilutions were made in HPLC evaluation water
(Merck Millipore Pvt Ltd, Bengaluru, India). The LOD (limit of
detection) and LOQ (limit of quantification) for OTA was estimated.
The LOD was determined as the threefold the signal of the blank
and LOQ was determined as three folds of LOD and it was
determined as 21 ng/mL and 84 ng/mL, respectively. Curve of
calibration for OTA was constructed with different concentration of
OTA and peak area. The linearity of calibration curve was judged
Table 1
Yield of essential oils (EOs).

Essential oil Yield (w/w) Antioxidant compounds 

C. zeylanicum 2.11 % α-Phellandrene, limonene, β-phell
linalool, (E)-cinnamaldehyde, and

C. longa 1.59 % α-Phellandrene, β-phellandrene, t
α-turmerone and ar-turmerone

O. basilicum 2.71 % o-Ocimene, limonene, (Z)-β-ocime
thymol, eugenol, β-Caryophyllene

Z. officinale 1.44 % Limonene, g-terpinene, linalool, t
thymol, geranyl acetate, geranyl a
and geraniol isobutanoate

C. martini 1.93 % α-Phellandrene, limonene, β-phell
linalool, terpinen-4-ol, α-terpineol
geranyl acetate, β-caryophyllene, 
from regression coefficient (R2) and noticed as 0.9891. The recovery
of the technique was noticed as 92.31 % and found as satisfactory.

2.7. Statistical analysis

The experiments were executed in replicates (n = 6) and
scrutinized by one-way ANOVA and results were stated as mean �
standard deviation. The significant (p � 0.05) difference was
judged by Dunnett’s test and denoted as ‘*’. Whereas, p > 0.05 was
measured as non-significant and denoted as ‘#’. The statistical
examination was performed using trial version 8 of GraphPad
Prism, CA 92108, United States.

3. Results

3.1. Extraction and chemical profile of EOs

In this study essential oils were extracted by hydrodistillation
technique and their yield was tabulated in Table 1. The extracted
EOs were subjected to chemical profile assessment by GC–MS
analysis. Total chemical composition of 98.80 %, 98.22 %, 94.58 %,
97.19 %, and 96.27 % were identified in C. zeylanicum, C. longa, O.
basilicum, Z. officinale, and C. martini EOs, respectively (Table 2).
Total of 38, 32, 33, 41, and 42 chemical compounds were identified
in EOs of C. zeylanicum, C. longa, O. basilicum, Z. officinale, and C.
martini, respectively. The major chemical compounds in EOs of C.
zeylanicum were limonene (10.54 %), (E)-cinnamaldehyde (35.81
%), and eugenol (12.41 %), and in C. longa were ar-turmerone (46.13
%) and ar-curcumene (8.33 %), and in O. basilicum were eugenol
(36.58 %) and linalool (10.83 %), and in Z. officinale were geraniol
isobutanoate (10.41 %), geranyl acetone (11.05 %), geranyl acetate
(14.59 %), geranyl proprionate (18.93 %), thymol (10.86 %), and
limonene (10.88 %), and in C. martini were terpinen-4-ol (11.52 %)
and geranyl acetate (14.88 %). The results settled that EOs of C.
zeylanicum, C. longa, O. basilicum, Z. officinale, and C. martini were
belonged to the chemotypes of linalool, ar-turmerone, eugenol,
geranyl proprionate, and geranyl acetate, respectively.

3.2. Antioxidant activity of EOs

The functional property of EOs such as antioxidant activity was
determined by DPPH and ABTS radical scavenging assays and IC50
results (effective concentration required to inhibit 50 % of free
radicals) were shown in Table 3. Best antioxidant potential in DPPH
assay was noticed in EOs of C. longa and C. zeylanicum, and their
IC50 values were noticed as 21.56 � 0.77 mg/mL and 22.14 � 1.72
mg/mL, respectively. The lowermost antioxidant potential (IC50
value) in DPPH assay was noticed in EO of Z. officinale and it was
29.11 � 1.60 mg/mL. On the other hand, C. martini showed best
antioxidant potential in ABTS assay, and its IC50 was noticed as
Antifungal compounds

andrene, g-terpinene,
 eugenol

Limonene, linalool, eugenol, and (E)-
cinnamaldehyde

erpinen-4-ol, ar-curcumene, ar-Turmerone and ar-curcumene

ne, (E)-β-ocimene, linalool,
, and germacrene D

Eugenol, linalool, and linalool

erpinen-4-ol, α-terpineol,
cetone, geranyl proprionate,

Geranyl proprionate, geraniol
isobutanoate, geranyl acetone, geranyl
acetate, linalool, thymol, and limonene

andrene, g-terpinene,
, citronellal, thymol, eugenol,
and geranyl proprionate

Terpinen-4-ol, limonene, thymol,
eugenol and geranyl acetate



Table 2
Chemical profile of essential oils (EOs) determined by GC–MS analysis.

Chemical compound Essential oils

C. zeylanicum C. longa O. basilicum Z. officinale C. martini

RIa %b RIa %b RIa %b RIa %b RIa %b

α-Thujene 921 0.17 922 0.05 921 0.03 923 0.02 921 0.02
α-Pinene 934 0.60 931 0.36 931 0.12 931 0.08 930 0.09
Camphene 947 0.19 945 0.02 944 0.41 947 0.02 947 0.12
Sabinene 971 0.71 971 0.16 970 0.09 971 0.14 971 0.15
β-Pinene 973 0.44 973 0.09 976 0.04 976 0.81 976 1.21
Myrcene 985 0.09 989 0.18 989 0.02 989 0.07 989 0.02
α-Phellandrene 1004 5.92 1000 5.81 1004 1.31 1003 0.23 1004 2.41
d-3-Carene – – 1009 1.21 – – 1010 0.42 1009 0.11
α-Terpinene – – 1012 2.82 1016 1.48 1012 0.02 1015 1.21
p-Cymene 1019 1.21 – – 1021 0.82 – – 1021 0.18
o-Ocimene – – – – 1023 6.01 – – – –

Limonene 1023 10.54 – – 1024 9.44 1023 10.88 1024 8.46
β-Phellandrene 1026 8.21 1026 6.77 1026 2.57 1025 1.19 1026 6.92
(Z)-β-Ocimene – – – – 1034 2.92 – – – –

(E) -β-Ocimene – – – – 1042 5.05 – – – –

(3Z)-Octen-1-ol 1049 1.28 1048 0.79 – – – – 1046 0.51
g-Terpinene 1057 2.71 1055 1.31 1055 0.41 1051 1.56 1055 2.83
Acetophenone 1061 0.51 – – – – – – – –

p-Mentha-2,4(8)-diene 1083 1.37 – – – – – – 1086 0.14
Linalool 1092 3.01 – – 1096 10.83 1093 2.09 1097 9.59
n-Nonanal 1102 0.21 – – – – 1101 0.06 1103 0.32
exo-Fenchol – – 1119 0.15 – – – – 1119 0.01
trans-Pinocarveol – – – – – – – – 1140 0.01
Camphor 1142 0.70 – – 1142 0.45 1142 0.14 – –

p-Menth-8-en-3-ol – – – – – – – – – –

Isoborneol 1157 0.16 1157 0.82 1157 0.66 – – – –

Pinocarvone – – 1165 3.01 – – – – – –

Borneol – – – – 1166 0.04 1166 0.42 1166 0.70
Terpinen-4-ol – – 1175 3.24 1175 1.41 1176 4.91 1179 11.52
Isomenthol 1181 0.83 1185 0.81 – – 1184 0.16 1182 0.03
α-Terpineol – – 1186 0.99 1188 1.39 1187 2.19 1188 7.19
trans-Carveol 1217 1.31 – – 1217 0.46 1216 0.81 1217 0.81
Citronellal 1224 0.57 – – – – 1224 0.07 1224 2.37
Pulegone – – 1239 0.08 – – – – 1239 0.05
Linalyl acetate – – – – – – 1249 0.77 – –

(E)-cinnamaldehyde 1279 35.81 – – – – – – – –

Bornyl acetate 1288 0.57 – – 1288 0.05 – – – –

Thymol – – 1290 0.12 1290 3.59 1290 10.86 1291 6.19
Carvacrol 1297 0.70 – – – – 1299 0.04 1299 0.56
Isomenthyl acetate 1303 0.46 – – – – – – 1306 1.29
d-Elemene 1336 1.31 – – – – – – – –

α-Cubebene 1346 0.16 – – 1346 0.21 1346 0.42 – –

Eugenol 1357 12.41 – – 1358 36.58 – – 1357 2.81
Cyclosativene 1371 0.37 – – – – 1371 0.03 – –

α-Ylangene – – – – – – – – 1374 0.08
α-Copaene 1377 0.19 – – 1377 0.05 – – – –

Geranyl acetate – – – – – 1381 14.59 1381 14.88
β-Elemene 1388 0.22 – – 1390 0.06 1390 0.11 – –

β-Caryophyllene – – 1419 2.08 1416 4.13 1418 1.78 1419 3.91
β-Copaene – – – – – – 1431 0.16 – –

α-Guaiene 1436 0.82 – – – – – – 1439 0.18
α-Humulene 1453 1.09 1453 0.02 1450 0.02 1451 0.09 1453 0.29
Geranyl acetone – – – – – – 1454 11.05 – –

Allo-Aromadendrene 1457 0.06 – – – – 1459 0.09 1460 0.11
Ishwarane 1467 0.61 – – – – – – – –

Geranyl proprionate – – – – – – 1477 18.93 1477 6.40
ar-Curcumene – – 1480 8.33 – – – – – –

Germacrene D – – – – 1483 3.82 1485 1.19 1485 1.29
β-Selinene 1490 1.88 – – – – – – – –

Viridiflorene – – – – – – – – – –

α-Muurolene 1502 1.29 – – – – – – – –

g-Cadinene – – – – 1515 0.03 1512 0.11 1515 0.72
Geraniol isobutanoate – – – – – – 1516 10.41 – –

d-Cadinene 1523 0.11 1523 0.51 1523 0.08 – – – –

Elemol – – 1550 0.05 – – – – – –

Elemicin – – – – – – 1557 0.02 1559 0.11
Carotol – – 1596 0.42 – – 1596 0.09 1596 0.19
Cubenol – – – – – – 1640 0.12 – –

Klusinone – – – – – – – – – –

α-Turmerone – – 1624 7.91 – – – – – –

β-Turmerone – 1635 3.04 – – – – – –

ar-Turmerone – – 1640 46.13 – – – – – –

Bulnesol – – 1671 0.14 – – 1671 0.04 1671 0.28
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Table 2 (Continued)

Chemical compound Essential oils

C. zeylanicum C. longa O. basilicum Z. officinale C. martini

RIa %b RIa %b RIa %b RIa %b RIa %b

Cyclocolorenone – – 1761 0.39 – – – – – –

Laurenene – – 1880 0.41 – – – – – –

Total (%) 98.80 98.22 94.58 97.19 96.27

a Retention indices of compounds determined on DB-5MS column.
b Quantity of individual chemical compounds in percentage.

Table 3
Antioxidant activity of essential oils (EOs).

Essential oil DPPH assay (IC50) ABTS assay (IC50)

C. zeylanicum 22.14 � 1.72 mg/mL 38.41 � 1.21 mg/mL
C. longa 21.56 � 0.77 mg/mL 35.29 � 1.06 mg/mL
O. basilicum 27.32 � 2.11 mg/mL 40.31 � 1.07 mg/mL
Z. officinale 29.11 � 1.60 mg/mL 38.18 � 1.68 mg/mL
C. martini 24.14 � 1.03 mg/mL 33.47 � 1.71 mg/mL
Quercetin 21.19 � 0.62 mg/mL 38.92 � 0.96 mg/mL

The experiments were executed in independent replicates (n = 6) and results were
expressed as mean � standard deviation.
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33.47 � 1.71 mg/mL, and lowermost antioxidant potential was
noticed in EO of O. basilicum (40.31 � 1.07 mg/mL).

Overall, all EOs showed potent antioxidant potentials and found
competitive with IC50 value of standard antioxidant quercetin
(21.19 � 0.62 mg/mL). The diversity of biological applications of the
plant materials mainly depends on chemical constituents as well
as antioxidant potential. The study showed that EOs have potent
antioxidant activity and thus, highly appropriate for their usage in
various biological applications.

3.3. Antifungal activity of EOs

Antifungal activity of EOs on OTA producing fungi (A.
ochraceus and P. verrucosum) was tested by micro-well dilution
technique. The MIC and MFC values of the EOs were shown in
Table 4. The EOs were shown potent antifungal activity on both the
tested fungi, but superlative results were noticed on P. verrucosum
related to A. ochraceus. The EOs of C. zeylanicum and C. martini were
shown best antifungal activity in A. ochraceus and P. verrucosum
related to standard antifungal agent nystatin as well as other
tested EOs. While, lowest antifungal activity was noticed in EO of Z.
officinale against A. ochraceous and EO of C. longa against P.
verrucosum. The study exhibited that tested EOs were potential
fungicidal agents and might found their role in food and feed
matrices as bio-fungicides. To conclude, antifungal efficacy of EOs
was evaluated in in-vitro food source maize grains under
laboratory conditions.
Table 4
Antifungal activity of essential oils (EOs).

EOs/standard antifungal agent A. ochraceus 

MIC (mg/mL) M

C. zeylanicum 1106 � 31.11 1
C. longa 1608 � 12.81 2
O. basilicum 1791 � 26.59 2
Z. officinale 1898 � 33.41 2
C. martini 1308 � 16.69 1
Nystatin 1446 � 63.58 1

The experiments were executed in independent replicates (n = 6) and results were exp
3.4. Antifungal and antimycotoxin activities of EOs in maize grains

All EOs were shown potent antifungal and antimycotoxin
activities in in-vitro food sample; maize grains and results were
shown in Table 5 and Table 6. Standard calibration curve was
constructed with area of peak and different concentration of OTA
and used to determine the unknown concentration of OTA in maize
grains. Among the tested EOs, C. zeylanicum and C. martini were
shown potent inhibitory action on growth as well mycotoxin
production of A. ochraceous and P. verrucosum. The EOs of C.
zeylanicum and C. martini were completely inhibited the growth
and OTA production of P. verrucosum and A. ochraceous at 1500 and
2500 mg/g, respectively. The best antifungal and OTA inhibitory
activities was noticed against P. verrucosum related to A. ochra-
ceous. These results were well in agreement with the conclusion of
micro-well dilution technique. While, EOs of C. longa, O. basilicum,
and Z. officinale were exhibited lowest antifungal and OTA
inhibitory activities against A. ochraceous and it was 3500 mg/g.
The EOs of O. basilicum and Z. officinale were presented lowest
antifungal and OTA inhibitory activities against P. verrucosum at
3500 mg/g.

4. Discussion

In the middle ages onwards, EOs have been widely utilized as
antimicrobial, antiparasitic, and insecticidal agents. Exclusively
these days widely used in pharmaceutical, cosmetic, sanitary, food
industries, etc. These EOs were mostly extracted by distillation
from various parts of plants such as buds, flowers, leaves, stems,
twigs, seeds, fruits, roots, wood or bark, and EOs comprise of
complex of volatile chemical compounds, which include terpenes
and terpenoids, phenolic and aliphatic compounds. They exhibit
the characteristic properties of antioxidants and found non-
genotoxic. Therefore, Food and Drug Administration (FDA) of
federal agency acknowledged EOs as "GRAS", which states that
Generally Recognized As Safe under sections 201(s) and 409 of the
Federal Food, Drug, and Cosmetic Act of FDA [40].

In our study, we identified more than 30 different compounds
in EOs obtained from bark of C. zeylanicum, rhizome of C. longa,
leaves of O. basilicum, rhizome of Z. officinale, and leaves of C.
P. verrucosum

FC (mg/mL) MIC (mg/mL) MFC (mg/mL)

430 � 47.78 837 � 23.62 1141 � 28.32
140 � 32.21 1329 � 15.77 1771 � 43.48
355 � 62.11 1006 � 32.19 1512 � 56.63
621 � 37.72 1255 � 18.30 1442 � 37.81
756 � 26.93 964 � 18.72 1221 � 39.32
791 � 19.41 1121 � 36.91 1359 � 16.78

ressed as mean � standard deviation.



Table 5
Effect of different concentration of essential oils (EOs) on fungal growth (log CFU/g) in maize grains.

Essential oil A. ochraceus (log CFU/g) P. verrucosum (log CFU/g)

0 (control) 500 mg/g 1500 mg/g 2500 mg/g 3500 mg/g 0 (control) 500 mg/g 1500 mg/g 2500 mg/g 3500 mg/g

C. zeylanicum 8.22 � 1.21 4.70 � 0.88* 1.21 � 0.09* Nil* Nil* 7.78 � 1.39 2.66 � 0.88* Nil* Nil* Nil*
C. longa 8.22 � 1.21 5.43 � 0.65* 3.84 � 0.73* 1.66 � 0.68* Nil* 7.78 � 1.39 5.32 � 0.59* 1.77 � 0.62* Nil* Nil*
O. basilicum 8.22 � 1.21 6.12 � 0.33* 4.05 � 0.68* 1.59 � 0.23* Nil* 7.78 � 1.39 5.91 � 1.32* 3.67 � 0.84* 1.09 � 0.46* Nil*
Z. officinale 8.22 � 1.21 6.51 � 0.82* 3.03 � 0.19* 1.22 � 0.04* Nil* 7.78 � 1.39 6.01 � 1.57# 4.93 � 0.44* 1.62 � 0.59* Nil*
C. martini 8.22 � 1.21 3.69 � 0.51* 1.81 � 0.02* Nil* Nil* 7.78 � 1.39 3.64 � 1.01* Nil* Nil* Nil*

The experiments were executed in independent replicates (n = 6) and results were expressed as mean � standard deviation. The significant (p � 0.05) difference between
control and test samples was judged by Dunnett’s test and denoted as ‘*’. Whereas, p > 0.05 was measured as non-significant and denoted as ‘#’.

Table 6
Effect of different concentration of essential oils (EOs) on OTA production of fungi in maize grains.

Essential oil A. ochraceus (OTA mg/g) P. verrucosum (OTA mg/g)

0 (control) 500 mg/g 1500 mg/g 2500 mg/g 3500 mg/g 0 (control) 500 mg/g 1500 mg/g 2500 mg/g 3500 mg/g

C. zeylanicum 10.42 � 1.59 6.11 � 1.47* 2.38 � 0.61* Nil* Nil* 8.30 � 0.48 2.06 � 0.06* Nil* Nil* Nil*
C. longa 10.42 � 1.59 8.96 � 1.77# 6.08 � 0.78* 1.52 � 0.70* Nil* 8.30 � 0.48 5.17 � 1.09* 1.81 � 0.18* Nil* Nil*
O. basilicum 10.42 � 1.59 8.33 � 1.30# 5.12 � 0.33* 1.88 � 0.39* Nil* 8.30 � 0.48 6.91 � 1.83* 4.81 � 0.94* 1.55 � 0.02* Nil*
Z. officinale 10.42 � 1.59 7.81 � 0.91* 3.77 � 0.26* 1.91 � 0.58* Nil* 8.30 � 0.48 7.14 � 1.09# 3.88 � 0.20* 2.09 � 0.07* Nil*
C. martini 10.42 � 1.59 6.37 � 0.83* 2.03 � 0.44* Nil* Nil* 8.30 � 0.48 2.12 � 0.15* Nil* Nil* Nil*

The experiments were executed in independent replicates (n = 6) and results were expressed as mean � standard deviation. The significant (p � 0.05) difference between
control and test samples was judged by Dunnett’s test and denoted as ‘*’. Whereas, p > 0.05 was measured as non-significant and denoted as ‘#’.
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martini. Most of the identified chemical compounds were in
accordance to earlier literature. Pawar et al. [41] Simi�c et al. [42]
and Ranasinghe et al. [43] documented that (E)-cinnamaldehyde as
major compound and followed by eugenol, linalool, limonene, and
benzaldehyde occupy major composition in EO of C. zeylanicum.
Though, Ranasinghe et al. found that eugenol and cinnamaldehyde
as major compound in leaf and bark C. zeylanicum EO, respectively
[43]. In our study, EO of C. zeylanicum have (E)-cinnamaldehyde,
eugenol, and limonene as major compounds and thus, belong to
the aforementioned chemotype. Further, EO of C. longa belong to
the chemotype of α-turmerone, β-turmerone, and ar-turmerone as
per past descriptions of Avanço et al. [44] and Kumar et al. [38]. In
our study, EO of C. longa was found as chemotype of ar-turmerone
and well in accord with earlier reports. In case of O. basilicum EO,
previous reports of Snoussi et al. [45] de Almeida et al. [46] and
Grayer et al. [47] were determined that EO of O. basilicum belong to
the chemotype of eugenol and linalool. In accordance to these
reports, EO of O. basilicum in our study belong to chemotype of
eugenol and linalool. Similarly, EO of Z. officinale in our study
belong to the chemotype of geranyl proprionate, geranyl acetate,
thymol, and limonene as per past descriptions of Yamamoto-
Ribeiro et al. [48] and Singh et al. [49]. Also, in our study, EO of C.
martini was found chemotype of geranyl acetate and terpinene-4-
ol and found in accord with prior information of Kalagatur et al.
[50], Kakaraparthi et al. [51] and Nirmal et al. [52]. However,
quantity of EOs composites was quite wide-ranging in interrelated
to that past information. Quantity and quality of chemical
composites of EOs depends on the part of the plant used for EO
extraction, genome of the plant, nutrient availability and final
extraction technique as well [51,53–57]. Therefore, quantity of
chemical contents was relatively diverse in our study compared to
previous reports.

The EOs are regarded as potential antioxidants, and their
applications as natural antioxidants is growing interest in food
over synthetic antioxidants owed to toxic effects on human health.
The antioxidant potential of EOs highly useful in food products,
either by direct mixing or in active packaging and package
coatings, thereby represent the safe strategies to avoid autoxida-
tion of food and lengthen the shelf life of food. Consequently,
assessment of the antioxidant potential of EOs is most vital in food
science [58]. Moreover, many researchers determined that EOs
normalize the oxidative stress of mycotoxigenic fungi and decline
the biosynthesis of mycotoxins [35,59,60]. Therefore, in our study,
antioxidant potential of EOs was considered and EOs exhibited
potent antioxidant potential in scavenging the radicals of DPPH
and ABTS. In present study, assortments of potential antioxidants
were noticed in EOs (Table 1). Therefore, EOs in our study exhibited
potent antioxidant activity. In support of our results, several
reports were documented the antioxidant potential of EOs of C.
zeylanicum, C. longa, O. basilicum, Z. officinale, and C. martini
[44,49,55,58,61]. The antioxidant study and GRAS safety assess-
ment of FDA accomplish that EOs of C. zeylanicum, C. longa, O.
basilicum, Z. officinale, and C. martini could find the potential
representation in food industry as natural antioxidants and
mycotoxin inhibitors through regulation of oxidative stress in
fungi.

In last two decades, EOs have given away exceptional protection
against foodborne fungi and their associated mycotoxins and
successfully substituted the usage of synthetic fungicides offering
safer and eco-friendly tactic. Now, EO based bio-preservatives i.e.
SporanTM, PromaxTM, ‘DMC Base Natural’, EcoPCOR, and EcoTrol are
listed under GRAS by FDA and commercially available [62].
Therefore, in our study, an attempt was made to control the
fungal growth and OTA content in food using EOs of C. zeylanicum,
C. longa, O. basilicum, Z. officinale, and C. martini for the reason that
these were eco-friendly and safer and attained the status of GRAS
from FDA.

In our study, C. zeylanicum, C. longa, O. basilicum, Z. officinale,
and C. martini EOs were exhibited potent antifungal and
antimycotoxin activities on A. ochraceous and P. verrucosum in
maize grains. In support of our study, Sumalan et al. conveyed the
antifungal and mycotoxin inhibitory activities of C. zeylanicum on
Fusarium and Aspergillus fungi in wheat grains [63]. Ferreira et al.
described the antifungal and antimycotoxin activities of C. longa EO
and curcumin against A. flavus [64]. Dambolena et al. documented
the antifungal and antimycotoxin activities of EO of O. basilicum L
[65]. Similarly, Císarová et al. reported the inhibitory effect of Z.
officinale EO on the growth and mycotoxin production of Aspergillus
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species [66]. Further, antifungal and antimycotoxin activity of C.
martini was reported against Fusarium toxins in maize grains by
Kalagatur et al. [50].

In the present study, EOs contain variety of terpenes and
terpenoids, phenolic and aliphatic antifungal compounds (Table 1).
These lipophilic and low molecular weight compounds easily cross
through the fungal plasma membrane and disrupts the integrity
and permeability of membrane. These volatile compounds of EOs
negatively interact with the cellular membrane by countering with
enzymes and cellular ions, and cause leakage of ions (Ca2+, Mg2+,
H+, and K+) and osmotic imbalance, thereby depletes the ATP
synthesis and activate the apoptotic death. Moreover, EOs depletes
the level of ergosterol content in fungal cell membrane and thereby
facilitates the easy entry of antimicrobial components through cell
membrane [62,67].

Recently, some researchers disclosed that EOs independently
act on inhibition of mycotoxin biosynthesis without/mild reducing
effect on the fungal growth. The researchers reported that EOs
cease the formation of precursors for mycotoxin biosynthesis
(acetyl-CoA, the main precursor of aflatoxin biosynthesis) [62] and
in other way, down-regulate the mycotoxin biosynthesis tran-
scription factors, viz. PKS13 and PKS4 in zearalenone biosynthesis
[35], acOTApks,acOTAnrps and acpks in OTA biosynthesis [59], and
aflR, aflT, aflD, aflM, and aflP in aflatoxin B1 biosynthesis [68].

In our study, C. zeylanicum, C. longa, O. basilicum, Z. officinale,
and C. martini EOs withdrawn the viability of fungi and OTA
content in maize. Present study and as well as earlier studies
showed that EOs from bark of C. zeylanicum, rhizome of C. longa,
leaves of O. basilicum, rhizome of Z. officinale, and leaves of C.
martini may perhaps considerably appropriate for minimizing the
fungal growth and mycotoxins in food sources. Though, mecha-
nism of action involved in the antifungal and OTA inhibitory
activities need to be disclose in detail. However, several studies
reported that EOs are volatile and highly unstable to light,
temperature, oxygen, pH and other environmental conditions.
Therefore, stability and activity of EOs in food matrices need to be
enhanced by modern techniques, i.e. nanotechnology [50,69].

5. Conclusions

In this study, EOs were extracted from bark of C. zeylanicum,
rhizome of C. longa, leaves of O. basilicum, rhizome of Z. officinale,
and leaves of C. martini by hydrodistillation technique. The GC–MS
chemical profile settled that EOs of C. zeylanicum, C. longa, O.
basilicum, Z. officinale, and C. martini were belonged to the
chemotype of linalool, ar-turmerone, eugenol, geranyl proprionate,
and geranyl acetate, respectively. The EOs presented potent
antioxidant activity in DPPH and ABTS radical scavenging assays
and thereby EOs could find their potential representation in food
industry as natural antioxidants. The EOs exhibited potential MIC
and MFC values against P. verrucosum and A. ochraceous in micro-
well dilution technique. Further, EOs showed excellent antifungal
and OTA inhibitory activities against P. verrucosum and A. ochra-
ceous in in-vitro food sample, maize grains. The investigation
clinched that EOs could be considerably appropriate for keeping
safe of food and feed matrices from fungal infestation and
mycotoxin contamination, especially during the period of storage.
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