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ABSTRACT

We present a comprehensive structural, evolutionary
and molecular dynamics (MD) study of the G/U
wobble basepairs in the ribosome based on high-
resolution crystal structures, including the recent
Escherichia coli structure. These basepairs are clas-
sified according to their tertiary interactions, and
sequence conservation at their positions is determ-
ined. G/U basepairs participating in tertiary inter-
actions are more conserved than those lacking any
interactions. Specific interactions occurring in the
G/U shallow groove pocket—like packing interactions
(P-interactions) and some phosphate backbone
interactions (phosphate-in-pocket interactions)—
lead to higher G/U conservation than others. Two
salient cases of unique phylogenetic compensation
are discovered. First, a P-interaction is conserved
through a series of compensatory mutations invol-
ving all four participating nucleotides to preserve
or restore the G/U in the optimal orientation.
Second, a G/U basepair forming a P-interaction and
another one forming a phosphate-in-pocket inter-
action are replaced by GNRA loops that maintain
similar tertiary contacts. MD simulations were carried
out on eight P-interactions. The specific GU/CG sig-
nature of this interaction observed in structure and
sequence analysis was rationalized, and can now
be used for improving sequence alignments.

INTRODUCTION

Comparisons of basepair frequencies and positions in con-
served RNA sequences, such as rRNA, can lead to important
predictive models for other RNAs. Since the sequencing of

tRNA in the 1960’s, comparative sequence analysis has been
used extensively to infer the common secondary structures of
homologous RNAs. More recently it has been applied to
infer the locations of tertiary interactions that stabilize folded
RNA 3D structures. The inferred tertiary interactions in sev-
eral cases have been applied to construct 3D models for
biologically active RNAs, which subsequently were verified
by X-ray crystallography. Recent examples include RNase P
and the Group I intron (1-4). In this work we explore the
potentials of tertiary interactions made by G/U wobbles to
be used in similar ways.

The cis Watson—Crick (WC) G/U basepair is the most com-
mon non-classical basepair present in RNA. It was first recog-
nized by Crick in 1966 in the context of the tRNA—mRNA
anticodon—codon interaction (5). Subsequently, G/U’s at spe-
cific positions have been shown to be essential for the function
of various RNAs (6). Critical functional roles also have been
inferred for highly conserved G/U basepairs found near
the active sites of certain ribozymes, such as the Group I
introns (4).

The first systematic study of the cis WC G/U basepairs was
done by Gutell et al. (7) who investigated G/U variations in
rRNA among broadly divergent phylogenetic taxa and clas-
sified them into several types according to their sequence
conservation. In a similar way, Gautheret et al. (8) classified
the G/U basepairs according to their phylogenetic patterns
combined with their positions in the secondary structures.
These authors recognized that at least 50% of WC-paired
positions in 16S and 23S rRNAs contain >1% G/U in sequence
alignments, and ~10% of all paired positions display 50% or
more G/U substitutions. They also noted that most of these
positions are often substituted by various classical WC pairs
(A/U, U/A, G/C or C/G) but some highly conserved G/U’s
have specific variation patterns—such as G/U to U/G or G/U
to A/C (8).

Earlier studies describing G/U basepairs were not based on
knowledge of X-ray structures (7,8). Thus the role of tertiary
interactions in constraining the G/U pairs could not be
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considered. Here, we analyze phylogenetic substitution pat-
terns of the G/U basepairs in different structural contexts. Our
work has several aims. First, to provide complete structural
and phylogenetic characterization of all G/U basepairs in
rRNA and classify their tertiary interactions. Second, to
identify G/U-specific interactions and describe their sequence
signatures. Third, to improve sequence alignments based on
the tertiary interactions.

The packing interaction (P-interaction) (9) involves two
basepairs, usually cis WC G/U and cis WC C/G basepairs.
It somewhat resembles a ‘type 0° A-minor motif (10), but with
better and deeper packing of the interacting helices along
the G/U shallow (minor) groove pocket (Figure la). Both
the P-interaction and ‘type 0’ A-minor motif are variants of

Figure 1. SGP interactions made by G/U basepairs. (a) P-interaction between
the4nt A, B, Cand D. This interaction is optimal when one of the basepairs is cis
WC G/U, resulting in the five H-bonds indicated (I1-15). (b) Phosphate-in-
pocket interaction. (¢) O2'-in-pocket interaction. (a) and (b) are from PDB file
1872, (¢) is from PDB file 1J5E. Produced by DeepView (14).
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ribose zippers (4). We show that P-interactions have the high-
est G/U conservation among all G/U interactions. We identify
a novel quadruple compensatory mutation (involving 4 nt at
once) between a G/U and another basepair, reinstating
the interaction in a reversed orientation. We suggest that
the P-interaction can be used for improving sequence align-
ments because of its specific GU/CG signature and, con-
sequently, we refine the sequence alignments at several
positions where a P-interaction takes place.

We identify two new types of highly conserved tertiary
interactions involving the G/U shallow groove pocket
(SGP). Phosphate backbone interaction (Phosphate-in-
pocket interaction) has a phosphate embedded deep in the
G/U SGP (Figure 1b), in analogy with the sulfate ion inter-
action in the same pocket (11). O2'-in-pocket interaction
(Figure 1c¢) involves the sugar 02’ coming from outside the
plane of the G/U and binding at the G/U SGP.

We further show that tertiary contacts of P- and phosphate-
in-pocket interactions can be conserved even upon substantial
change of the local motifs involved. Thus, we found G/U’s
forming a P-interaction or phosphate-in-pocket interaction in
some ribosomal X-ray structures to be replaced by GNRA
loops in others while keeping similar tertiary contacts.
These unique motif swaps underline the precedence of tertiary
over secondary structure in their particular contexts.

MATERIALS AND METHODS

X-ray crystal structures were obtained from the Nucleic Acid
Database and the Protein Data Bank (PDB) (12,13) and were
visualized in 3D with DeepView (14). We studied all cis WC
G/U basepairs in the 16S rRNA of the bacterium Thermus
thermophilus (Tt)—PDB files 11BM, 3.31A resolution, and
1J5E, 3.05A (15), and in the 23S/5S rRNA structures of the
archaeon Haloarcula marismortui (Hm)—PDB files 1JJ2 and
1872, both at 2.4 A (16) and the bacterium Deinococcus radi-
odurans (Dr)—PDB files 1KPJ and 1LNR, both at 3.10 A (17).
In addition, all Escherichia coli (Ec) cis WC G/U basepairs
were studied in recent 70S structures—PDB files 2AVY,
2AW4, 2AW7 and 2AWB, solved at 3.5 A (18). Structures
with bound mRNA and tRNA or substrate analogues also were
examined (19-26).

The alignments for the 16S-like and the 23S-like rRNA
were obtained from the European ribosomal RNA database
(27,28). The 16S-like rRNA alignments included 220
archaeal, 4475 bacterial and 5248 eukaryal unique sequences
(sequences with only one representative from each species;
thus the alignments are made of broadly divergent taxa, and
their sequence analysis is less biased). The 23S-like rRNA
alignments included 24 archaeal, 184 bacterial and 137
eukaryal unique sequences. The 5S-like seed RFAM rRNA
alignment was used in our study (29,30). It contains 37
archaeal, 336 bacterial and 222 eukaryal unique sequences.
Genomic tRNA alignments were obtained from the compila-
tion of tRNA sequences and sequences of tRNA genes (31),
and they are composed of 317 archaeal, 1768 bacterial and 141
eukaryal unique sequences. The sequence analysis was carried
out with ‘ribostral’, a specially designed MATLAB program
(A. Mokdad and N.B. Leontis, in preparation). This is a user-
friendly program that includes a sequence viewer able to dis-
play substitution patterns of basepairs in an RNA alignment
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colored according to their isostericity with the actual basepair
observed in the crystal structure. Thus, the 3D structure
information is directly related to the sequence alignment,
and substitutions that belong to the same or different isosteric
subfamilies for each basepair are easily recognized. Ribostral
also measures substitution patterns of multiple nucleotides at
once, such as base triples or quadruples, which was useful for
simultaneous analysis of all 4 nt participating in P-interactions.
Further details and a preliminary stand-alone version of
ribostral can be found at http://rna.bgsu.edu/mokdad/ribostral.

Our study includes all cis WC G/U basepairs seen in the
high-resolution crystal structures of the ribosome and its sub-
units. Further, other basepairs are considered if they have
>50% G/U substitutions in sequence alignments of archaeal
or bacterial sequences (as these prove to be more trustworthy
than eukaryal alignments). Secondary structures from the
comparative RNA website (32) were first used to identify
all such pairs. However, X-ray structure examination revealed
that some of them were either not cis WC-paired or not paired
at all. These basepairs were excluded from this study (for a list
of basepairs omitted in this way see Supplementary Table S2).
This process produced a final list of 80 bp from 16S, 186 bp
from 23S and 7 bp from 5S rRNAs.

Molecular dynamics (MD) analysis was carried out on eight
systems each composed of two 24 nt-long helices coming
together and forming a P-interaction in their center. The
first of these systems, extracted from PDB file 1572, contains
a G/U packed with C/G (P-interaction, abbreviated as
GU-®-CG). This central P-interaction was then modified
using Insightll (from Accelrys) to obtain the following
eight different combinations: GU-®-CG (original),
AC-®-CG, GU-¢-GC, AC<p-GC, GC--CG, GC—<p-GC,
AU-®-CG and AU~<@-GC. The explicit solvent MD simula-
tions were carried out using the AMBER?7.0 package (33) with
the parm99 Cornell et al. force field (34-36). The RNA was
solvated in a rectangular box of TIP3P waters (37) and neut-
ralized by minimal number of sodium cations (38) initially
placed by the LeaP module at points of favorable electrostatic
potential close to the RNA. The standard protocols (39) were
used for the equilibration and production simulations, per-
formed by the Sander module of AMBER?7.0. The production
runs were carried out at 300 K with constant-pressure periodic
boundary conditions and the particle mesh Ewald method (40)
applied. The MD trajectories were then analyzed using the
ptraj and carnal modules of the AMBER7.0 package and
our own scripts and visualized by the program VMD (41).

RESULTS AND DISCUSSION
Specific features of the cis WC G/U basepair

The C1'—C1’ distance of the cis WC G/U basepair is ~10.2 A,
which is very close to the distances in classical WC basepairs
(10.3 A). The U is shifted towards the deep (major) groove
to allow for hydrogen bonding between G(06) ... U(N3) and
G(N1) ... U(0O2). The angle between the C1'-C1’ axis and the
glycosidic bonds is ~40° for G and 65° for U, instead of the
symmetric 54° angle in the canonical basepairs (Figure 2).
This causes helices containing G/U’s to locally overtwist or
undertwist depending on the orientation of the wobble base-
pair and its neighbors (6). Therefore, the only other basepair
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Figure 2. Top, cis Watson—Crick G/U (wobble) basepair with water molecules
(W) in its SGP and DGP. The angles formed between the C1’'-C1’ axis and the
glycosidic bonds show the asymmetry of this basepair compared with the
classical WC basepairs. Bottom, the isosteric A*/C basepair. Produced by
ChemDraw (CambridgeSoft Corporation).

that is completely isosteric to the cis WC G/U basepair is the
cis WC A™/C basepair, which is rare due to the A(N1) pro-
tonation requirement (42,43). The canonical WC basepairs are
nearly isosteric to G/U or U/G (6) while, due to their asym-
metry, G/U and A*/C are not isosteric upon reversal to U/G
and C/A*. The pocket created by G(N2), U(02), and U(02)
in the shallow groove often coordinates an integral water
molecule by forming two H-bonds. Another feature of the
cis WC G/U basepair is the unique H-bond donor and acceptor
distribution around its grooves. The hydrogens of the amino
group G(N2) are free to interact in the shallow groove, and
the electronegative G(N7), G(06) and U(O4) atoms in the
deep groove create a strong electronegative surface (44,45)
that binds metal ions. This may help in RNA folding or
ribozymatic activity (46,47). In addition, the cis WC G/U
basepair is approximately as thermodynamically stable as
the classical cis WC A/U basepair (45,48-53). Finally, the
cis WC G/U basepair possesses a unique conformational
flexibility (6) that allows it to respond to sequence contexts
and crystal packing much more easily than classical basepairs
(54), hence allowing for recognition of interacting proteins or
other RNAs by induced fit (55,56). These characteristics of
G/U basepairs play major roles in determining the types of
RNA-RNA, RNA-protein or RNA—metal ion interactions in
which they participate, and in their preferred substitution
patterns throughout evolution.

Survey of G/U basepairs

Table 1 is a compilation of the secondary structure features
and tertiary interactions of all the G/U basepairs that occur
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Table 1. Interactions of the cis WC G/U basepairs in 16S rRNA, based on the crystal structures of T.thermophilus and E.coli
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16S no.  E.coli Secondary structure Interactions Sequence
%GU+UG
BP NT1 NT2 A B E
1 GU 22 12 hl SGNP: A913 typel A-minor; Mg in DGP (Tt) 7 99 1
2 GU 15 920  Part of pseudoknot SGNP: UO3°-G108102’ (Tt) 99 99 98
3 CG 396 45 h4 None 60 28 1
4 CG 52 359  hS, flanking IL None 0 1 0
Sle UG 105 62 h6 SGP: U-pack-C379 (Tt) 100 99 96
6 UA 70 98 h6 None 18 13 13
7 GU 76 93  h6 None 0 20 4
8 GC 79 90 h6 None — 10 18
9 GU 122 239  h7, flanking 4WJ None 0 46 1
10 AU 236 125 h7 SGNP: G-C121 tHW (Tt) 90 75 0
11 GA 232 129  h7, flanking bulge SGNP: G-A263 tSW (Tt) 0 2 3
12 GU 226 137 h7 None 0 3 3
13 UG 157 164  h8 Mg in DGP (Tt) 100 59 54
14 (Tt) GU 184 195  h9, flanking 4WJ None (Position absent in Ec due to shorter helix than Tt) 4 20 0
15 GU 198 219  hl0, flanking 4WJ SGNP: G-U173 cSH (Ec) 5 13 2
16 GU 201 216  hl0, flanking hairpin ~ None 8 73 7
17 GU 275 249  hll, flanking bulge SGP: U25202’ (Tt) 93 99 97
18 GU 258 268  hll None 0 7 1
19 GU 293 304  hl2, flanking bulge None 0 56 4
20/a GU 301 296  hl12, flanking hairpin ~ SGP: U-pack-C556 (Tt) 100 99 99
21 GU 376 387  hl5, flanking IL Mg in DGP (Tt) 27 99 3
22 GU 433 409  hl6, flanking IL None 32 42 1
23 GU 416 427  hle6, flanking IL SGNP: UO2’-G541 Phosphate, near pocket (Tt) — 77 67
24 GU 417 426  hl6 SGNP: residues 3645 of S4 prot; — 93 2
GNH2-G54002’, near pocket (Ec)
25 GU 454 479  hl7, inside IL None — 19 40
26 GU 474 458  hl17 None in Ec, shorter helix in Tt — 19 0
27 GC 761 580  h20, flanking IL None 2 5 0
28/d GU 584 757  h20, flanking IL SGP: U-pack-C879 (Tt) 98 100 18
29 GU 650 589  h2l None 5 19 26
30 UG 593 646  h21 None 11 63 11
31 GU 645 594 h2l, flanking bulge None 47 56 10
(32) GC 601 637  h2l None 13 75 17
33 AU 635 603  h21 None 5 7 2
34 GU 633 605 h2l SGP: G126 Phosphate (Tt) 61 91 25
35 GU 615 625 h2l None 6 31 8
36 UA 662 743 h22 None 0 26 4
37 GU 666 740  h22, flanking bulge SGNP: Ser52 of S15 prot (Tt) 48 96 3
38 GU 734 672 h22, flanking 3WJ None 0 53 2
39 GU 713 677  h23, flanking IL RNA-protein bridge (B7b); SGNP: A777 type0 A-minor (Tt) 5 74 94
40 GU 683 707  h23 SGNP: Gly37 of S11 prot (Tt) 1 97 6
41 GU 778 804  h24, flanking bulge SGNP: GO2’-Arg12001 of S11 prot (Tt) 65 96 2
42 AU 855 831 h26 None 100 63 3
43 GU 832 854  h26 SGNP: GO2’-G724 Phosphate, near pocket (Tt) 94 87 1
44 CG 853 833 h26 SGNP: GNH2-G725 Phosphate, near pocket (Tt) 96 89 97
45 GU 852 834  h26 None 28 18 1
46 GU 851 835  h26 SGNP: GNH2-C74402’ (Tt) 1 20 1
47 GU 849 837  h26 SGNP: UO4°-G74502° (Ec) 17 32 4
48 GU 836 850 h26 SGNP: GNH2-C74503’ (Tt) 4 86 41
49 GU 886 911  h27 DGNP: UO2P-Arg97NH2 of S12 prot; 98 96 100
G148902’ near SGP; Mg in DGP (Tt)
50 GU 894 905  h27, flanking IL SGNP: UO2’-U244 Phosphate (Tt) 98 99 96
51 GU 895 904  h27 None 0 39 3
52 GU 925 1391  h28, flanking bulge SGNP: GNH2-A1503 Phosphate, near pocket; Mg in DGP (Tt) 100 100 99
53 GU 927 1390  h28, flanking bulge SGNP: GNH2-U1532 Phosphate, near pocket; Mg in DGP (Tt) 100 100 1
54 GU 942 1341  h29 SGNP: GNH2-GIn1240El of S9 prot (Tt) 100 100 99
55 GU 1231 950  h30 SGNP: GNH2-G971 Phosphate, near pocket; 100 80 99
DGNP: UO4-Thr1050G1 of S13 prot (Tt)
56 GU 1006 1023  h33, flanking 3WJ None — 14 17
57 UG 1009 1020 h33 None — 20 25
58 UA 1017 1012  h33, flanking hairpin ~ None — 7 25
59 GU 1206 1052  h34 SGNP: UO2’-A1055 Phosphate, near pocket; 100 100 100
residues 190-194 of S3 prot (Tt)
60 GU 1058 1199  h34, flanking bulge SGNP: G-G1202 tSH; Mg in DGP (Tt) 99 99 99
61 GU 1074 1083  h36, flanking 3WJ SGNP: A1101 typel A-minor (Tt) 24 100 99
62 GU 1099 1086  h37, flanking 3WJ None 0 95 2
63 GU 1185 1115 h38 None 0 73 38
64 GU 1184 1116 h38, flanking 3WJ None 13 72 6
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Table 1. Continued

16S no. E.coli Secondary structure Interactions Sequence
%GU+UG
BP NT1 NT2 A B E

65 GU 1242 1295  h4l SGNP: G-U1302 tSW (Tt) 47 90 2
66 GU 1290 1247 h4l, flanking IL None 1 63 7
67 GU 1371 1351 h43 SGNP: GO3’-Gly69CA of S9 prot; DGNP: UO4-Lys118CE of S9 prot (Tt) 66 99 70
68 GU 1486 1414 h44 RNA-RNA bridge (B3) 0 60 1
69 GU 1415 1485  h44 RNA-RNA bridge (B3) 0 96 0
70 GU 1419 1481 h44, flanking IL RNA-RNA bridge (BS) 15 64 1
71 GU 1422 1478  h44 None 6 50 2
72 GU 1423 1477  h44 None 76 47 2
73 GU 1475 1425  h44 RNA-RNA bridge (BS & B6) 60 38 o6l
74 GU 1426 1474 h44 None 30 33 4
75 GU 1438 1463 h44 None 8 31 3
76 GU 1461 1440  h44 SGNP: G-A1441 tSH (Tt) 7 85 1
77 GU 1458 1444 h44 None in Ec, shorter helix in Tt 0 13 0
78 GU 1457 1445 h44 None in Ec, shorter helix in Tt 0 67 33
79 GC 1525 1510  h45 None 0 2 0
80/e GU 1523 1512 h45 SGP: U-pack-A768 (Tt) 91 97 98

Initials of the structure best for observing each interaction appear in parentheses in the interactions column. Basepairs with interactions are shaded. The letters (a, b, . . .)
in the first column after the basepair number mark the individual basepairs forming P-interactions (indicated by -pack- in the fourth column) and are also used in Table 4
and Figure 6 and referenced in the text. Basepair number (32) is not G/U in any crystal structure, but is included in the study for having >50% GU content in bacterial
sequences. The last three columns indicate GU+UG (%) content at those positions in sequence alignments of archaea (A), bacteria (B) and eukarya (E). A dash (—) in
these columns means that sequence alignments are all gaps (insertions) at the corresponding location. Abbreviations: h, helix; IL, internal loop; W, way-junction;
SGP, shallow groove pocket; SGNP, shallow groove not in pocket; DGP, eep groove pocket; and DGNP, deep groove not in pocket. For the 23S/5S rRNA analysis see

Supplementary Table S3.

in crystal structures of 16S rRNA (a similar compilation
for tRNA and 23S/5S rRNA interactions can be found in
Supplementary Table S3). Interactions are classified according
to their location, i.e. in shallow groove or in deep groove.
Shallow groove interactions are subdivided further into
those that involve the G/U pocket (SGP), forming H-bonds
with at least two groups among GNH2, UO2 and UO2', and
those that do not (Shallow Groove not in Pocket, SGNP). Deep
groove interactions are subdivided into those that involve
the deep groove pocket (DGP), forming H-bonds with GO6
and UO4 simultaneously, and those that do not (Deep Groove
not in Pocket, DGNP). In most cases, the Tt and Hm structures
prove to be the best for observing 16S and 23S/5S interactions,
respectively. The 23S Dr and 70S Ec structures are at slightly
lower resolutions and are mainly used for comparison and
for inferring motions or motif swaps, as well as observing
basepairs that are not G/U’s in Tt or Hm. Table 1 also displays
the conservation of the G/U in sequence alignments at each
of the positions. The main goal for our classification was to
test whether the interactions in the G/U SGP are more specific
for G/U than others occurring elsewhere around this basepair.

Among the 80 G/U basepairs that occur in the 16S rRNA,
48 (60%) are inside helices, and the remaining 32 (40%) are at
the ends of helices or within other motifs. Among the 193 G/U
basepairs of 23S and 5S rRNA, 122 (63%) are inside helices,
and the remaining 71 (37%) are elsewhere. This agrees with
the previous counts of 56% intra-helical and 44% at the ends
of helices compiled by Gautheret ez al. (8), although our cri-
teria for finding the G/U pairs are slightly different. The cis
WC G/U basepairs have greater probability to be found within
helices compared with cis WC A/G basepairs, which have
significantly larger C1’'~C1’ distance and are thus found almost
exclusively at the ends of helices (57).

Of the 80 16S basepairs, 28 (35%) form SGNP interactions,
6 (8%) form interactions in SGP and 2 (3%) form DGNP

interactions. Five basepairs form intermolecular bridges
with ribosomal proteins or the large ribosomal subunit (58).
No interactions are observed in the DGP. Instead, this area
is occupied by a cation in several cases, consistent with the
high electronegativity of this site (44,45). About one-half of
the 16S G/U basepairs (42 out of 80) show no evidence of
any tertiary interaction in the available crystal structures
(interactions with ions are not considered as tertiary interac-
tions). Similarly, of the 193 23S/5S G/U basepairs, 62 (32%)
form SGNP contacts, 21 (11%) form interactions in SGP,
4 (2%) form DGNP interactions and 3 form interactions in
DGP. Seven basepairs form intermolecular bridges with
tRNA (58). A cation binds simultaneously to GO6 and UO4
in several cases, and a water molecule occupies the G/U SGP
in about one-third of the cases (only Hm crystal structure
contains water molecules). Again, about one-half of the
23S/5S G/U basepairs do not form any tertiary interactions
(103 out of 193).

These data demonstrate almost total agreement between
the statistics of the two ribosomal subunits, showing that
most tertiary interactions involving G/U occur in the shallow
groove. Almost all G/U tertiary and quaternary interactions
in 16S Tt and Ec and in 23S/5S Hm, Dr and Ec are seen at
equivalent positions. Exceptions are those interactions that
occur in a variable region that is either absent in one or
two of the structures, or significantly different between
them. Another possible reason for seeing interactions in
some of the crystal structures and not all of them is the pres-
ence of a proximal kink-turn (59). When the intrinsically
flexible kink-turns change between open and closed conforma-
tions, different sets of tertiary contacts become possible. Kink-
turns are like hinges that allow the motion of attached helices
with respect to the body of the molecule. Upon opening or
closing of the kink, the motion propagates from the fulcrum
of the kink to the attached helical arms (39). Since each crystal



structure shows only a static snapshot, different X-ray struc-
tures can capture the flexible K-turns in different substates. An
example of this is the position corresponding to Hm G798/
U815 in H34 (H and h symbols followed by a number denote
helices in the large and small subunit, respectively). Here, a
tertiary interaction is seen in the Hm: structure but not in the Dr
or Ec. Another example is the G/U basepair corresponding
to Hm G1646/U1539 in H56. A tertiary interaction is seen in
the Hm structure between G1646(NH2) and A1597(NH2).
This interaction is possible because GNH2 can assume a pyr-
amidal configuration due to the NH2 partial sp” hybridization
(57). No equivalent interactions are seen in Dr or Ec. Note
that the limited resolution of the X-ray structures may affect
the appearance of some of the interactions.

Classification of observed tertiary interactions and their
sequence patterns

Three distinct types of shallow groove interactions involve the
G/U pocket (SGP): P-interactions, phosphate-in-pocket inter-
actions and ribose O2’-in-pocket interactions (Figure 1). Aside
from the G/U pocket, several other types of interactions occur
in the shallow groove. These include phosphate single H-bond
interactions, ‘type 0° A-minor motifs, ‘type I’ A-minor motifs
(also known as frans sugar edge/sugar edge or tSS basepair),
H-bonding to GNH2 or ribose sugars of a G/U, and other
edge-to-edge interactions, the most common of which are
¢SS (cis sugar edge/sugar edge, also known as ‘type I’
A-minor motif) and tWS (frans Watson—Crick/sugar edge)
interactions. There also are >20 non-specific interactions
with proteins. A few G/U basepairs participate in more than
one type of tertiary/quaternary interactions at once. Some
others participate in interactions that look like SGNP interac-
tions in the crystal structure, but could easily fall into the
SGP category after a subtle geometrical rearrangement
(‘potential’ SGP interactions).

Table 2. Sequence analysis of cis WC G/U basepairs in 16S 5S rRNA
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Tables 2 and 3 represent sequence analysis of G/U basepairs
classified into four major categories: basepairs with
SGP interactions, potential SGP interactions (see above),
other types of interactions and no interactions. The percentage
of basepairs at each position is measured after ignoring all
sequences with gaps (deletions) (i.e. they are not percentages
over all sequences). For each position, however, we also
report the percentage of sequences with gaps over all
sequences (shaded). If no motif swaps take place between
domains or classes at these locations, then this percentage
of gaps can be considered a measure of the quality of align-
ments at the corresponding positions.

In general, we observe that when G/U basepairs are not
conserved they are replaced primarily by A/C and by classical
WC basepairs (Tables 2 and 3). Much less common are sub-
stitutions by U/G or C/A or other non-classical basepairs
marked as ‘NTs’ (other nucleotides). Although A/C and C/A
basepairs are relatively scarce, and thus a trend is difficult
to measure, G/U’s seem to get more commonly substituted
by A/C’s than C/A’s. As mentioned above, this can be
explained by isostericity (42). This type of substitution pattern
is more apparent in the category of non-interacting G/U’s,
whereas G/U’s that make SGP interactions, and in some
cases those that make potential SGP interactions are much
more conserved (Tables 2 and 3). This indicates that these
interactions are specific for G/U basepairs. G/U mutations at
such locations can disturb 3D structure which might affect the
fitness of the ribosome. One exception occurs in 16S rRNA,
where the G/U’s with SGP interactions have 84% GU and 7%
UG content in archaeal sequence alignments. Although it
seems to violate the isostericity principle, it has a simple
explanation. There are only 6 bp in this category in 16S,
and the 7% UG observed is due to a single position, G633/
U605, which is occupied by G/U in 22% and by U/G in 39% of
the sequences. This basepair makes a phosphate-in-pocket
interaction, which can still take place if G/U flips to U/G,

16S rRNA Archaea (220 sequences) Bacteria (4475 sequences) Eukarya (5248 sequences)

GU AC WC UG CA NTs Gaps GU AC WC UG CA NTs Gaps GU AC WC UG CA NTs Gaps
6 interactions in SGP 84 1 4 7 0 5 10 98 0 1 0 0 2 12 68 0 14 4 3 10 34
10 potential interactions in SGP 98 0 1 0 0 0 23 92 0 7 0 0 1 2 66 11 21 O 0 2 3
22 other interactions 34 4 55 1 0 6 8 720 19 2 0 7 10 25 1 41 7 0 26 10
42 with no interactions 13 2 67 4 2 12 27 32 1 54 5 0 7 12 6 4 58 3 2 27 @ 38

Percentages are measured after ignoring sequences with gaps (deletions). The percent of gaps is separately given in the last column (shaded) as a measure of the quality
of alignments at the corresponding positions, assuming that no motif swaps take place. Abbreviations: SGP, shallow groove pocket; WC, any combination of the
four classical Watson—Crick basepairs (G/C, C/G, A/U and U/A); and NTs, any basepair other than GU, AC, UG, CA or WC.

Table 3. Sequence analysis of cis WC G/U basepairs in 23S and 5S rRNA

23S and 5S rRNA Archaea (24 and 37 sequences)

Bacteria (184 and 336 sequences)

Eukarya (137 and 222 sequences)

GU AC WC UG CA NTs Gaps GU AC WC UG CA NTs Gaps GU AC WC UG CA NTs Gaps
21 interactions in SGP 922 0 4 0 0 3 8 93 0 3 0 0 4 7 57 2 32 2 0 6 18
6 potential interactions in SGP 15 0 66 2 0 18 17 48 1 22 18 2 9 17 18 3 52 19 1 8 35
62 other interactions 37 1 55 4 0 2 3 39 1 48 2 0 7 7 23 2 56 7 1 13 11
103 with no interactions 18 2 68 3 1 7 5 30 1 53 31 11 7 12 3 55 5 2 22 23

Percentages are measured after ignoring sequences with gaps (deletions). The percent of gaps is separately given in the last column (shaded) as a measure of the quality
of alignments at the corresponding positions, assuming that no motif swaps take place. Abbreviations: SGP, shallow groove pocket; WC, any combination of the
four classical Watson—Crick basepairs (G/C, C/G, A/U and U/A); and NTs, any basepair other than GU, AC, UG, CA or WC.
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Figure 3. G/U superimposed on U/G along the C1'-C1’ axis without distorting the backbone, showing that position of the GNH2 is invariant with basepair reversal.

since position of GNH2 that makes one of the two H-bonds in
this interaction remains virtually unchanged (Figure 3). This
means that specific orientation of G/U is not required for the
phosphate-in-pocket interaction.

The high gap count in some highly conserved regions,
like those with specific SGP interactions, may suggest either
mistakes in the available alignments, or motif swaps. This
seems to be more apparent in the case of eukaryal alignments
in both subunits. For this reason, we consider eukaryal
alignments of lower quality than archaeal and bacterial
alignments.

Contemporary sequence alignment methods depend almost
exclusively on the local basepairing and covariation patterns
of classical WC basepairs, and some G/U basepairs, and do
not take into consideration tertiary interactions that impose
unique constraints. Including the tertiary interaction data in
sequence alignment methods would greatly enhance the qual-
ity of those alignments, and is simple to accomplish for
some particular interactions with strong signatures. An
example of this is 23S Hm U731/G740 which in crystal struc-
tures superposes with Dr U650/G660, both making the same
P-interaction. Current sequence alignment protocols, however,
do not properly align these positions. We were able in this
case to use the structure data to manually adjust the alignments
accordingly.

P-interaction

The most conserved interaction that G/U basepairs make is
the P-interaction. It takes place between the ribose O2’ belong-
ing to a nucleotide from a basepair in one helix packing deep
into the G/U SGP of a second helix, forming up to five
H-bonds along the interface. One nucleotide from the first
basepair makes most of the contact with one nucleotide
from the second basepair. These 2 nt are known together as
the internal pair. We designate this interaction as AB<@-CD,
where AB and CD are the basepairs from the two helices,
with B and C forming the internal pair (as seen in
Figure la). A previous study noted that the P-interaction
plays important roles in tRNA binding to the 50S subunit
and in translocation, and that it is conserved in all three phylo-
genetic domains of the large subunit (9). No prior sequence
analysis work on the small subunit has been reported, and no
attempt was made to divide the results according to the three

domains. We exhaustively searched the 3D structures for this
type of interaction using several methods including FR3D, a
structural motif search program of our design (M. Sarver,
C.L. Zirbel, J. Stombaugh, A. Mokdad and N.B. Leontis,
manuscript in preparation). Five such interactions are found
in the small ribosomal subunit and thirteen in the large subunit,
as reported in Tables 4 and 5. The tables include locations and
substitution patterns at all four positions participating in this
interaction. Among the thirteen P-interactions of the large
subunit there is one between 23S and 5S, one between 23S
and E-site tRNA, and one between 23S and P-site tRNA.
U-®-C is the most commonly seen internal pair, but there
is no apparent preference for a Y=Y over Y<®-R interac-
tions, since U-®-G, U-®-A, and other Y-®-R also are seen.
There is, however, clear preference for these over R<®-R
interactions (none of these are observed). G/U on the other
hand is the most commonly seen basepair making this inter-
action, as only 3 of the 18 P-interactions do not involve a G/U
(P-motifs denoted as b, I and J in Tables 4 and 5). In addition,
two such interactions involve a non-WC basepair (e and 5S). A
total of four P-interactions were not reported before (e, B, I
and 5S5).

The high conservation of G/U’s participating in
P-interactions is remarkable (Tables 4 and 5). Even in the
cases where the crystal structure did not contain a G/U base-
pair (b, I and J), alignments of some domains displayed a very
high G/U content in the first helix or U/G in the second helix
(95% U/G in the second helix in archaeal alignments for b,
100% G/U in the first helix in bacterial sequences for I, and
88 and 98% G/U in the first helix in archaeal and bacterial
sequences for J). Even more striking is that in the rare cases
when the G/U in a P-interaction is lost, there is great tendency
for all 4 nt forming the interaction to mutate in a way to finally
recreate a G/U in the right orientation in either one of the
two involved helices. This is best demonstrated by the
P-interaction corresponding to Hm G684/U662-@-C748/
G657 (C in Table 5, between H28 and H27). It seems that
a quadruple compensatory mutation between archaea and
bacteria has occurred. The GU~®-CG in Hm is replaced by
a GC—<®-UG in Dr, and by CG<®-UG in Ec. In archaeal
sequence alignments, these positions are 21% GU-WC,
71% WC-UG and 8% WC-WC. The latter number could
correspond to organisms that survived with the intermediary
mutation. Almost all (99%) of bacterial sequences are
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Figure 4. P-interaction between two helices showing the whole system used for MD analysis; the nucleotides forming the P-interaction are highlighted in red.

Produced by VMD (41).

WC-UG, and most eukaryal sequences (85%) are GU-WC.
The most parsimonious explanation is that originally there was
a WC-UG variant, which is still present in bacteria today.
Sometime after the archaeal/eukaryal line diverged from bac-
teria a mutation occurred, causing some archaeal organisms to
have WC-WC at those positions. Some of these organisms
live till today. However, most archaea had other compensatory
mutations following the first one causing either their return
to the original WC-UG bacterial variant, or their ‘flipping’
into the opposite GU-WC variant. Some archaea also may
have retained the original bacterial variant without ever
mutating because they may have originated before the first
mutation ever occurred. Eukarya most probably separated
from archaea before the first mutation. These observed pat-
terns of substitution strongly suggest that the P-interaction was
conserved in most, if not all organisms, even when the identity
of the individual nucleotides making it had changed. It also is
clear that the G/U basepair with U at the internal position was
favored. This is the first time that such a covariation involving
2 bp, rather than just 2 nt, has been reported.

There is, on the other hand, one case where a P-interaction
in bacteria (corresponding to FEc numbers GI1878/
U1864-@-C414/G2409) is completely lost and replaced by
a GNRA loop interaction in archaea (and probably in eukarya
as well, as suggested by their sequence alignments). The
GNRA loop substitutes for one of the two helices (H68 flanked
by the G/U) without much distortion of structure, because it
makes a similar 3D contact as the P-interaction (Supplement-
ary Figure S1). This proves that the presence and orientation of
an interaction (which defines the 3D folding) is far more
important than the actual identity or type of that interaction.

Tables 4 and 5 also shows that no G/U was substituted by
U/G (in the same helix), which can be explained first by the
fact that cis WC U/G is not isosteric to G/U, and second by
the fact that the P-interaction, unlike the phosphate-in-
pocket interaction, is structurally directional. It cannot
occur as UG=<®-CG because of the specific asymmetric
orientation of the G/U basepair that is more open for SGP
interactions coming from the side of the U rather than the
side of the G.

Molecular dynamics analysis of the P-interaction

Most of the P-interactions observed in crystal structures are
between a G/U pair and a C/G pair, with U and C being at the
internal positions (GU~<®-CG). The purpose of MD analysis
was to explain this behavior, as well as reveal why the G/U’s
forming P-interactions almost never are substituted by the
isosteric A/C basepairs throughout evolution.

MD simulations were carried out for eight different com-
binations of P-interactions, namely GU~®-CG, AC~<®-CG,
GU-¢-GC, AC<¢-GC, GC¢-CG, GC<-GC, AU-e-CG
and AU-®-GC. The studied motifs were embedded in two
A-type helices, each with 24 residues (Figure 4). The helices
were identical in all simulations, except for their centrally
positioned P-interactions. The above combinations were cho-
sen to represent Y—<8-Y and R—®-Y types of interaction, as
well as G/U and other isosteric (A/C) or nearly isosteric (A/U
and G/C) basepairs embedded in one helix, combined with G/
C and C/G basepairs embedded in the other helix. The simu-
lations were extended to ~10 ns each, which appears to be
sufficient for the purpose of this study. Figure 5 shows time
development of the five H-bonds constituting the P-interaction
in each system (as defined in Figure la, except that H-bond
lengths are measured via the heavy atoms in the simulations).
The eight structures were ranked in order of decreasing sta-
bilities which was indirectly estimated based on the number of
H-bonds and their dynamic behavior in the simulations. (Note
that such classification is more relevant to judge the stability of
RNA interactions than, for example, evaluation of direct base—
base interaction energies. This would neglect the interplay
between that base—base interaction and all the other effectors
such as adjacent basepairs, solvent screening and the like).
The suggested stability order is as follows: GU<®-CG =
GU-®-GC (these complexes maintained all five H-bonds
throughout the simulations) >> GC~®-GC = AU-<®-GC =
AU-@-CG = GC<@-CG (these lost the first two H-bonds,
but generally maintained the others) > AC CG = AC GC
(most H-bonds lost early in the simulations). Thus, a
P-interaction involving A/C is the weakest among the tested
systems. This is related to the fact that the A*/C SGP is



Nucleic Acids Research, 2006, Vol. 34, No. 5 1335

I

[

Figure 5. MD of the eight P-interaction systems studied. All five H-bonds involved in the generic P-interaction are monitored (as defined in Figure 1a, but here are
measured from the heavy atoms). The red horizontal lines mark H-bond lengths in starting structures (average over first 50 ps); the red curves describe the probability
distribution of H-bond lengths in the simulation and blue curves displays the actual time development of the H-bond lengths along the trajectory.
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less electronegative than the G/U pocket, and it has a much
lower H-bonding potential due to the loss of NH2 group.
Hence, it cannot accommodate the ribose O2' in the same
way as G/U does (for a comparison of electrostatic potential
between G/U and A*/C see Supplementary Figure S2). Sup-
plementary Data further present free energy calculations
(MM-GBSA and MM-PBSA methods, Supplementary Table
S1) of relative stabilities of the studied P-interactions. The
calculations were also performed for UG<®-GC combination,
which can be considered as unsuitable for P-interaction.
These calculations confirm superior stability of the
GU—®-CG = GU=@®-GC motifs and provide some additional
insights. One has to point out, however, that such thermodyn-
amics calculations are presently based on substantial approx-
imations and that is why we prefer to assess the simulations
primarily based on the structural dynamics seen in Figure 5.

Thus, since GU-®-CG is the most commonly seen
P-interaction in crystal structures and sequence alignments,
and also among the two most stable systems in our simula-
tions, it can be considered as the signature of this interaction.

Other shallow groove pocket interactions

There are two additional SGP interactions in the ribosome,
phosphate-in-pocket interaction, and O2’-in-pocket interaction
(Figure 1). The latter means that O2’ is inserted in the SGP
of G/U, but it can not be classified as P-interaction or ‘type 0’
A-minor interaction. Both of these SGP interactions lead to
high conservation of the G/U’s. The phosphate-in-pocket
interaction is less directional than the P-interaction, having
no preference for a specific G/U orientation. This G/U to
U/G covariation is also the case of some other interactions
in the shallow groove, especially some single H-bond inter-
actions. Thus, it is not unique to phosphate-in-pocket inter-
actions but at least it is one of its indicators. Similar to
P-interaction, we detected one case where a G/U forming a
phosphate-in-pocket interaction is replaced by a GNRA loop,
with no substantial distortion of the 3D folding. This occurs at
the positions corresponding to Ec G1740/U1720-C1550P,
bringing together H63 and H56. Here, both Hm and Dr
have a shorter H63 than Ec, so the GNRA loop that normally
is at the end of H63 is brought to a position homologous to the
G/U position in Ec (Supplementary Figure S1).

Figure 6 and Supplementary Figure S3 summarize positions
of all SGP interactions on the secondary structures of the small
and large ribosomal subunits, respectively.

There are 273 positions in the ribosome occupied by cis
WC G/U basepairs in one or more of the available crystal
structures. This corresponds to roughly 15% of all ribosomal
basepairs. About half of these are involved in tertiary or qua-
ternary interactions. Therefore, they have important roles in
the assembly and 3D folding of the ribosome and its subunits.
Figure 7 is a Venn diagram representing the sequence data
from archaeal and bacterial alignments mapped to the struc-
tural data of each of the positions. This provides valuable
insights into the possible functions and mechanisms for
some specific families of interactions. The diagram clearly
shows that G/U’s forming specific SGP interactions are
most highly conserved. These are the P-interactions,
phosphate-in-pocket interactions, and ribose O2’-in-pocket
interactions. Other tertiary interactions also are included in

the figure, showing less G/U conservation in most cases. Pro-
tein interactions were discussed in detail in (60) and are not
fully addressed here.

Conservation patterns of potential SGP interactions

As noted above, potential SGP interactions are those that could
form SGP interactions after a modest structural rearrangement
(Tables 2 and 3). The substitution patterns in Tables 2 and
3 suggest that most potential SGP interactions in 16S actually
form SGP interactions. They have high G/U conservation
and phylogenetically they behave as actual SGP interactions.
In contrast, most such 23S basepairs are not expected to form
SGP interactions because of their low G/U conservation,
except for Ec 2514-2570.

G/U interactions can mediate flexible and transient
contacts in the ribosome

The ribosome is a large dynamical molecular machine. Move-
ments of its parts must be well coordinated for correct and
efficient functioning. Transient interactions, like those with
tRNA or between the ribosomal subunits, have to be formed
and broken easily, and therefore must be relatively weak while
still stereochemically precise. This may be possible through
the association and dissociation of multiple weak tertiary and
quaternary interactions or via consecutive transformation
between different types of similar interactions. The similarity
between P-interactions, ‘type 0’ A-minor motifs, O2'-in-
pocket interactions, and some potential SGP interactions
(all having an O2' buried at different depths in the G/U
SGP) enables smooth switches from one interaction to another.
A similar scenario was suggested for tertiary interactions
comprising two or more A-minor motifs (61). Such dynamic
behavior could explain why some G/U basepairs without
apparent interactions are conserved. A possible example of
this kind is 16S G886/U911 interacting with G1489/C1411,
which is observed as a potential O2'-in-pocket interaction.
However, sequence analysis shows that this position is
>98% GU-WC (mainly GU-GC and GU-CQG) in all domains,
making it very similar in its evolutionary conservation to a
P-interaction. We suggest that as a P-interaction relaxes or
starts to dissociate, it may convert to an O2'-in-pocket inter-
action or a ‘type 0’ A-minor interaction because of the ori-
entational similarity between them.

Other conserved G/U basepairs

A few other basepairs are highly conserved in archaeal and
bacterial alignments, but are not taking part in SGP or potential
SGP interactions, or are not interacting at all (Figure 7). Some
of these may be involved in transient interactions that are in
their dissociated states in crystal structures. Others, especially
those flanking internal loops or junctions which make up more
than one-third of all G/U’s, may be highly conserved because
of the important roles they play in providing specific stacking
interactions that stabilize these nearby motifs. Examples of
these are 23S 1848-1883 flanking a four-way-junction at
the base of H66, 23S 1898-1939 flanking the internal loop
of H68, which is a conserved motif similar to C-loop, and 23S
2869-2888 flanking the internal loop of H101. Other intri-
guing cases include 23S 2541-2618, which is a specific base-
pair forming ‘type I’ A-minor motif with the terminal A76
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Shallow groove pocket interactions (or potential interactions) in
Thermus thermophilus 16S rRNA (numbers are based on Escherichia coli)
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of the tRNA CCA acceptor stem. The G/U here permits the
interaction to become more compact by allowing
the unstacked A76 to insert deeper in its pocket, making
the G/U the preferred basepair at this location. The 23S
798-815 bp flanking the internal loop of H34 is another inter-
esting case where GNH2 forms an H-bond with A159802/,
which belongs to the hairpin of H58. This helix is joined to the
rest of 23S subunit by a kink-turn, and the G/U here may be
involved in stabilizing conformational changes at this flexible
region located at the interface with the small subunit. Another
conserved G/U is 23S 2492-2529 which is a part of a complex
motif forming a receptor for a GNRA loop.

CONCLUSIONS

Large functional RNA molecules, like the ribosomal RNAs,
are compactly folded and form complex tertiary and quatern-
ary RNA-RNA and RNA-protein contacts mediated by sev-
eral types of recurrent motifs and interactions. We have carried
out a complete structural and sequence analysis of the G/U
basepairs in rRNA and classified their tertiary interactions.

The SGP interactions of G/U basepairs reaching deep in
shallow grooves of helices are clearly the most prominent
G/U interaction patterns. They include the P-interaction iden-
tified earlier (9) and phosphate-in-pocket interactions and
O2'-in-pocket interactions reported here for the first time
(Figure 1). We also detected several P-interactions not noti-
ced before. We show that the P-interaction G/U’s are the
most conserved ones, closely followed by the remaining
SGP interactions.

We identify a novel quadruple compensatory mutation
(involving 4 nt at once) between a G/U and another basepair,
reinstating the P-interaction in a reversed orientation. Further,
we show that tertiary contacts of P- and phosphate-in-pocket
interactions can be conserved upon considerable change of the
local motifs involved. Thus, one G/U forming a P-interaction
in E.coli and D.radiodurans is replaced by a GNRA loop in
H.marismortui. Still, similar tertiary contacts are present
between the equivalent areas of the structures. Another G/U
making a phosphate-in-pocket interaction in E.coli is replaced
by a GNRA loop in both H.marismortui and D.radiodurans
while again keeping similar tertiary contacts, preventing any
major differences in the overall folds. These unique motif
swaps underline the precedence of tertiary over secondary
structure in their particular contexts. All these findings also
clearly demonstrate the importance of G/U SGP interactions in
folding and function of ribosomes.

We also identify interactions that could fall into the SGP
category after a subtle geometrical rearrangement and we call
them potential SGP interactions. This could indicate a transi-
ent formation of SGP interactions in these positions. Indeed,
most potential SGP interactions in 16S rRNA actually appear
to form SGP interactions because phylogenetically they
behave as SGP interactions. In contrast, most such 23S
rRNA basepairs are not expected to form SGP interactions
because of their low G/U conservation. The similarity between
P-interactions, ‘type 0’ A-minor motifs, and O2’-in-pocket
interactions, and some potential SGP interactions indicates
that they could be involved in smooth structural switches
utilizing a set of consecutive similar interaction patterns.
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Most of these G/U interactions are long-range contacts
bringing together different RNA molecules or distant helices
in the same RNA molecule. Some of them, however, are short
range interactions that are nonetheless extremely conserved,
such as the P-interactions b, C, D and J, the phosphate-in-
pocket interactions occurring in h34, between H6 and H7, and
in H91, and the O2'-in-pocket interaction occurring in hll
(refer to Figure 6 and Supplementary Figure S3). Interestingly,
none of these interactions takes place between the ‘head’ of the
30S subunit corresponding to domain III in 16S rRNA and
the rest of the small subunit. This agrees with previous studies
showing that only one A-minor motif interaction occurs
between domain III and the rest of the small subunit (61).
It also supports the observation in the 70S Ec that the
‘head’ is subject to large-scale rigid body motions relative
to the rest of the ribosome during the protein synthesis
cycle, especially the ratchet-like motion that accompanies
translocation (18,62,63).

In contrast to SGP interactions, G/U DGP interactions are
very rare. There are just three occurrences of these in both
ribosomal subunits. These occurrences do not resemble each
other structurally, preventing their classification and charac-
terization. They also do not show any specific sequence sig-
natures, and the G/U’s forming them are not highly conserved
in general (Figure 7).

As noted above, few G/U’s participating in P-interactions
and phosphate-in-pocket interactions, which are some of the
most conserved interactions in RNA, can be replaced by other
elements (like GNRA loops) that are able to form similar
tertiary contacts. This proves that these tertiary contacts are
essential for the survival of the organisms. This, however, does
not challenge the importance of the G/U basepair itself since
it still remains the preferred moderator of such interactions.
This knowledge can be helpful in refining sequence align-
ments by looking for the signatures of some of these interac-
tions, such as the GU~®-CG signature of the P-interaction, and
the G/U covariation with U/G which is one of the indications
of a phosphate-in-pocket interaction.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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