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ABSTRACT Mycobacteriophages Darionha, Salz, and ThreeRngTarjay are mycobacte-
riophages isolated using the host Mycobacterium smegmatis mc2155. Following isola-
tion from soil samples, all three siphoviridae phages were characterized, and their
genomes were sequenced and annotated.

Mycobacteriophages Darionha, Salz, and ThreeRngTarjay are bacteriophages iso-
lated from soil found at the University of Detroit Mercy campus in Detroit,

Michigan, using the host Mycobacterium smegmatis mc2155. M. smegmatis is a well-
known actinobacterium that has been demonstrated to be a useful host for isolating
this type of phage (1). The isolation, characterization, sequencing, and annotation of
each phage was done as part of the Science Education Alliance–Phage Hunters
Advancing Genomics and Evolutionary Science (SEA-PHAGES) program. The SEA-
PHAGES database has over 2,900 completely sequenced phage genomes currently
listed (2, 3).

The three mycobacteriophages were found using either direct plating or enriched
soil samples with the host M. smegmatis, which is a host that is widely used by the
SEA-PHAGES community. M. smegmatis was grown on 7H9 medium supplemented by
albumin and dextrose (AD) at 37°C. ThreeRngTarjay was found from direct plating, and
Salz and Darionha were found from enriched soil samples. Following isolation, DNA was
isolated using the Wizard DNA cleanup kit (Promega). The genomes were sequenced at
the University of Pittsburgh using the Illumina MiSeq platform v3 and assembled using
Newbler v2.9 and Consed v29.0 (4, 5). Darionha had 991,310 individual reads with
approximately 3,342-fold shotgun coverage. Salz had 796,129 individual reads with
approximately 2,179-fold shotgun coverage. ThreeRngTarjay had 281,178 individual
reads with approximately 350-fold shotgun coverage. Phage genomes were checked
for completeness and assembled, and genomic termini were determined using
Newbler and Consed v29 as done previously (6). The genomes were annotated
using DNA Master v5.22.3 (7), Glimmer v3.02 (8), GeneMark v2.5 (7), Starterator
(https://seaphagesbioinformatics.helpdocsonline.com/home), Phamerator v3 (9), HH-
pred v2.07 (10), and BLASTp v2.7.1 (11, 12). Default parameters were used for all
software except that specific parameters for DNA Master, HHpred, and BLASTp were
used as previously described, namely, an E value cutoff of 10e-4 was used for HHpred
and BLASTp (3). General mycobacteriophage features of each genome are listed in
Table 1.
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Based on the nucleotide similarity between other phages isolated from the same
host, phages can be grouped based on sequence similarity into clusters for any phage
sharing sequence similarity with �50% of their genome (13). Using these criteria,
ThreeRngTarjay was classified as a cluster J phage. Phages in this cluster are
Siphoviridae despite having unusually long genomes, with an average genome size
of 111,009 bp. ThreeRngTarjay has a genome size of 113,254 bp, following the trend of
cluster J phages. Cluster J phages are also unique in their mosaic genomic properties
and architecture, gene functions, capsid structure, gene mobility, and intron splicing
(11, 12).

Salz was classified as a cluster A phage, the largest cluster (14), and further
categorized into subcluster A11. Cluster A phages are similar in size and genomic
organization and share a homologous immunity system (15, 16). This immunity system
is unique in cluster A in that these phages have superinfection immunity. Additionally,
cluster A phages encode a repressor protein, which for Salz is gp72. The subcluster
designation was determined on the variation of this stoperator sequence (gene 46),
which categorizes Salz into subcluster A11 (15, 16).

Darionha was classified as a cluster G phage. Subcluster G1 phages are distinct and
unique from other cluster G phages based on a centrally located immunity cassette
(integrase and repressor) required for integration-dependent immunity (14, 17). For
Darionha, the integrase and repressor are located next to each other on genes 32 and
33, respectively. These two genes are what define and give the phage its lysogenic
properties and its prophage stability (14). Lysogeny was confirmed through the plaque
morphology of a characteristic incomplete clearing of the bacterial host.

We deem the annotation of these genomes to be complete. Each genomic region
was annotated independently by two groups of annotators, and any differences were
reconciled. The annotated genomes were then sent to SEA-PHAGES for further quality
control before submission to GenBank and SRA.

Data availability. The GenBank and SRA accession numbers are listed in Table 1.
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