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Abstract: Low-light images are a common phenomenon when taking photos in low-light environ-
ments with inappropriate camera equipment, leading to shortcomings such as low contrast, color
distortion, uneven brightness, and high loss of detail. These shortcomings are not only subjectively
annoying but also affect the performance of many computer vision systems. Enhanced low-light
images can be better applied to image recognition, object detection and image segmentation. This
paper proposes a novel RetinexDIP method to enhance images. Noise is considered as a factor in
image decomposition using deep learning generative strategies. The involvement of noise makes the
image more real, weakens the coupling relationship between the three components, avoids overfitting,
and improves generalization. Extensive experiments demonstrate that our method outperforms
existing methods qualitatively and quantitatively.

Keywords: low-light image enhancement; Retinex decomposition; Deep Image Prior

1. Introduction

With the great breakthrough of deep learning in the field of computer vision tech-
nology, image processing has been widely used in many fields, e.g., face recognition [1],
defect detection [2], medical image retrieval [3], traffic information systems [4], and text
recognition [5]. Image defects can be attributed to uncontrolled factors such as insufficient
lighting conditions and non-uniform lighting during image capture. These unfavorable
elements can be disturbed by backlighting, underexposure, and night-time conditions.
Low-light images are usually noisy, low-contrast, color-distorted, and quality-impaired.
These shortcomings not only result in an unpleasant visual experience but also affect the
performance of many computer vision systems, e.g., for image recognition, object detection,
and image segmentation.

Image enhancement has a wide range of applications in different fields, e.g., under-
water images [6], high-speed railway images [7], and robot vision [8]. In general, there
are two ways to improve the image quality. One is to improve the hardware performance
of photographic equipment and the other is to process the obtained image. However, the
former has disadvantages such as manufacturing difficulties, high cost, and complicated
technology. Therefore, in practical applications, improving the quality of low-light images
through enhancement algorithms is of great significance. Low-light image enhancement
has two main purposes: improving contrast and suppressing noise. The enhanced image is
more suitable for human observation and computer vision systems.

Related studies on low-light image enhancement are reviewed, including those using
conventional methods and deep learning methods. Traditional low-light enhancement
methods include methods based on histogram equalization (HE) and the Retinex model.
Histogram equalization is a method of using an image histogram to adjust contrast in the
field of image processing (BPDHE [9], DHE [10], histogram modification [11]). HE methods
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may increase the contrast of noise and reduce the contrast of useful signals. In view of
the shortcomings of the HE method, many improved versions have been proposed, e.g.,
clipped AHE [12], CLAHE [13], CVC [14], and contrast enhancement algorithm [15].

Retinex model-based methods decompose low-light images into reflection and illumi-
nation components [16]. Given a low-light image S, it can be decomposed into S = R� I,
where S represents the low-light image, R represents the reflectance, I represents the illu-
mination map, and � represents the dot product operation. In addition, many improved
versions of Retinex models have been derived from the Retinex theory, including the single-
scale Retinex model [17], the multi-scale Retinex model [18], the naturalness preserved
enhancement algorithm [19], the fusion-based enhancing method [20], and illumination
map estimation [21]. There are also some algorithms based on the variational Retinex model,
e.g., the variational Retinex model formulated as a quadratic optimization problem [22],
the variational framework for Retinex introducing a bright channel [23], the variational
Retinex model based on the L2-norm [24], the hybrid L2-Lp variational model with bright
channel prior [25], and the maximum-entropy-based Retinex model [26]. Based on the
computational complexity of variational methods, the disadvantage of this method is that
processing images is time-consuming.

With the development of artificial intelligence, deep learning methods have also been
widely used in the field of low-light image enhancement. Lore et al. [27] proposed a method
of enhancing natural low-light images using a stacked sparse denoising autoencoder. Tao
et al. [28] introduced a CNN method utilizing multi-scale feature maps to perform low-light
image enhancement. Ignatov et al. [29] proposed a residual convolutional network that
combines the composite perceptual error functions of content, color, and texture losses to
improve the color and detail sharpness of the image. Shen et al. [30] put forward a convolu-
tional neural network that directly learns the end-to-end mapping between dark and bright
images for low-light image enhancement. Gharbi et al. [31] introduced a neural network
architecture using input/output image pairs to perform image augmentation in real time
and with full-resolution images. Wei et al. [32] designed a deep network called Retinex-Net
based on the Retinex model, including Decom-Net for decomposition and Enhance-Net for
lighting adjustment. Wang et al. [33] proposed a convolutional neural network based on
the global prior information generated in the encoder–decoder network to enhance images.
Chen et al. [34] presented a fully end-to-end convolutional network for processing low-light
images using raw image data. Chen et al. [35] proposed an unpaired learning method for
image enhancement based on a bidirectional generative adversarial network (GAN) frame-
work. Zhang et al. [36] constructed an efficient network (KinD) trained on paired images
shot under different exposure conditions. Wang et al. [37] proposed a neural network for
enhancing underexposed photos by introducing intermediate lighting into the network to
correlate the input with the expected enhancement result. Jiang et al. [38] proposed an un-
supervised generative adversarial network trained with unpaired images. Yang et al. [39]
suggested a semi-supervised learning method for low-light image enhancement based on a
deep recursive band network (DRBN). Lv et al. [40] presented an end-to-end lightweight
network for non-uniform illumination image enhancement that retains the advantages
of the Retinex model and overcomes its limitations. Wang et al. [41] proposed the Deep
Lightening Network (DLN) composed of several lightening back-projection (LBP) blocks to
estimate residuals between low-light and normal-light images and the residual between
low and normal light images. Zhu et al. [42] proposed the Edge-Enhanced Multi-Exposure
Fusion Network (EEMEFN), which includes a multi-exposure fusion module and an edge
enhancement module to enhance extremely low-light images. Liu et al. [43] obtained a
Retinex-inspired Unrolling with Architecture Search (RUAS), where a cooperative archi-
tecture search was used to discover low-light prior architectures from a compact search
space, and reference-free losses were used to train the network. Li et al. [44] presented
a progressive–recursive image enhancement network (PRIEN) that uses a recursive unit
to progressively enhance the input image. Zhang et al. [45] proposed dynamic fields to
learn and make inferences from a single image, and then enforce temporal consistency.
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Fu et al. [46] suggested a novel unsupervised low-light image enhancement network (LE-
GAN) based on generative adversarial networks using unpaired low-light/normal-light
images for training. Zhao et al. [47] proposed a unified deep zero-reference framework
termed RetinexDIP for enhancing low-light images; however, noise was not considered in
the decomposition process. Liu et al. [48] proposed the Retinex-based fast algorithm (RBFA)
to achieve low-light image enhancement. Liang et al. [49] proposed a low-light image
enhancement model based on deep learning. Li et al. [50] presented a low-light image
enhancement method based on a deep symmetric encoder–decoder convolutional network.
Han et al. [51] proposed a DIP based on a noise-robust super resolution method. Ai and
Kwon [52] used attention U-Net for extreme low-light image enhancement. Zhao et al. [53]
proposed a multi-path interaction network to improve the quality of the image.

In this paper, we propose a novel RetinexDIP method to enhance images. Noise
components are introduced into our network, and three components are generated by
the DIP network. The involvement of noise makes the image more real, weakens the
coupling relationship between the three components, avoids overfitting, and improves
generalization. The illumination map is obtained by iterating and adjusting the input
noise, and then the enhanced image is generated based on the Retinex model. Our training
process is a zero-reference process and does not require any paired or even unpaired data,
which is similar to existing methods (EnlightenGAN [38], CycleGAN [54], Zero-DCE [55]).
The novel RetinexDIP method can be applied to various poorly lit environments and
has good generalization. The loss function in this paper is composed of four parts: the
spatial reconstruction loss, illumination-consistency loss, reflectance loss, and illumination
smoothness loss. The experimental results show that the normal light images generated by
our method are natural and clear and the method has excellent performance according to
both visual observation and objective evaluation indicators. The main contributions of this
paper are as follows:

1. We propose a novel noise-added RetinexDIP method to enhance images.
2. Three components are generated by the DIP network.
3. The zero-reference process avoids the risk of overfitting and improves generalization.
4. The experimental results show that our method significantly outperforms some cur-

rent state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 details our proposed approach.
Section 3 presents the experimental results, and the last section concludes the paper.

2. Materials and Methods

Given a low-light image S and considering noise, the image can be decomposed into:

S = R� I + N (1)

or
S = (R + N)� I, (2)

where S represents the low-light image, R represents the reflectance, I represents the
illumination map, N denotes the noise, and� represents the dot product operation. Adding
hand-crafted priors to components makes the components more coupled. Deep Image
Prior (DIP) means that complex prior knowledge does not need to be introduced, as it can
be encoded in the structure of the neural network itself [56]. In practical problems, it is
difficult to find pairs of low-light and normal images. Therefore, generative models are
becoming more and more important.

In this paper, we implement image decomposition based on Retinex theory and
generative strategies, taking into account the noise factor. The overall framework of this
method is shown in Figure 1. As can be seen from Figure 1, there are three encoder–decoder
networks (DIP1, DIP2, and DIP3) in the model. These DIP networks are all convolutional
operations. DIP1 is used to generate noise N, and DIP2 and DIP3 are used to generate the
reflectance R and the latent illumination I. All three DIP networks use white Gaussian
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noise as input and obey z1,2,3 ∼ N(0, σ2), where σ2 represents the variance of the Gaussian
distribution. The noise is obtained via random sampling and has the same size as the
image.

...

DIP3

DIP2

...

...

DIP2

DIP1

+

Figure 1. Overall framework of our method, where z1,2,3 ∼ N(0, σ2) signify Gaussian noise. DIP1 is
used to generate noise N, and DIP2 and DIP3 are used to generate the reflectance R and the latent
illumination I. lrec, li−c, lre f , and li−s represent reconstruction loss, illumination-consistency loss,
reflectance loss, and illumination smoothness loss, respectively. I0 is the initial illumination, S0 is the
input image, and S is the enhanced image.

To evaluate the quality of the augmented images, the following four types of losses
were employed to train our model.

Reconstruction Loss. The reconstruction loss is defined according to the following
form:

lrec = ‖gI(z3)� (gR(z2) + gN(z1))− S0‖2
2, (3)

where N is the noise generated by DIP1, denoted by gN , R is the latent reflectance generated
by DIP2, denoted by gR, and I is the illumination generated by DIP3, denoted by gI . S0 is
the observed image.

Illumination-consistency Loss. As in [47], we also consider the illumination-
consistency loss, which is defined as

li−c = ‖gI(z3)− I0‖1, (4)

where I0 is the initial illumination obtained by

I0(p) = max
c∈{R,G,B}

Sc(p) (5)

for every pixel p.
Reflectance Loss. In this paper, the reflectance R is considered, and the total variation

(TV) constraint [57] is defined as

lre f = ‖∇gR(z2)‖1, (6)

where ∇ denotes the first-order operator containing a horizontal component ∇h and a
vertical component ∇v.

Illumination Smoothness Loss. We also use the illumination reflection gradient-
weighted TV constraint, defined as

li−s = ‖W �∇gI(z3)‖1, (7)
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where W is the weight matrix. According to the weight strategy in [21], it is set via:

Wh,v ←
1

|∇h,v I0|+ ε
, (8)

where ε is a small decimal to ensure that the denominator is not 0.
Combining the four losses, we minimize the objective function as follows:

arg min
I,R,N
‖gI(z3)� (gR(z2) + gN(z1))− S0‖2

2 + λ1‖gI(z3)− I0‖1 + λ2‖∇gR(z2)‖1 + λ3‖W �∇gI(z3)‖1, (9)

where λ1, λ2, and λ3 are the balance parameters.
The enhanced image S is composed of noise N, reflectance R, and the latent illumina-

tion I.
S = (R + N)� I, (10)

or
S = gI(z3)� (gR(z2) + gN(z1)). (11)

Next, enhancement using only estimated illumination is described. There are two
commonly used composition strategies: one is to remove the illumination component,
considering the reflectance as the enhancement result, i.e. Ŝ = S/I, and the other is to
adjust the illumination and reconstruct the result with the reflectance, i.e. Ŝ = Î � R. In
this paper, we use a variant of the former strategy, that is, Ŝ = S/ Î (refer to [21] for details).

We adjust the illumination distribution of decomposition using the gamma correction
Î = Iγ, where γ is the correction factor. To sum up, the enhanced result is given by:

Ŝ = Sc/ Î, c ∈ {R, G, B}. (12)

The whole operation process is shown in Algorithm 1.

Algorithm 1: our algorithm
Input : low-light image S0

1 Compute I0 with Equation (5);
2 for k=0 to K do
3 zi ← N (0, δ2), i = 1, 2, 3;
4 Sk ← gI(z3)� (gR(z2) + gN(z1));
5 Minimize the object funcion Equation (9);
6 Update gI , gR, gN simultaneously;
7 Output Ik, Rk;
8 end
9 I ← max c ∈ {R, G, B}Ic;

10 Î ← Iγ ⊗ 255;
11 Compute enhanced image Ŝ = Sc/ Î, c ∈ {R, G, B};
12 Output Ŝ

3. Experiment

In this section, the experimental parameter settings, public low-light image datasets,
and performance metrics are introduced. The results of our approach with different
methods are also be discussed.

3.1. Settings

We implement our framework using PyTorch on an NVIDIA 2080Ti GPU. The model
experimental parameters were set as follows: λ1 = 1, λ2 = 0.0001, λ3 = 0.5, δ = 0.01,
γ = 0.5, and K = 300. We use six public datasets with low-light images for the experiments,



Sensors 2022, 22, 5593 6 of 13

including DICM [15], Fusion [58], LIME [21], MEF [59], NPE [19], and VV (https://sites.
google.com/site/vonikakis/datasets (accessed on 1 June 2022)).

3.2. Performance Criteria

In this paper,we measure the experimental results from visual observations and
objective evaluation indicators. The following evaluation indicators were used.

Natural Image Quality Evaluator (NIQE). The inspiration for NIQE is based on con-
structing a series of features used to measure image quality and using these features to fit a
multivariate Gaussian model. In the evaluation process, the distance between the image
feature model parameters (to be evaluated) and the pre-established model parameters is
used to determine the image quality. A lower NIQE score indicates better preservation of
naturalness. For details, refer to [60].

No-reference Image Quality Metric for Contrast Distortion (NIQMC). NIQMC is
defined as a simple linear fusion of global and local quality measures [61]. A higher
NIQMC score represents better image contrast.

Colorfulness-Based Patch-Based Contrast Quality Index (CPCQI). CPCQI is a color-
based PCQI metric that evaluates the enhancement effect between input and enhanced
output in terms of mean strength, signal strength, and signal structure components [62]. A
larger CPCQI value indicates a higher contrast ratio.

3.3. Results

In this section, we show the effectiveness of the proposed method. We compare it
with six other methods, i.e., LIME [21], NPE [19], SRIE [63], KinD [36], Zero-DCE [55], and
RetinexDIP [47].

The specific process for our method is shown in detail step by step in Figure 2.

(a) input (b) I (c) R

(d) N (e) R + N (f) S

Figure 2. Results of each step of our method: (a,f) are the input image and enhanced result;
(b–e) represent illumination I, reflectance R, noise N, and R + N.

First, we evaluate the different methods qualitatively. As shown in Figures 3–6, we
select local regions and zoom in on them for intuitive comparison with other methods. The
following conclusions can be drawn from the observation of Figure 3. The enhancement
effect of the NPE, SRIE, and KinD methods is not obvious. The LIME and RetinexDIP
methods produce over-enhancement effects in these regions. The processing result of
Zero-DCE has unnatural color. Our method yields natural exposure and clear details. In
Figure 4, it can be seen that our method enhances the image and the edges are clearly
visible. The result of KinD has an unnatural color. By considering Figure 5, it can be seen
that the method proposed in this paper does not have the problems of overexposure and
artifacts when improving the contrast. From Figure 6, it can also be concluded that our
method improves the contrast effectively and maintains the natural color at the same time.

https://sites.google.com/site/vonikakis/datasets
https://sites.google.com/site/vonikakis/datasets
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(a) input (b) LIME (c) NPE (d) SRIE

(e) KinD (f) Zero-DCE (g) RetineDIP (h) Ours

Figure 3. Comparisons of enhanced images. Red boxes indicate the obvious differences. Compared
with other methods, our method yields natural exposure and clear details.

(a) input (b) LIME (c) NPE (d) SRIE

(e) KinD (f) Zero-DCE (g) RetinexDIP (h) Ours

Figure 4. Comparisons of enhanced images. Red boxes indicate the obvious differences. Compared
with other methods, our method enhances the image and the edges are clearly visible.
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(a) input (b) LIME (c) NPE (d) SRIE

(e) KinD (f) Zero-DCE (g) RetinexDIP (h) Ours

Figure 5. Comparisons of enhanced images. Red boxes indicate the obvious differences. Compared
with other methods, our method does not have the problems of overexposure and artifacts.

(a) input (b) LIME (c) NPE (d) SRIE

(e) KinD (f) Zero-DCE (g) RetinexDIP (h) Ours

Figure 6. Comparisons of enhanced images. Red boxes indicate the obvious differences. Compared
with other methods, our method improves the contrast effectively and maintains the natural color.

In the following, we compare the proposed method with other methods quantitatively.
The red, green, and blue scores represent the top three in the corresponding dataset,
respectively. Table 1 presents the NIQE metrics of different methods on the six datasets.
Notably, a lower NIQE score indicates better preservation of naturalness. Our method
achieves the best results on the MEF and VV datasets and the second-best results on the
average of the six datasets and LIME. Table 2 presents the NIQMC metrics of the different
methods on the six datasets. A higher NIQMC score represents better image contrast. Our
method is in the top three for DICM, LIME, MEF, NPE, VV, and the average of the six
datasets. Table 3 presents the CPCQI of the different methods on the six datasets. A larger
CPCQI value indicates a higher contrast ratio. Our method achieves the best results on
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DICM, Fusion, NPE, and the average of the six datasets, and also performs well on several
other datasets.

As shown in Table 4, the runtimes of different methods were compared. In the
experiment, we compare the runtimes of three traditional methods (LIME, NPE, SRIE) and
three deep learning methods (KinD, Zero-DCE, RetinexDIP) to that of our method, with
eight different input image sizes. Compared with NPE, SRIE, and RetinexDIP, we find
that our method is more efficient on high-resolution images. Unlike traditional methods
such as NPE and SRIE, the proposed method uses the DIP network to compute reflections
and illumination. Benefiting from the convolutional structure, the runtime of the DIP
model changes very little as the image resolution grows. Compared with RetinexDIP, the
proposed method converges faster and requires less runtime due to the consideration of
noise. Compared with Zero-DCE and KinD, our method can also save memory, since Zero-
DCE and KinD are pixel-wise methods, while the proposed method is based on Retinex
decomposition. The proposed method does not require the actual resolution of the image
in the operation, and the memory will not increase significantly with an increase in the
image resolution.

Table 1. Comparison of average NIQE on six datasets. (The red, green, and blue scores represent the
top three in the corresponding dataset, respectively).

Method DICM Fusion LIME MEF NPE VV Average

LIME 3.5360 3.9183 4.1423 3.7022 4.2625 2.7475 3.5442
NPE 3.4530 3.8883 3.9031 3.5155 3.9501 3.0290 3.4928
SRIE 3.5768 3.9741 3.7868 3.4742 3.9883 3.1357 3.5668
KinD 4.2691 4.1027 4.3525 4.1318 3.9589 3.4255 4.0752

Zero-DCE 3.6091 4.2421 3.9354 3.4044 4.0944 3.2245 3.6332
RetinexDIP 3.7612 4.2308 3.6355 3.2721 4.1012 2.4890 3.5363

Ours 3.7911 4.0628 3.7615 3.2363 4.0426 2.4604 3.5294

Table 2. Comparison of average NIQMC on six datasets. (The red, green, and blue scores represent
the top three in the corresponding dataset, respectively).

Method DICM Fusion LIME MEF NPE VV Average

LIME 5.3397 5.3686 5.4956 5.4168 5.4480 5.5805 5.4121
NPE 5.0895 4.5802 4.6168 4.8610 5.1738 5.2655 5.0104
SRIE 4.9990 4.3568 4.5032 4.7045 5.1848 5.3021 4.9246
KinD 4.6155 4.5248 4.6841 4.6725 4.5766 4.8159 4.6511

Zero-DCE 4.8984 4.7346 5.0678 5.0504 5.1068 5.3614 5.0062
RetinexDIP 4.9912 4.4449 4.7830 5.0151 5.3222 5.3915 5.0126

Ours 5.0093 4.5210 4.7996 5.0761 5.2931 5.4138 5.0398

Table 3. Comparison of average CPCQI on six datasets. (The red, green, and blue scores represent
the top three in the corresponding dataset, respectively).

Method DICM Fusion LIME MEF NPE VV Average

LIME 0.8986 0.9642 1.0882 1.0385 0.9844 0.9555 0.9515
NPE 0.9139 0.9705 1.0812 1.0372 1.0228 0.9557 0.9609
SRIE 0.9056 1.0094 1.1121 1.0967 1.0258 0.9629 0.9721
KinD 0.7459 0.8148 0.8336 0.7877 0.8007 0.7418 0.7670

Zero-DCE 0.7818 0.8820 0.9803 0.9461 0.8578 0.8396 0.8415
RetinexDIP 0.9999 1.0680 1.1595 1.1088 1.0411 1.0525 1.0436

Ours 1.0038 1.0787 1.1585 1.0926 1.0524 1.0445 1.0437
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Table 4. Runtime (RT) comparison (in seconds).

Method (640 × 480) (1280 ×
960)

(1920 ×
1440)

(2560 ×
1920)

(3200 ×
2400)

(3840 ×
2880)

(4480 ×
3360)

(5120 ×
3840)

LIME 0.1133 0.4196 1.0148 1.5713 2.3901 3.3302 4.4058 5.7054
NPE 5.8861 26.6340 58.5019 104.8345 163.9938 235.7513 326.0996 427.1531
SRIE 4.7643 33.6684 121.5802 343.9839 726.5981 386.7066 544.0660 865.0404
KinD 0.1554 0.0464 - - - - - -

Zero-DCE 0.12559 0.1390 0.2539 0.4051 0.83371 - - -
RetinexDIP 15.2482 15.5945 31.4575 52.1564 102.5126 139.4568 182.4861 212.1594

Ours 15.3655 15.4910 30.8131 48.9527 94.5498 122.6732 154.7097 189.1483

4. Conclusions

In this paper,we propose a novel low-light image enhancement method via Retinex
decomposition of denoised Deep Image Prior. Noise is considered in the image decom-
position using deep learning generative strategies. As a comparison, we also consider
six other methods, i.e., LIME, NPE, SRIE, KinD, Zero-DCE, and RetinexDIP. Extensive
experiments demonstrate that our method outperforms existing methods qualitatively
and quantitatively. Unlike some other learning-based methods, the method proposed in
this paper is a no-reference method, which means that only the input images are required
without any extra data. Taking the reflection noise into consideration, our experiments
show that the denoised Deep Image Prior can produce images with less noise.

In real scenes, noise always conforms to some scene-dependent distribution such as
the Poisson distribution. In future work, other approaches such as normalizing flow will
be considered to simulate a more realistic noise distribution than that of DIP.
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