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Abstract
Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO2 uptake with water vapor loss, thus having
critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for pheno-
typing epidermal cell traits have limited discoveries about the genetic basis of stomatal patterning. A high-throughput
epidermal cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) mapping in field-grown
maize (Zea mays). The locations and sizes of stomatal complexes and pavement cells on images acquired by an optical
topometer from mature leaves were automatically determined. Computer estimated stomatal complex density (SCD; R2

¼ 0.97) and stomatal complex area (SCA; R2 ¼ 0.71) were strongly correlated with human measurements. Leaf gas ex-
change traits were genetically correlated with the dimensions and proportions of stomatal complexes (rg ¼ 0.39–0.71)
but did not correlate with SCD. Heritability of epidermal traits was moderate to high (h2 ¼ 0.42–0.82) across two field
seasons. Thirty-six QTL were consistently identified for a given trait in both years. Twenty-four clusters of overlapping
QTL for multiple traits were identified, with univariate versus multivariate single marker analysis providing evidence con-
sistent with pleiotropy in multiple cases. Putative orthologs of genes known to regulate stomatal patterning in
Arabidopsis (Arabidopsis thaliana) were located within some, but not all, of these regions. This study demonstrates how
discovery of the genetic basis for stomatal patterning can be accelerated in maize, a C4 model species where these pro-
cesses are poorly understood.
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Introduction
Stomata are the adjustable pores on leaf surfaces that regu-
late gas exchange, most notably CO2 uptake and water va-
por loss. The ratio of carbon gained to water lost is defined
as water use efficiency (WUE), and represents arguably the
most fundamental tradeoff faced by land plants (Leakey et
al., 2019). At the leaf level, this is most commonly expressed
as intrinsic WUE (iWUE), which is calculated as the ratio of
the net rate of CO2 assimilation (A) to stomatal conduc-
tance (gs). The pattern of stomata on the epidermis, and
the dynamics of stomatal opening and closing, influence
many important processes from food and energy production
to global carbon and water cycling (Hetherington and
Woodward, 2003). The accessibility of stomata on the plant
exterior surface has also made them a model system for
studying developmental and signaling processes (Blatt, 2000;
Schroeder et al., 2001; Bergmann, 2004; Lawson et al., 2014;
Torii, 2015). Consequently, there is a significant potential for
fundamental scientific discoveries about stomata to be lever-
aged for improvement of crop performance and sustainabil-
ity through breeding or biotechnology (Yoo et al., 2010;
Franks et al., 2015; Hughes et al., 2017; Caine et al., 2019;
Lawson and Vialet-Chabrand, 2019; Harrison et al., 2020;
McKown and Bergmann, 2020).

Despite the accessibility and importance of stomata,
assessing the patterning of epidermal cells has remained a
laborious and time-consuming task for many decades. Most
studies of stomatal patterning still rely on methods of im-
printing or peeling the epidermis from live tissue, followed
by light microscopy, and manual identification and measure-
ment of cells in images (e.g., Biscoe, 1872; Caine et al., 2019;
V}ofély et al., 2019). This limits the application of quantita-
tive, forward, and reverse genetics to understand the genes,
and processes that regulate stomatal patterning. And, it
means samples cannot be analyzed with sufficient through-
put for stomatal patterning to be a target trait in modern
crop breeding programs.

Optical topometry (OT) is a rare example of a methodol-
ogy proposed to accelerate the acquisition of epidermal pat-
terning data through rapid image acquisition. OT is a
nondestructive method for use on fresh or frozen leaf sam-
ples, which requires no sample preparation beyond sticking
a piece of leaf to a microscope slide with double-sided sticky
tape (Haus et al., 2015). It gathers focused pixels across
plains of the leaf surface in <1 min per field of view. OT
images have been manually counted to assess stomatal den-
sity responses to elevated [CO2] in Arabidopsis (Arabidopsis
thaliana; Haus et al., 2018). But an automated analysis pipe-
line is still needed to robustly capture within-species genetic
variation in epidermal patterning from OT images with the
fidelity required for genetic analysis.

There have been many attempts to address the phenotyp-
ing bottleneck for stomatal patterning through computer-
aided image analysis. Classical image processing methods
(Omasa and Onoe, 1984; Liu et al., 2016; Duarte et al., 2017)
and machine learning models have been applied (Vialet-

Chabrand and Brendel, 2014; Higaki et al., 2015; Jayakody et
al., 2017; Saponaro et al., 2017; Dittberner et al., 2018; Toda
et al., 2018; Aono et al., 2019; Bhugra et al., 2019; Fetter et
al., 2019; Li et al., 2019; Sakoda et al., 2019). Although a
number of these methods have been demonstrated to work
within constrained image sets, none of them have been
widely adopted, even within a single species. Some of these
tools require scanning electron microscopy, adding to the
sample preparation and image acquisition burden (Aono et
al., 2019; Bhugra et al., 2019; Fetter et al., 2019). Most exist-
ing tools are limited to identifying and phenotyping stoma-
tal complexes. Adding the ability to measure pavement cells
is valuable in its own right and also allows calculation of sto-
matal index (SI; i.e., the ratio of stomata number to total
epidermal cell number given in unit leaf area). SI is a key
trait because it is directly influenced by mechanisms that
regulate epidermal cell fate and is less sensitive to environ-
mental influences than stomatal density (Royer, 2001).
Therefore, developing an end-to-end pipeline for rapid ac-
quisition and comprehensive analysis of epidermal cell pat-
terning, and demonstrating its application in the
investigation of genetic variation in stomatal patterning, re-
main an important but elusive goal.

In recent years, important progress has been made in
studying the degree to which orthologs of stomatal pattern-
ing genes in Arabidopsis (Pillitteri and Torii, 2012) have con-
served or novel functions in C3 grass species (Raissig et al.,
2016; Hughes et al., 2017; Raissig et al., 2017; Yin et al., 2017;
Hepworth et al., 2018; McKown and Bergmann, 2020). But,
very little is known about the trait relationships and genetic
control of stomatal patterning and iWUE in C4 species
(Leakey et al., 2019). And, apart from a few notable exam-
ples (Cartwright et al., 2009; Campitelli et al., 2016; Raissig et
al., 2017), quantitative genetics and forward genetic screens
to identify putative regulators of stomatal patterning still
have generally not met their potential to drive discovery of
genotype-to-phenotype relationships.

Linkage mapping in barley (Hordeum vulgare), wheat
(Triticum aestivum), and rice (Oryza sativa) has discovered
quantitative trait loci (QTL) that are associated with stoma-
tal patterning traits (Patto et al., 2003; Laza et al., 2010; Liu
et al., 2014, 2017; Sumathi et al., 2018), including some that
colocalize with yield QTL (Shahinnia et al., 2016). But, the
only reports of similar experiments in maize predate statisti-
cal techniques, such as QTL mapping (Heichel, 1971). Maize
is the most important crop in the world in terms of total
production (USDA, 2019), with the Midwest USA producing
�27% of the global harvest (USDA-FAS, 2020). Maize yield is
limited by water availability, and increasingly sensitive to
drought as a side effect of productivity increases resulting
from improved breeding and management (Lobell et al.,
2014). Conversely, increased maize production over recent
decades has led to faster water cycling and regional cooling
in Midwest USA (Alter et al., 2018). Therefore, improved un-
derstanding of the genetic basis for variation in stomatal
traits in maize has implications for agricultural productivity,
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resilience, and sustainability. Fortunately, maize is also a
highly tractable, model experimental system for crop genet-
ics (Buckler et al., 2009).

In summary, the current study was motivated by the need
for a tool to accelerate phenotyping of epidermal cell pat-
terning, which could then be demonstrated by applying it
to investigate the genetic architecture and trait relationships
of stomatal patterning traits in maize. The desired character-
istics of an end-to-end phenotyping pipeline are: (1) little to
no sample preparation and quick image acquisition; (2) fast,
accurate, and robust detection of epidermal cells; and (3)
the ability to extract the number, size, and position of pave-
ment cells as well as stomatal complexes. OT was tested as
a data acquisition method from leaves that were stored fro-
zen after being grown in the field. For epidermal cell detec-
tion, the recently developed Mask R-CNN model for object
instance detection (He et al., 2017) was tested to treat sto-
mata and pavement cells as two object classes, so that their
position and size could be extracted simultaneously. A re-
combinant inbred line (RIL) population resulting from a B73
� MS71 cross was grown in 2 years in the field. Stomatal
patterning was phenotyped along with leaf photosynthetic
gas exchange and specific leaf area (SLA) to investigate trait
relationships and their genetic architecture in a major crop
and model C4 species.

Results

High-throughput phenotyping pipeline for
epidermal cells of maize
A high-throughput epidermal cell detection pipeline requires
both efficient image acquisition and automatic cell detection
(Figure 1). OT allowed rapid, nondestructive imaging of leaf
samples. Less than 1 min was required from locating the
portion of the epidermis to be scanned to outputting a 3D
topography surface layer with dimensions of 0.8 mm � 0.8
mm (e.g., Figure 2A). Overall, 7,033 fields of view were
sampled from 1,569 leaf samples collected over two field
seasons, with scanning completed in approximately 24 per-
son-days. The Mask Region Based Convolutional Neural
Network (R-CNN) model automatically detected stomatal
complexes as well as pavement cells, even though the latter
varied greatly in their physical shape and size (Figure 2;
Supplemental Figure S1). Image pre-processing and analysis
of a full image set for QTL mapping (�4,000 images) was
completed in �120 h (Table 1). Anatomical trait names
with corresponding acronyms, descriptions, and units are
listed in Table 2.

Human validation of Mask R-CNN cell counts and
stomatal complex size
A comparison was drawn between the machine and six
trained human evaluators, each labeling a full set of images,
to verify the machine’s performance on epidermal cell recog-
nition and boundary predictions. Variation among human
evaluators contributed a small portion of the variance
within the dataset for both SCD (2%) and pavement cell

density (PD; 6%; Supplemental Figure S2). Variation among
evaluators contributed a greater proportion of variance for
stomatal complex width (SCW; 56%), stomatal complex
length (SCL, 23%), and stomatal complex area (SCA; 15%).
Nonetheless, uncertainty around the mean value of human
measurements was low (expressed as standard error around
plotted data in Figures 3, A and B, 4). There was no variance
in estimates of cell density from Mask R-CNN when the
same image was repeatedly submitted to the analysis pipe-
line, so no measure of technical variation could be
expressed.

The mean density of cells estimated by the group of hu-
man evaluators was very strongly correlated with computer
estimation of both SCD (R2 ¼ 0.97, P< 0.0001; Figure 3A)
and PD (R2 ¼ 0.96, P< 0.0001; Figure 3B) and displayed
very low bias from the 1:1 line. The mean data from human
evaluators were also highly significantly correlated with com-
puter measurements for SCL (R2 ¼ 0.81, P< 0.0001; Figure
4A), SCW (R2 ¼ 0.54, P< 0.0001; Figure 4B) and SCA (R2 ¼
0.71, P< 0.0001; Figure 4C). All three traits were slightly
underestimated by machine measurements relative to hu-
man measurements, with the absolute bias being greater for
larger cells than small cells.

To further evaluate sources of variation in stomatal pat-
terning traits, six RILs were chosen that represented the
range of SCD observed across the full mapping population
in the 2016 growing season. All the images for those six RILs
were then manually counted by five human beings as well
as by machine. Variation around the genotype means de-
rived from machine counts was similar or smaller than the
variation resulting from using the mean of five expert eval-
uators as the input (expressed as standard error around
plotted data in Figure 3, C and D). Genotype mean values
based on machine counts were very strongly correlated with
best-estimates from human evaluators for both stomatal
complex density (SCD; R2 ¼ 0.999, P< 0.0001; Figure 3C)
and PD (R2 ¼ 0.998, P< 0.0001; Figure 3D), and had very lit-
tle bias from the 1:1 line.

Heritability and trait variation across the RIL
population
Genotypic variation in stomatal patterning traits displayed
good repeatability across growing seasons (Figure 5).
Genotype means were significantly correlated across the 2
years for all traits assessed with goodness-of-fit (R2) ranked
from highest to lowest of: 0.70 for stomatal complex total
area (SCTA); 0.69 for stomatal pore area index (SPI), 0.68 for
SI, 0.64 for SCD; 0.64 for pavement cell area (PA); 0.60 for
PD; 0.56 for SCL; 0.52 for stomatal complex length and
width ratio (SCLWR); 0.50 for SCA; 0.46 for SCW; 0.43 for
pavement cell total area (PTA); and 0.13 for SLA. This corre-
sponded to all epidermal patterning traits having moderate
to high heritability (h2 ¼ 0.42 to 0.82) across the 2 years
(Supplemental Table S1).

Among the 191 RILs assessed over the 2 years, the relative
range of stomatal patterning traits varied from more than 2-
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fold, that is, 127% for SCD (59–134 mm�2) down to 29%
for SCW (18.8–24.3 lm; Supplemental Figure S3). SLA was
significantly greater in 2017 (205–299 cm2 g�1) compared
with 2016 (139–220 cm2 g�1). In 2017, leaf photosynthetic
gas exchange traits varied 2- to 4-fold among the 192 RILs
for the rate of net CO2 assimilation (A), stomatal conduc-
tance (gs); the ratio of intercellular [CO2] to atmospheric
[CO2] (ci/ca); and iWUE. Consistent with there being trans-
gressive segregation, the ranges of all trait values significantly
exceeded the trait variation between the parent lines B73
and MS71 (Supplemental Figure S3). As expected, SCD and
SI were significantly lower in MS71 than B73. This corre-
sponded with greater stomatal complex size in MS71 com-
pared to B73 in terms of SCW, SCL, and SCA. SCLWR was
greater in MS71 than B73. In terms of leaf gas exchange,
MS71 had lower gs, lower A, lower ci/ca and greater iWUE
than B73 (Supplemental Figure S3).

Phenotypic and genetic correlations among traits
Correlation matrices for stomatal patterning traits were very
similar for data collected in 2016 (Supplemental Figure S4, A
and B) and 2017 (Figure 6; Supplemental Figure S5) regard-
less of whether they were phenotypic or genetic correlations.

Within each year, the patterns of associations among traits

were also very similar in terms of genetic correlations com-

pared to phenotypic correlations (Figure 6; Supplemental

Figure S5). But, genetic correlations—which parse out envi-

ronmental variance—more clearly resolved structure–func-

tion relationships. Therefore, we focus here on genetic

correlations from 2017, when anatomical traits were assessed

alongside leaf photosynthetic gas exchange.
Examining structure–function relationships across trait

categories, A, gs, ci/ca, and iWUE were not significantly genet-
ically correlated with SCD (Figure 6). However, gs was posi-
tively genetically correlated with SCW (rg ¼ 0.43) and
negatively genetically correlated with SCL (rg ¼ �0.44),
SCLWR (rg ¼ �0.60) and SPI (rg ¼ �0.55). iWUE was nega-
tively genetically correlated with SCW (rg ¼ �0.40) and pos-
itively genetically correlated with SCLWR (rg ¼ 0.54) and SPI
(rg ¼ 0.59). As a result of strong associations among the leaf
gas exchange traits (e.g., Supplemental Figure S6), A had the
same pattern of relationships with stomatal patterning traits
as gs. And, ci/ca had the same pattern of relationships with
stomatal patterning traits as iWUE, but in the opposite di-
rection. SLA was positively genetically correlated with iWUE
(rg ¼ 0.41), SCD (rg ¼ 0.32), and SPI (rg ¼ 0.41). The tight
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relationship between ci/ca and iWUE was expected since
these two traits are closely mathematically related. However,
genotype-to-phenotype results for the two traits included
unique features. So, to avoid excluding potentially valuable
information they were both retained in subsequent analysis.

There were numerous significant genetic correlations
among anatomical stomatal patterning traits (Figure 6).
Genotypes with larger stomatal complexes tended to have
larger pavement cells (SCA vs. PA, rg ¼ 0.36), which resulted
in a positive genetic correlation between SCD and PD as
well (rg ¼ 0.66). SCD was negatively genetically correlated
with measures of stomatal complex size, including SCL (rg ¼
�0.48) and SCA (rg ¼ �0.52). With the majority of the epi-
dermis occupied by pavement cells, the tradeoff between
density (PD) and size (PA) was even stronger than for sto-
matal complexes (rg ¼ �0.91). After aggregating across the
epidermis, SCTA was positively genetically correlated with
SCD (rg ¼ 0.84) and SI (rg ¼ 0.78) but was not genetically
correlated with measures of stomatal complex size.
Considering just cell identity, SI was genetically correlated
with variation in SCD (rg ¼ 0.72) but not with PD.

QTL analysis
In total, 140 individual QTL were identified (Figure 7;
Supplemental Table S2; Supplemental Figure S7) for the
12 traits tested in 2016 (63 QTL) and the 16 traits tested
in 2017 (77 QTL). More than half of these QTL were inde-
pendently identified for the same trait in both years, pro-
viding greater confidence in associations at 36 loci spread
across every chromosome except chromosome 4. The per-
centage of phenotypic variance explained (PVE) by

Figure 2 Example steps in the process of analyzing an OT image for
epidermal cell patterning. 3D topography image layer extracted from
raw filers output by the optical topometer (A), flattening by use of
Robust Gaussian filters (B), contrast enhancement by use of a
Laplacian filter (C), prediction of cell instances by Mask R-CNN (D–
G). Cell-related traits were calculated and extracted based on cell
boundary coordinates, with boundary and centroid labeled for better
visualization (E). Zooming in shows stomata were labeled with white
centroids while pavement cells were labeled with black centroids (F).
Cells that were cut off on image edges were tagged with triangles and
were excluded in estimation of average cell size. Ellipses were fit to
stomatal complexes, with width and length calculated as the lengths
of minor and major axis of the ellipse (red lines; G).

Table 1 Time investment approximations for epidermal cell detection and trait extractions comparing manual measurements versus automated
detections

Trait Manual Measurement for Each Image Manual Measurement for Mapping
Population with 200 Lines

Automated Phenotyping for
Mapping Population with 200 Lines

SCD 2 min 133 h 120 h*

SCA 1 h 4,000 h
PD 8 min 533 h
PA 3 h 12,000 h

Estimations were done on 20X magnification maize abaxial images (0.8 mm � 0.8 mm) for a mapping population with 200 lines, four replications, and five leaf-level subsam-
ples (4,000 images).
*Time estimation for all traits combined.

Table 2 List of extracted leaf epidermal anatomical traits and their abbreviation, description, and unit

Trait Acronyms Description Unit

Stomatal Complex Density SCD Number of stomata in unit area mm�2

Stomatal Complex Width SCW Width of stomatal complex lm
Stomatal Complex Length SCL Length of stomatal complex lm
Stomatal Complex Area SCA Area of individual stomatal complex lm2

Stomatal Complex Total Area SCTA Sum of SCA in each standard image (800 � 800 lm2) 1 � 103lm2

Stomatal Complex Length and Width Ratio SCLWR SCL divided by SCW
Pavement Cell Density PD Number of pavement cells in unit area mm-2

Pavement Cell Area PA Area of individual pavement cell lm2

Pavement Cell Total Area PTA Sum of PA in each standard image (800 � 800 lm2) 1 � 103lm2

Stomatal Index SI Number of stomata divided by the sum of stomata and
pavement cells

%

Stomatal Pore Area Index SPI Stomata number multiplied by SCL squared in unit area 10-2
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individual QTL was 8.7% on average, with a maximum of
19.3% for ci/ca at 95 centiMorgan (cM) on chromosome 1
(Figure 7; Supplemental Table S2). For the anatomical sto-
matal patterning traits tested in both years, the number
of QTL identified varied from 5 QTL for SCL and 6 QTL
for SPI to 16 QTL for SCD and 17 QTL for SI (Figure 7;
Supplemental Table S2). In comparison, one to four QTL
were identified for each of the functional leaf photosyn-
thetic gas exchange traits, which were only tested in 2017.
Correspondingly, the total PVE by all the QTL for a given
trait was greater for the anatomical stomatal patterning
traits (50.8% on average in 2017) than for the photosyn-
thetic gas exchange traits (26.3% on average in 2017;

Supplemental Figure S8). In addition, for the anatomical
stomatal patterning traits, the total PVE was generally
equivalent or greater in 2017 (50.8% on average) than in
2016 (46.3% on average, Supplemental Figure S8). The
traits with the greatest total PVE (i.e., > 50%) were SCA,
SCD, SI, SCTA, SCW, and PA. Pairwise epistatic interac-
tions between QTL were found for SCW and SI in year
2016, as well as for SCD, SCA, gs, and ci/ca in 2017
(Supplemental Table S3). But no epistatic interactions
were observed consistently across years and the PVE
explained by the interactions (1%–7%) was less than the
average PVE observed for individual, additive QTL
(Supplemental Table S2).

Figure 3 Scatterplots of stomatal patterning traits comparing data measured by humans versus data measured by the computer using Mask R-
CNN. SCD (A and C) and PD (B and D). Plotted data describe 100 randomly selected OT images from the B73 � MS71 maize RIL population with
error bars showing the standard error of technical variation among six expert human evaluators on each individual image (A and B) or genotype
means for 6 RILs selected to represent the range of observed trait values in the population with error bars showing the standard error of biological
variation among replicates based on the mean of predictions from five expert human evaluators or computer predictions using Mask R-CNN (C
and D). There is no variance among predictions by Mask R-CNN when it is presented with a given image multiple times. The line of best fit (red
line) and 1:1 line (black dashed line) are shown along with the coefficient of determination (R2).
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Many of the QTL for both anatomical and functional
traits were located in clusters. Overall, 24 clusters were iden-
tified and named in sequence order (Figure 7; Supplemental
Table S2; e.g., Chr1A–Chr1D for clusters on chromosome 1
based on their genetic position). The number of QTL in a
cluster varied from 2 (Chr1A, Chr4A, Chr6A) to 12 (Chr6D).
There were many examples of QTL colocalizing for traits
that are closely related (e.g., SCL, SCLWR, and SCA in cluster
Chr2A or SCD, SCTA, SI, and SPI in cluster Chr9D).
Interestingly, only two clusters were limited to QTL from a
single category of traits. Cluster Chr1A and Chr4A contained
QTL only for stomatal size traits and cluster Chr9C con-
tained QTL only for pavement cell traits. The other 22 QTL
clusters span at least two trait categories (Figure 7;
Supplemental Table S2). The clusters Chr1C, Chr6B, Chr10A,
and Chr10B are notable for including overlapping QTL for
both epidermal anatomy traits and photosynthetic gas ex-
change traits.

When QTL was independently identified for the same trait
in both years, the direction of the allelic effect was always
consistent (Figure 7; Supplemental Table S2). Allelic effects
were also generally consistent with the trait correlations pre-
viously reported. As examples, all allelic effects for QTL at a
given locus had opposing directions for SCD versus SCA or
PA versus PD. However, the direction of allelic effects at any
individual locus was generally, but not universally, predict-
able from the trait means of the parental lines. For example,
the MS71 allele resulted in lower SCD at 9 of the 13 loci
where QTL for SCD were identified, as would be consistent
with the lower trait mean for the MS71 inbred line versus
B73 (Figure 7; Supplemental Table S2). And, the MS71 allele
resulted in greater SCA at 7 of the 12 loci where QTL for
SCA were identified, as would be consistent with the greater
trait mean for the MS71 inbred line versus B73. Consistent
with trait values for the parental lines, all of the statistically
significant MS71 alleles resulted in lower gs relative to B73
alleles. In contrast to other QTL, MS71 alleles in cluster
Chr1C were associated with lower gs and greater SD,
highlighting the complexity of genetic control of these traits.

A total of 81 single nucleotide polymorphisms (SNPs)
were identified in a follow-up test for pleiotropic causal
mutations underlying the statistical associations initially
identified as QTL clusters, that is, putatively pleiotropic
quantitative trait nucleotides (QTNs). This involved a series
of univariate and multivariate single marker analyses
(Supplemental Table S4). In many cases, there was an evi-
dence consistent with pleiotropy for different stomatal pat-
terning traits. Three regions were highlighted as having
potential to be pleiotropic for stomatal patterning and gas
exchange traits. Seven QTNs at 83-96 cM on chromosome 1
fall within the Chr1C cluster and were significant for ci/ca

and SCTA and SLA, with four of those QTNs also being sig-
nificant for SCD (Supplemental Table S4). Of those seven
QTNs, S_181051496 stands out as being significant for SCD,
PD, SCTA, PA, SPI, SLA, gs, and ci/ca. The S_15690240 QTN
at 32 cM on chromosome 10 falls within the Chr10A cluster

Figure 4 Scatterplots of stomatal complex size traits comparing data
measured by humans versus data measured by the computer using Mask
R-CNN. SCL (A); SCW (B); SCA (C). Plotted data describe 210 stomatal
complexes (5 each from 42 images) randomly selected from the B73 �
MS71 maize RIL population with error bars showing the standard error of
technical variation among six expert human evaluators on each individual
image. There is no variance among predictions by Mask R-CNN when it is
presented with a given image multiple times. The line of best fit (red line)
and 1:1 line (black dashed line) are shown along with the coefficient of
determination (R2).
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and was significant for SCW and iWUE. Six QTNs at 49–60
cM on chromosome 10 fall within the Chr10B cluster and
are significant for SCW and gs.

Discussion
Deep-learning has been proposed as a solution for a wide
variety of applications in plant phenotyping (Ubbens and
Stavness, 2017; Mochida et al., 2018; Jiang and Li, 2020;
Singh et al., 2018). Despite this promise and publication of a
number of tools, no solution has been widely adopted to as-
sess stomatal patterning. This study successfully met the
goals of building, testing, and demonstrating the use of a
high-throughput phenotyping pipeline, including automated
image analysis by use of machine learning for stomatal pat-
terning traits in a model C4 species. This was applied to 2
years of samples taken from a field-grown RIL population to
advance understanding of the genetic architecture and trait
relationships of stomatal patterning and leaf photosynthetic
gas exchange in maize. Understanding of genetic variation in
stomatal development and function is particularly poor in

C4 species. As such, the study addresses both technical and
biological knowledge gaps that have been long-standing de-
spite the considerable advances in understanding stomatal
biology that have been made in recent years (Lawson and
Vialet-Chabrand, 2019; Harrison et al., 2020; McKown and
Bergmann, 2020).

High-throughput phenotyping pipeline for stomatal
patterning traits
Data acquisition

OT was an effective method for imaging the leaf epidermis
of maize RILs that displayed phenotypic diversity (Figure 2;
Supplemental Figure S1) equal to, or greater than, that ob-
served in the maize NAM founders (Supplemental Figure
S9), Setaria RILs (Prakash et al., 2020) or 869 diverse sor-
ghum accessions (Ferguson et al., manuscript in review).
This proof-of-concept built upon previous applications in in-
dividual genotypes of Arabidopsis (Haus et al., 2018), to-
bacco (Nicotiana tabacum; Głowacka et al., 2018), and other
dicot species (Haus et al., 2015). Each field of view could be

Figure 5 Scatterplots of genotype means for leaf anatomical traits of 191 maize B73 �MS71 RILs grown during the 2016 versus 2017 field seasons.
SCD (A); SCW (B); SCL (C); SCA (D); SCTA (E); SCLWR (F); PD (G); PA (H); PTA (I); SI (J); SPI (K); SLA (L). The line of best fit (black line), coefficient
of determination (R2) and associated P-value are shown.
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acquired in <1 min, so sampling four or five fields of view
per leaf allowed 60 leaves to be comfortably screened with a
single microscope in a standard 8-h workday. This was more
efficient and less arduous than our experience of taking leaf
impressions or epidermal peels.

Data describing 11 different traits (Table 2) related to sto-
matal patterning were all significantly correlated across the
two growing seasons, and with moderate to high heritability
(h2 ¼ 0.42–0.82; Supplemental Table S1) despite variation in
the growing environment in the field (Figure 5; Supplemental
Figure S10). And, this led to consistent findings on trait rela-
tionships and the genetic architecture of stomatal traits
across the years (Figures 6 and 7; Supplemental Figures S4
and S5).

Image analysis

The Mask R-CNN machine learning tool was successfully
trained to automatically locate cells, identify cell classes, seg-
ment boundary coordinates, and extract density and size
traits for stomata as well as pavement cells of maize leaf epi-
dermis. Automatic image analysis was more than 100 times
faster than manual measurement of the trait set (Table 1).
Correlations between the number of stomata and pavement
cells identified and counted by the computer versus expert
humans were very strong (r2 > 0.96) and showed little bias
(Figure 3, A and B). This reflected robust predictions across
a range of cell morphologies and image qualities, including
for partial cells on image edges, and pavement cells above
veins (Supplemental Figure S1). A second validation step
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Figure 6 Genetic correlation matrix for SCD, SCW, SCL, SCLRW, SCA, SCTA, PD, PA, PTA, SI, SPI, SLA, rate of photosynthetic CO2 assimilation (A),
stomatal conductance (gs), ratio of leaf intercellular to atmospheric CO2 concentration (ci/ca) and iWUE, based on genotype means of the maize
B73 � MS71 RIL population plus parental lines grown in 2017 (n¼ 194). Statistically significant correlations (p.adjust< 0.1) are highlighted with
colored cells that reflect the strength of the correlation by the size of the shaded area and are colored from blue (positive correlation, coefficient
¼ 1) to red (negative correlation, coefficient ¼ �1).
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that analyzed all available images for six genotypes that rep-
resented the range of SCD and PD in the RIL population
suggests the variance mainly came from biological replicates,
instead of technical errors (Figure 3, C and D). So, the pipe-
line produced equivalent or higher quality data much more
rapidly.

Correlations between computer-generated estimates and
human assessment of traits describing stomatal complex
size were also highly significant (Figure 4). This aided detec-
tion of consistent results across seasons (Figure 5), and was
achieved despite the additional challenge of stomatal size
varying less across the RIL population (�50%) than SCD
(>100%). Nonetheless, accurate and precise estimation of
stomatal size, and SCW in particular, pushed the limits of
image resolution when data were collected with the 20X ob-
jective lens used in this study. Although this approach did
allow many QTL and trait relationships to be identified, ad-
ditional imaging using higher magnification lenses to deliver
greater resolution from the OT will likely deliver further
gains in the phenotyping of these traits. But, higher

magnification is not ideal in all regards because fewer cells
were observed and the proportion of leaf surface sampled
were reduced.

The pipeline represents a valuable technical advance be-
cause previously published automatic stomatal detection
and counting algorithms: (1) used data that were collected
by slow and laborious methods (e.g., Aono et al., 2019;
Bhugra et al., 2019; Sakoda et al., 2019); (2) were limited to
detecting stomata and not pavement cells (e.g., Dittberner
et al., 2018; Fetter et al., 2019; Li et al., 2019; Sakoda et al.,
2019); (3) did not achieve the same accuracy (e.g., Duarte et
al., 2017; Saponaro et al., 2017; Bourdais et al., 2019); or (4)
were demonstrated to work only within the constrained var-
iation of a limited sample set, which did not include demon-
strated applicability for quantitative genetics (e.g., Aono et
al., 2019; Fetter et al., 2019; Li et al., 2019). Although previ-
ous studies achieved these goals individually, combining
these features resulted in a tool that could be applied to
addressing knowledge gaps about the genetic architecture
and trait relationships of epidermal cells in maize.

Figure 7 QTL mapping for SCD, SCW, SCL, SCLWR, SCA, SCTA, PD, PA, PTA, SI, SPI, SLA, rate of photosynthetic CO2 assimilation (A), stomatal
conductance (gs), ratio of leaf intercellular to atmospheric CO2 concentration (ci/ca), and iWUE from the B73 � MS71 RIL population. Each panel
corresponds to an individual chromosome, where the values on the x-axis are chromosome position (cM). Numbers in parentheses following ab-
breviated trait names on the y-axis indicate the total number of QTL for that trait detected across the two growing seasons and the number of
QTL for that trait that were detected consistently across both growing seasons. Each triangle represents a single QTL detected, with the direction
of the arrow corresponding to the directional effect of the MS71 allele. Triangles are colored to indicate QTL that were significant in 2016 (red),
2017 (blue), or overlapping across both years (purple). Error bars indicate the 1.5 LOD support intervals. Gray shaded areas indicate clusters of
colocated QTL. The location of putative orthologs of known stomatal patterning genes in Arabidopsis are indicated with gray dots. Black arrow at
the top denotes potential evidence for pleiotropy within the QTL cluster.
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The independent application of the same tool to stomatal
counting in grain sorghum suggests that, with the appropri-
ate training, it has the flexibility and power to be widely ap-
plicable (Bheemanahalli et al., manuscript in review). But, as
with all machine learning solutions to image analysis, there
are significant questions about the context specificity of the
model used. In the current study, the focus was on the de-
velopment of a method that was robust across a RIL popu-
lation of a model C4 grass species, which included significant
variation in many patterning traits but was also subtle rela-
tive to large datasets that span many species (Sack et al.,
2003). Additional work will be needed to test if new models
need to be trained for each individual mapping population
or species of interest. One option may be transfer learning
methods (Singh et al., 2018) to accelerate the development
of machine learning models for new species or even a ge-
neric model. Even if this is not possible, training the Mask
R-CNN tool required relatively few training instances (33
images containing roughly 2,000 cells for stomatal traits and
9,000 cells for pavement cell traits). So, building new models
for different applications should be a tractable goal.

Trait variation across the RIL population and years
SCD of maize B73 � MS71 RILs showed a similar range to
intraspecific variation in faba bean (Khazaei et al., 2014),
wheat (Schoppach et al., 2016; Shahinnia et al., 2016),
Arabidopsis (Dittberner et al., 2018), rice (Kulya et al., 2018;
Laza et al., 2010), Setaria (Prakash et al., 2020), and sorghum
(Ferguson et al., manuscript in review). Mean SCD and SCL
of the RIL population were very similar to the abaxial trait
values for maize and in the mid-range of a diverse set of
species previously reported by McAusland et al. (2016).
Therefore, maize does not represent an unusual extreme in
terms of epidermal phenotype. Thus, the methods and bio-
logical discoveries here may relate to other species.
Although, further comparative work is needed as grass epi-
dermal patterning is distinct from that of dicots, and C4 spe-
cies may be expected to differ from C3 relatives as a result
of broader differences in leaf development and function as-
sociated with Kranz anatomy and associated biochemical
specialization (Larkin et al., 1997).

The temperature of the 2017 growing season was similar
to 2016, but there was �43% less precipitation
(Supplemental Figure S10). Although this would be normally
expected to drive plasticity in stomatal patterning traits, irri-
gation was applied to avoid plant drought stress in 2017. As
a result, all epidermal patterning traits were moderately to
highly heritable over the 2 years (h2 ¼ 0.42–0.82, Figure 5;
Supplemental Table S1). SLA differed between years, proba-
bly as a result of harvesting material directly from the field
in 2016 (low SLA due to high nonstructural carbohydrate
content) versus after leaves had been held in the laboratory
for photosynthetic gas exchange measurements in 2017
(higher SLA after starch reserves were respired under low
light conditions in the laboratory). Nonetheless, genetic vari-
ation in SLA was correlated across years and relationships
between SLA and other traits were similar across years.

Therefore, the resulting data for all traits should be highly
amenable for studying trait relationships and QTL mapping.
Getting such information under mesic conditions without
significant drought stress is valuable because it reduces the
likelihood of complex plant–environment interactions that
can complicate investigation of genetic variation in iWUE
and associated traits (Leakey et al., 2019).

Trait relationships
A set of robust trait relationships were identified across
years and across analyses of phenotypic and genetic correla-
tion. Associations between stomatal patterning traits and
leaf gas exchange rates were stronger in genetic correlations
than phenotypic correlations. This suggests a common ge-
netic basis for variation in stomatal patterning and iWUE
that was partially obscured by environmental variation in
the experiment. Traits related to the size and proportions of
stomatal complexes were genetically correlated with iWUE,
including SPI (rg ¼ 0.59), SCLWR (rg ¼ 0.54), and SCW (rg

¼ �0.40). This coincided with lower gs being associated
with longer, narrower stomatal complexes (Figure 6). This
would be consistent with the morphology of the stomatal
pore, and/or the guard cells and subsidiary cells that sur-
round it, playing an important role in determining steady-
state gas fluxes (Harrison et al., 2020). The dimensions of
stomatal complexes have provided information about the
maximum size of stomatal pores, in previous reports on C4

grasses (Taylor et al., 2012) and tomato (Fanourakis et al.,
2015). Overall, the structure–function relationships of sto-
matal size-WUE in C4 species may parallel those previously
reported in Arabidopsis (Des Marais et al., 2014; Dittberner
et al., 2018). Nevertheless, the influence of stomatal size and
shape on steady-state gas exchange is less well understood
than its influence on the dynamics of stomatal opening and
closing, so is worthy of further study (McAusland et al.,
2016). Full understanding of how stomatal patterning traits
impact gs will likely depend on direct measurement of sto-
matal aperture under physiologically relevant conditions. It
is also possible that variation in stomatal patterning be-
tween abaxial and adaxial leaf surfaces influenced gs in a
way that was not captured in the dataset on abaxial traits
reported here. But there are �50% more stomata on the ab-
axial surface, so it should exert more influence. And, SI of
the two leaf surfaces covary across diverse maize inbred lines
(Foley 2012).

SCLWR was not associated with variation in PD, PA, or
PTA (Figure 6). This opens up the possibility that the shape
of stomatal complexes might be manipulated by breeding
or biotechnology with minimal unpredictable side effects on
epidermal patterning in general. However, further phenotyp-
ing advances will be needed to distinguish the contributions
of guard cells versus subsidiary cells to these changes in sto-
matal complex size and proportions. The detailed informa-
tion on epidermal cell allometry provided by the OT images
and machine learning algorithm used in this study did reveal
that PA and SCA are positively genetically correlated, as are
SCD and PD (Figure 6). This is consistent with genetic
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variation in cell size being general in nature across the two
classes of epidermal cell types. However, this occurs at the
same time as the tradeoff between SCD and SCA. So, a de-
crease in SCD appears to coincide with a compensatory in-
crease in PA to fill the available space rather than an
increase in PD. And, while SCL and SCW both drive varia-
tion in SCA, they are not correlated with each other, and
they have opposing relationships with SI, SPI, SLA, and the
gas exchange traits (Figure 6). Evaluating how stomatal com-
plex size and proportion varies when SCD is manipulated
transgenically may help reveal the key interdependencies be-
tween traits.

There was no significant correlation between SCD and gs

or any other gas exchange trait. Despite the classic tradeoff
between SCD and measures of stomatal size being observed,
this negative result contrasts with the widely held expecta-
tion that greater gs will be associated with larger numbers of
smaller stomata (Dow et al., 2014; Faralli et al., 2019). This ex-
pectation is strongly grounded in theory and data from
broad fossil-based comparisons over phylogenetic space and
geological time (Franks and Beerling, 2009). Significant rela-
tionships between SCD and water fluxes have also been ob-
served in experiments on intraspecific variation in sorghum
(Muchow and Sinclair, 1989), rice (Panda et al., 2018), and
barley (Miskin et al., 1972). But, there are also a number of
studies where SCD was not correlated with gs in wheat (Liao
et al., 2005), rice (Ohsumi et al., 2007), and barley (Jones,
1977). This discordance among studies, and the relatively
weak nature of the relationship between SCD and gs that is
observed when it does occur within species, indicates how
incompletely these structure–function relationships are un-
derstood. Therefore, the high-throughput phenotyping meth-
ods presented here, which can allow analysis across more
and different types of genetic variation, will be valuable. One
benefit of testing trait relationships within a RIL population
is that the recombination of parental alleles resulting from
making crosses breaks up gene linkage that can result from
selection and underlie trait relationships, providing a more
direct test of the biophysical basis for trait relationships (Des
Marais et al., 2013). But the population also contains a lim-
ited portion of the overall genetic variation in the species,
and results may reflect trait variation specific to the contrast
between the B73 and MS71 parental lines.

Understanding the basis for genetic variation in iWUE is
important because of the benefits to crop productivity, sus-
tainability, and resilience that result from improving this key
resource use efficiency (Leakey et al., 2019). Greater iWUE
was strongly associated with lower gs and more weakly asso-
ciated with lower A (Figure 6). This was consistent with
studies on sorghum (Kapanigowda et al., 2013; Ferguson
et al., manuscript in review) and switchgrass (Taylor et al.,
2016), although the strength of the correlations in this maize
RIL population was significantly stronger. Whether A or gs is
the greater source of variation in iWUE has varied among
studies, and approached equivalence when sufficient diver-
sity was studied in wheat (Condon et al., 2004). Further

work will be needed to see if the same pattern plays out in
C4 species, or whether gs will remain the dominant driver of
genetic variation in iWUE (Kapanigowda et al., 2013; Yasir et
al., 2013; Taylor et al., 2016; Ferguson et al., manuscript in
review).

QTL mapping and univariate/multivariate tests for
pleiotropy
Of 63 QTL identified in 2016 and 77 QTL identified in 2017,
36 were consistently observed in both years (Figure 7). In
addition, 24 clusters of overlapping QTL for multiple traits
were identified. The number and strength of QTL identified
for leaf gas exchange traits (1–4 QTL per trait in a single ex-
periment) were similar to previous studies of those traits
(Hervé et al., 2001; Teng et al., 2004; Pelleschi et al., 2006). In
contrast, a greater number of QTL were identified for many
of the stomatal patterning traits (e.g., PD—7, SI—9, SCA—9,
SCD—9, SCTA—7 QTL in a single experiment) than in pre-
vious studies (Patto et al., 2003; Hall et al., 2005; Laza et al.,
2010; Schoppach et al., 2016; Shahinnia et al., 2016; Liu et al.,
2017; Sumathi et al., 2018; Delgado et al., 2019; Prakash et
al., 2020). This larger number of significant QTL was linked
to more small-effect QTL (PVE < 10%) being successfully
identified. This was unlikely to be the result of false positives
because of the consistency in results across the 2 years of
experimentation. This is valuable given the broad evidence
suggesting that these stomatal patterning traits are likely to
be polygenic, with multiple small-effect alleles combining to
drive phenotypic variation (Schoppach et al., 2016;
Shahinnia et al., 2016; Dittberner et al., 2018; Prakash et al.,
2020; Bheemanahalli et al., manuscript in review; Ferguson
et al., manuscript in review). This in turn corresponds with
many genes being implicated in the network regulating cell
fate during the differentiation of the epidermis, and there-
fore stomatal patterning (Pillitteri and Torii, 2012; McKown
and Bergmann, 2020).

Loci that are pleiotropic for stomatal patterning and ei-
ther gs, ci/ca or iWUE are of interest as potential markers to
select for improved iWUE or in the search for genes that un-
derpin variation in the traits of interest. No statistical model
alone can provide a definite answer of whether an associa-
tion is caused by pleiotropy or linkage. However, based on
the univariate results obtained by Fernandes et al. (2021) on
simulated traits, the proportion of simultaneously detected
QTNs is only as high as the detection of the QTN for each
trait individually under pleiotropy or tight linkage, which in
many cases would have the same implications as pleiotropy
for breeding purposes. In this context, the detection of a
given SNP in 100% of the univariate analysis indicates a mul-
titrait association. The multivariate results provide another
piece of evidence in favor of the possible pleiotropic associa-
tion. Therefore, although a validation study where crossing
is performed to recombine alleles within the region of inter-
est would be required to exclude the possibility of linkage,
the results we obtain provide a short list of putatively pleio-
tropic QTNs (Supplemental Table S4). Using this approach,
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one locus on chromosome 1 and two loci on 10 were iden-
tified as having the greatest potential to be pleiotropic for
stomatal patterning and gs or iWUE (Supplemental Table
S4). In addition to containing QTL that explain 8%–10% of
the variation in iWUE, clusters Chr1C and Chr10A contain
QTL that are amongst the strongest for SCD (PVE ¼ 11%),
SCW (PVE ¼ 8%) and SCWLR (PVE ¼ 6%), respectively
(Supplemental Table S2). More broadly, the QTL for differ-
ent structural and functional traits within these regions had
allelic effects consistent with each other and the overall trait
relationships observed in the population. And, while QTL
intervals are too large to allow the causal genes underlying
the genotype–phenotype association to be identified with
confidence, it was possible to determine whether putative
pleiotropic QTL did or did not overlap with the locations of
known stomatal developmental genes in maize or putative
orthologs of known stomatal patterning genes in
Arabidopsis (Supplemental Table S2).

S_181051496 on chromosome 1 stands out as a putatively
pleiotropic QTN that is significantly associated with SCD,
PD, SCTA, PA, SPI, SLA, gs, and ci/ca. A putative ortholog of
EPIDERMAL PATTERNING FACTOR 2 (EPF2,
GRMZM2G051168) is found at the same genetic position,
while PANGLOSS1 (PAN1, GRMZM5G836190) is located 5
cM away (Supplemental Table S2). PAN1 regulates subsidi-
ary mother cell divisions (Cartwright et al., 2009), while EPF2
is a negative regulator of the number of stomata (Hara et
al., 2009), which has been overexpressed to increase WUE in
a number of species (Harrison et al., 2020).

S_15690240 was identified as a putatively pleiotropic QTN
that was significantly associated with SCW and iWUE. It is
colocalized with the putative maize ortholog of Arabidopsis
A2-type cyclin CYCA2;1 (GRMZM5G879536). RNAi knock-
down of OsCYCA2;1 in rice led to significantly reduced sto-
matal production, but did not disrupt guard mother cell
division, as was the case in Arabidopsis (Vanneste et al.,
2011; Qu et al., 2018). If confirmed, the involvement of these
genes, and others in Supplemental Table S2, in regulating
stomatal patterning in maize would be consistent with the
notion that the same set of genes regulates cell fate to con-
trol stomatal patterning in dicots and monocots, but the
roles of individual genes within the network have been
modified over the course of evolutionary time (Raissig et al.,
2016, 2017; Wu et al., 2019).

At the same time, the identification of multiple high-con-
fidence QTL that do not overlap with existing candidate
genes also suggests the possibility that additional genes regu-
lating stomatal patterning remain to be discovered and
high-throughput phenotyping of stomatal patterning could
aid in their discovery. Six putatively pleiotropic QTNs
(S_126261991, S_127997890, S_131319540, S_131939239,
S_133322225, S_135943280) colocated with QTL cluster
Chr10B were all associated with both SCW and gs. This
presents an opportunity to further investigate the genetic
basis for links between stomatal complex size, gs, and iWUE.
Stomatal size has recently received attention as a target for

improving iWUE through altered rates of opening and clos-
ing (Lawson and Blatt, 2014; Pignon et al., 2021). Despite
this, and a theoretical basis for it to impact steady-state gs

(Dow et al., 2014), the genetic basis for variation in stomatal
size or stomatal dimensions is much less understood than
variation in SCD.

The discovery of multiple QTL for stomatal patterning
traits suggests that the goal of reducing gs and improving
iWUE by reducing SCD or increasing SCLWR could be
achieved through breeding to combine alleles that would re-
sult in more extreme trait values than were found in either
of the parental inbred lines. This is particularly the case
when not all MS71 alleles were associated with, for example,
lower SD. Further work is needed to test that possibility and
also to experimentally confirm if the loci identified here are
truly pleiotropic versus being multiple loci in linkage.

Conclusion
This study presents an end-to-end pipeline for high-
throughput phenotyping of stomatal patterning. Insights
were generated on trait relationships within and between
stomatal anatomical features and leaf photosynthetic gas ex-
change. The genetic architecture and trait relationships of
stomatal patterning and leaf gas exchange traits were char-
acterized in detail. These insights lay the groundwork to (1)
apply the high-throughput phenotyping pipeline to other
experiments taking quantitative genetics, reverse genetics, or
forward genetics approaches and (2) further investigate the
physiological and genetic basis for variation in stomatal de-
velopment, stomatal conductance, and iWUE in C4 species,
which is poorly understood despite the agricultural and eco-
nomic significance of these crops.

Materials and methods

Plant material and sampling
Field experiments were done on the University of Illinois at
Urbana-Champaign South Farms in Savoy, IL (40�020N,
88�140W). Maize (Zea mays) seeds were planted on 24 May
2016 and 17 May 2017 with a planting spacing in each row
of 8 plants/m and row spacing of 0.76 m. The crop was
grown in rotation with soybean (Glycine max) and received
200 kg/ha of nitrogen fertilizer. A population of RILs derived
from a B73�MS71 cross was grown, with 197 RILs planted
in 2016 and 192 RILs plus the parental lines planted in 2017.
This population is a subset of the maize Nested Association
Mapping (NAM) population (Yu et al., 2008) and was se-
lected as a result of the parent lines having low (MS71) and
moderate SCD (B73) compared to the other inbred founder
lines in an initial screen performed at the same field site
(Supplemental Figure S9). Seeds were obtained from the
Maize Genetics Cooperation Stock Center (University of
Illinois Urbana-Champaign). In 2016, four replicate plants
were sampled at random from within the middle portion of
nursery rows, which were also self-fertilized for seed produc-
tion. In 2017, a randomized complete block design was used
with two blocks, each containing a replicate plot for each
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RIL and six replicate plots for each parental line. Two sub-
samples were collected from separate plants in all replicate
rows. In 2017 the field was equipped with drip tape and irri-
gation was applied uniformly across all genotypes whenever
early signs of drought stress were observed. Temperature
and precipitation were recorded by the Water and
Atmospheric Resources Monitoring Program (Supplemental
Figure S10). (Illinois Climate Network, 2019. Illinois State
Water Survey, 2204 Griffith Drive, Champaign, IL 61820-
7495. http://dx.doi.org/10.13012/J8MW2F2Q.)

In both years, measurements were taken on the second
leaf beneath the flag leaf following anthesis. In 2016, collec-
tion of leaf samples for phenotyping epidermal cell pattern-
ing and SLA was done in the field. In 2017, tissue sampling
was performed after photosynthetic gas exchange measure-
ments were done on the leaves. For this, leaves were cut
early in the morning at the base of the leaf blade distally ad-
jacent to the ligule. Cut ends were then submerged in buck-
ets of water and transported to the laboratory. The leaves
were then recut under water and remained in 50 mL tubes
of water during measurements of gas exchange and tissue
sampling.

Epidermal image acquisition
To phenotype epidermal cell patterning, �0.5 cm-wide
strips were excised from the margin to the mid-rib at a
point halfway along the length of a leaf using scissors.
Samples were immediately stored in a 2 mL tube, flash fro-
zen in liquid nitrogen, and stored at �20�C. Leaves were
flattened and stabilized onto glass slides with double-sided
tape immediately prior to imaging. Abaxial surfaces were im-
aged with a Nanofocus lsurf Explorer Optical Topometer
(Oberhausen, Germany) at 20X magnification with 0.6 nu-
merical aperture. The topography layer was constructed by
stacking all the focused pixels across planes of the Z-axis.
Output images were 0.8 mm � 0.8 mm on x and y axes
(512 � 512 pixels). Five fields of view were scanned on each
leaf sample in 2016 and four fields of view were scanned on
each leaf sample in 2017. Fields of view were arranged equi-
distantly along a latitudinal transect from the leaf edge to
mid-rib. Sample loss or poor sample quality resulted in in-
complete replication for 22 RILs in 2016 and 2 RILs in 2017.
Therefore, in total, 3,785 images were in the 2016 dataset
and 3,248 images were in the 2017 dataset (Figure 1A).

The 3D topographic layer (Figure 2A) was input into
Nanofocus lsurf analysis extended software (Oberhausen,
Germany) for image processing as follows: first, nonmeas-
ured points were filled by a smooth shape calculated from
neighboring points. A Robust Gaussian filter with cutoffs of
200, 100, and 100 lm were applied in sequence (Figure 2B).
Then, a Laplacian filter with a 13 � 9 pixel kernel size was
implemented (Figure 2C) before applying another Robust
Gaussian filter with a cutoff of 80 lm. The final 3D layer
was then flattened to 2D in grayscale with auto-optimiza-
tion for luminosity and contrast enhancement.

Mask R-CNN model training
Twenty-four images were initially randomly selected for
training the Mask R-CNN model for object instance segmen-
tation. Subsequently, nine additional images of pavement
cells that overlie minor veins were added to the training set
to improve the detection accuracy for these cells. Each sto-
matal complex and pavement cell was traced as an object
instance using VGG Image Annotator (Dutta and Zisserman,
2019). A JavaScript Object Notation (.json) file was gener-
ated for each image to record the coordinates for all in-
stance masks within that image. Json files of 26 randomly
selected images were pooled to form the training set, and 7
images were pooled into a validation set (i.e., approximately
11,000 unique cells used for model training; Figure 1A). A
Mask R-CNN repository built by Matterport Inc. on GitHub
(Waleed, 2017) was used for training on a customized PC
with a GeForce GTX 1080 Ti graphics processing unit and
32 GB of RAM. Model training was based on the ResNet-
101 backbone with pretrained weights from the COCO
dataset (Lin et al., 2014) with 50 epochs of 100 steps. The
learning rate, learning momentum, and weight decay were
0.001, 0.9, and 0.0001, respectively. All images were flipped
horizontally and vertically for augmentation. The process
taken by Mask R-CNN to make predictions on the instances,
size, and shape of pavement and stomatal cells are summa-
rized in Figure 1B.

Epidermal cell detection, trait extraction, and
evaluation
The model built during the training process was applied to
the detection of cells in the entire image dataset, using the
same software and hardware configurations. Instance coordi-
nates and cell type predictions saved by the Mask R-CNN
model as individual csv files were inputted into R for epider-
mal trait extraction. The number of stomatal complex and
pavement cells within each image were derived as the num-
ber of instances detected for these two separate classes and
they were standardized by image area to get SCD as well as
PD. The areas of complete, individual stomatal complexes
(SCA), and pavement cells (PA) were calculated based on
the boundary coordinates using the splancs package (version
2.01-40). To derive the SCL and SCW, an ellipse was first fit-
ted to each stomatal complex using MyEllipsefit package
(version 0.0.4.2). SCW and SCL were calculated as doubling
the radius along the minor and major axis, respectively
(Figure 2G). The ratio of SCLWR was derived as SCL divided
by SCW. SCTA and PTA were calculated as the sum of areas
for all instances of these two cell types, including partial cells
on the edge. Total SPI (Sack et al., 2003) is the product of
SCD and SCL squared. SI was calculated as the number of
stomatal complexes divided by the sum of stomatal com-
plex number and pavement cell number. The Imager pack-
age (version 0.41.2) and magick package (version 2.0) were
used to label cells and cell boundaries on detection output
images for better visualization.

For validation of SCD and PD, a group of people received
training on stomata and pavement cell recognition and
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reached consensus on the criteria. Two sets of images that
were not part of the training dataset were then manually
assessed (Figure 1A). First, six people each manually mea-
sured 100 images selected at random from the 2016 and
2017 data. Second, five people each manually measured all
images for six genotypes, chosen to represent the range of
observed epidermal cell densities, selected from the 2016
dataset. Manual counting was done in Image J 1.8.0
(Schneider et al., 2012) using the multipoint tool. To validate
predictions of stomatal size traits by Mask R-CNN, six
humans each manually measured the same five stomatal
complexes in each of 42 randomly selected images that
were not part of the training dataset (Figure 1A).

Leaf photosynthetic gas exchange and SLA
In 2017, A, gs, ci/ca, and iWUE were measured using four LI-
6400 portable photosynthesis systems incorporating an in-
frared gas analyzer (LI-COR, Lincoln, NE, USA) that was run
simultaneously using the protocol of Choquette et al.
(2019). Rates of gas exchange measured in this manner have
previously been shown to correspond well with in-situ
measurements under well-watered conditions (Markelz et
al., 2011; Wolz et al., 2017). In addition to being rapid, the
approach benefits from avoiding short-term changes in wa-
ter potential that occur in the field, and that may limit pho-
tosynthesis. Four leaf disks were sampled using a leaf punch
from the same leaf sampled for stomata scanning. Leaf disks
were dried in an oven at 60�C before being weighed on a
precision balance (Mettler Toledo XS205, OH, USA). SLA
(cm2 g�1) was calculated as the area for leaf punch divided
by the mean leaf disk weight.

Statistical analysis
All statistical analyses were performed in R (version 3.6.0,
https://www.r-project.org). Pearson correlations were per-
formed and visualized using the corrplot package (version
0.84). Genetic correlations between all pairwise traits were
estimated by fitting bivariate models in ASReml-R v4.0
package (Butler et al., 2018) and modeling the genetic ef-
fect with correlation structure “corgh” as in (Fernandes
et al., 2018). The standard error was obtained from this
same model and estimated with the delta method.
Finally, we fitted this same bivariate model with the “diag”
variance–covariance structure. Since the only difference
between the structures “diag” and “corgh” is the correla-
tion term, we tested the two models with a likelihood ra-
tio test to obtain a P-value for the genetic correlation.
The kinship was calculated with the function A.mat()
from the package rrBLUP (Endleman, 2011). The genotype
data were numericalized using the most frequent allele as
the reference one. It was done on the function as_nu-
meric() from the package simplePHENOTYPES (Fernandes
and Lipka, 2020). Multiple testing correction was imple-
mented based on Benjamini–Hochberg procedure and a
false discovery rate of 10%. In the calculation of broad-
sense heritability estimations, a linear mixed model was
fitted for each trait treating “genotype” effect as random.

Heritability was then estimated as the proportion of ge-
notypic variation among the total variation across 2 years.

The genetic map for B73 � MS71 population consists of
1,478 SNPs distributed across all 10 chromosomes of maize
(McMullen et al., 2009). SNP data were available as part of
the Maize Diversity Project (https://www.panzea.org).
Markers were phased and imputed to a density of 1 cM res-
olution. QTL mapping for 2 years was done separately and
performed in R for each individual trait using the stepwiseqtl
function with Haley–Knott algorithm from package qtl
(Broman et al., 2003) to create a multiple QTL model. A
multilocus model was generated using stepwise forward se-
lection and backward elimination. The maximum number of
QTL limited in the forward selection was set as 10. The
Logarithm of the odds (LOD) penalties for QTL selection
was calculated using the scantwo function with 1,000 per-
mutations for each trait at a significance level of 0.05. LOD
scores and PVE values were estimated using fitqtl function.
Following Dupuis and Siegmund (1999) and Banan et al.
(2018), 1.5-LOD support intervals were used for each QTL
hit. Colocalized QTL were grouped into “clusters” based on
their mapping to the same or neighboring markers where
confidence intervals overlapped. The few QTL with very
large confidence intervals (>50 cM) were excluded from
clusters. Clusters were named in sequence order (Figure 7;
Supplemental Table S2; e.g., Chr1A–Chr1D for clusters on
chromosome 1 based on their genetic position). Maize 5b
gene model coordinates and annotations were both down-
loaded from MaizeGDB (https://www.maizegdb.org).

A series of univariate and multivariate single marker analy-
ses were done to assess the evidence for pleiotropic causal
mutations underlying the statistical associations initially
identified as overlapping QTL in a given region of a chromo-
some. For each trait, a univariate linear regression using 80%
of the data was performed, where a given trait was the re-
sponse variable and a single SNP was the explanatory vari-
able. This process was repeated 100 times, with different
individuals sampled each time. Next, the proportion of times
that a given SNP passed the P-value threshold of 0.05 was
measured. For each SNP that passed the threshold in all rep-
licates (i.e., a proportion of 100%) for more than one trait, a
multivariate linear regression model was run with these
traits as the response variable, and that SNP as the explana-
tory variable.

The multivariate analysis was performed using 80% of the
data in each of the 100 replicates. In each replicate, the
same individuals used in the univariate analysis were used in
the multivariate one. These results were also filtered to only
keep SNPs passing the threshold in 100% of the replicates in
the multivariate analysis. For multitrait models in which
more than one SNP was retained, another multivariate
analysis was run with all SNPs included in the model. All the
SNPs with a P-value smaller than 0.05 after the inclusion of
all other retained SNPs were reported as putatively pleiotro-
pic QTNs (Supplemental Table S4).
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Data availability
Data availabilityOptical tomography images from this article
can be found in the Illinois Data Bank under https://doi.org/
10.13012/B2IDB-8275554_V1.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Examples of input images and
the predictions of cell instances made for them across a
range of epidermis morphology and image qualities.

Supplemental Figure S2. Scatterplots of variation among
six expert human evaluators in manual measurements of
stomatal patterning traits from 100 randomly selected OT
images from the B73 � MS71 maize RIL population.

Supplemental Figure S3. Frequency distributions of leaf
traits for the maize B73 � MS71 RIL population grown in
2016 (gray) and 2017 (yellow).

Supplemental Figure S4. Genetic and phenotypic correla-
tion matrices for epidermal anatomy and leaf gas exchange
traits based on genotype means of the maize B73 � MS71
RIL population grown in 2016 (n¼ 197).

Supplemental Figure S5. Phenotypic correlation matrix
for epidermal anatomy and leaf gas exchange traits based
on genotype means of the maize B73 � MS71 RIL popula-
tion grown in 2017 (n¼ 194).

Supplemental Figure S6. Scatter plot of photosynthetic
carbon assimilation (An) versus stomata conductance (gs)
measured in year 2017. Each point denotes a RIL.

Supplemental Figure S7. Manhattan plots showing signif-
icant QTL for each trait detected in year 2016 (red) and
year 2017 (blue).

Supplemental Figure S8. Sum of percentage of variance
explained (PVE) for all QTL identified for each trait in 2016
(gray bars) and 2017 (yellow bars).

Supplemental Figure S9. Initial screening of SCD (A), PD
(B), and SI (C) for maize NAM population founder lines
grown in year 2014 (n¼ 4).

Supplemental Figure S10. Daily mean temperature
(brown line; �C) and water inputs to field trials (blue bars ¼
total daily precipitation, red bars ¼ irrigation; mm) in Savoy,
Illinois for each day of year (DOY).

Supplemental Table S1. Broad sense heritability estima-
tions for epidermal anatomical traits across years.

Supplemental Table S2. Detailed QTL information for
each hit, grouping of QTL clusters, and overlapping candi-
date genes.

Supplemental Table S3. Detailed QTL information for
QTL interactions.

Supplemental Table S4. List of SNPs that passed the
P-value threshold of 0.01 in all 100 resamples used on uni-
variate and multivariate regression.
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