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a b s t r a c t

Predicting high concentration antibody viscosity is essential for developing subcutaneous administration.
Computer simulations provide promising tools to reach this aim. One such model is the spatial charge
map (SCM) proposed by Agrawal and coworkers (mAbs. 2015, 8(1):43–48). SCM applies molecular
dynamics simulations to calculate a score for the screening of antibody viscosity at high concentrations.
However, molecular dynamics simulations are computationally costly and require structural information,
a significant application bottleneck. In this work, high throughput computing was performed to calculate
the SCM scores for 6596 nonredundant antibody variable regions. A convolutional neural network surro-
gate model, DeepSCM, requiring only sequence information, was then developed based on this dataset.
The linear correlation coefficient of the DeepSCM and SCM scores achieved 0.9 on the test set
(N = 1320). The DeepSCM model was applied to screen the viscosity of 38 therapeutic antibodies that
SCM correctly classified and resulted in only one misclassification. The DeepSCM model will facilitate
high concentration antibody viscosity screening. The code and parameters are freely available at
https://github.com/Lailabcode/DeepSCM.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Subcutaneous administration of therapeutic antibodies requires
low volume and high concentration formulations [1,2]. At high
protein concentrations, some antibodies might exhibit elevated
viscosity beyond the syringeability limit [3]. However, most anti-
bodies have low viscosity at low concentrations [4]. It is a chal-
lenge to identify potential problematic antibodies during
discovery. Additionally, there are not enough materials for high
concentration measurements in the early-stage development.
Therefore, developing computational tools to assist viscosity
screening early is very attractive.

There are two types of computational models for predicting
antibody viscosity. The first type is based on statistical modeling,
and the second is based on physical modeling. Tomer et al. applied
regression analysis to develop models to predict concentration-
dependent antibody viscosity [5]. Sharma et al. also proposed a lin-
ear model based on three parameters to predict viscosity at
180 mg/ml (pH 5.5 and 200 mM arginine-HCl) [6]. Recently,
machine learning has been applied to predict high concentration
antibody viscosity [7–9]. Because of limited experimental data,
only conventional machine learning algorithms such as logistic
regression, support vector classification, and decision tree classifi-
cation were applied. The machine learning features relied on
domain expertise and published literature. One machine learning
model was developed from 27 therapeutic monoclonal antibodies
(mAbs) to classify low and high viscosity [7]. It is a decision tree
model with two features, high viscosity index and mAbs net
charge. This machine learning model was applied to predict viscos-
ity for 14 immunoglobulins G1 (IgG1) and 14 immunoglobulins G4
S228P (IgG4P) therapeutic mAbs at 150 mg/mL in a subsequent
study. The accuracy for IgG1 was 0.86. The accuracy for IgG4P
was 0.71. In recent work, this machine learning model was applied
to predict antibody viscosity at 150 mg/mL for 20 preclinical/clin-
ical mAbs. The accuracy was 0.55, significantly worse than that of
marketed mAbs.

Physical models include molecular dynamics simulations (MD)
[10], coarse-grained (CG) simulations [11–15], and theoretical
models [16]. One significant advantage of these physical models
is that they require little or no training data for prediction. The
apparent drawback for MD and CG simulations is the expensive
computational time. Spatial charge map (SCM) [10] was developed,
assuming that most antibody regions at formulation conditions
carry net positive charges. If there are negative charge patches
on the variable fragment (Fv) regions, the molecules tend to self-
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associate in solution, increasing the solution viscosity. The calcula-
tion of the SCM score requires MD simulations. The SCM model
was compared with the machine learning model for the 14
IgG1/14 IgG4P commercial mAbs [8] and 20 preclinical/clinical
mAbs [9] mentioned earlier to evaluate the prediction accuracy.
The accuracy for the 14 IgG1 and 14 IgG4 commercial mAbs were
0.93 and 0.79, respectively. The accuracy for the 20 preclinical/clin-
ical mAbs was 0.60. The performance of the SCM model in these
two studies was slightly better than that of the machine learning
model trained from 27 commercial mAbs. These results indicated
that SCM is a reasonable predictor of high concentration viscosity.
The SCM score has also been used as a machine learning feature to
predict antibody aggregation [9,17]. The obstacles to applying SCM
are the computational cost and difficulties in model construction.

Deep learning is a subset of machine learning. It consists of
multi-layer neural networks with many hidden units [18]. The
most common architectures for deep learning are artificial neural
networks (ANN), convolutional neural networks (CNN), and recur-
rent neural networks (RNN). The key difference between deep
learning and traditional machine learning is the ability to learn fea-
tures by itself. Conventional machine learning requires predefined
features from human expertise. Therefore, deep learning can learn
high-level features from the data and works better with larger
datasets. Deep learning has been applied to predict a variety of
antibody properties [19]. For example, DeepH3 [20] and DeepAb
[21] were developed to predict antibody structure. Deep learning
was also implemented to predict antibody binders to a target anti-
gen [22]. Another great application is antibody-specific B-cell epi-
tope prediction by DRREP [23]. Antibody apparent solubility could
also be evaluated by solPredict [24]. Currently, deep learning has
not been applied to predict antibody viscosity due to limited
experimental data publicly available. This study aims to apply deep
learning to develop a surrogate model for SCM, called DeepSCM. An
extensive set of antibody Fv sequences (N = 6596) was collected,
and their homology models were built to run MD simulations for
the SCM scores calculation. The deep learning algorithm used the
preprocessed antibody sequences as input and the SCM scores
obtained from MD simulations as output for model training. Even-
tually, an efficient DeepSCM surrogate model was developed based
on the CNN architecture. DeepSCM will facilitate antibody devel-
opability screening in the early-stage design.
2. Materials and methods

2.1. Antibody sequence datasets

Antibody sequences were retrieved from SAbDab [25], a curated
dataset of all antibody structures in the Protein Data Bank, and
AbYsis [26], a web-based database of antibody sequence and struc-
ture data. Only those sequences with paired Fv regions were
retained. Duplicated antibody sequences were removed.
2.2. Preprocessing of antibody sequences

Antibody sequences have variable lengths; however, the input
sequence length for the deep learning algorithms should be the
same. The same input size was achieved by annotating the anti-
body sequences in the IMGT numbering scheme using ANARCI
[27]. The heavy chain variable region was from H1 to H128, and
the light chain variable region was from L1 to L127. Gaps in the
antibody sequences were filled with dashes. Insertion was num-
bered by appending a capital letter to the corresponding position
number.

A few criteria were enforced to select antibody sequences. First,
antibody sequences having insertion in the variable regions were
2144
removed from the dataset. One exception is the CDRH3 region,
which has the highest sequence diversity among the variable
regions. The maximum length of the CDRH3 region (H105-H117)
allowed in this work was 30. The additional positions are 111A,
111B, 111C, 111D, 111E, 111F, 111G, 111H, 112I, 112H, 112G,
112F, 112E, 112D, 112C, 112B, 112A. The length of the CDRL1
(L27-L38) and the CDRH1 (H27-H38) regions was 12. The length
of the CDRL2 (L56-L65) and the CDRH2 (H56-H65) regions was
10. The length of the CDRL3 (L105-L117) regions was 13. Overall,
the lengths of the heavy chain variable regions and the light chain
variable regions (including gaps) were 145 and 127, respectively.
Second, the heavy chain and light chain variable regions should
only have two cysteine residues, respectively, on positions 23
and 104. Antibody sequences that did not meet the criteria were
removed from the dataset. Third, antibody sequences that failed
to generate homology models on the Fv regions were removed
from the dataset. These steps resulted in 6596 nonredundant anti-
body Fv sequences.

2.3. Computational modeling of mAbs

The homology models of the variable regions were generated by
ABodyBuilder [28]. MODELLER was used to run ab initio modeling
in case CDR templates were not found [29]. IMGT numbering was
used to annotate the final models.

2.4. Molecular dynamics simulations

Molecular dynamics simulations were performed using all-
atom antibody Fv structures with explicit solvent using the TIP3P
water model [30]. Simulation boxes were set up using VMD to
place a single antibody Fv structure in a water box extending
12 Å beyond the protein surface [31]. The salt concentration was
15 mM NaCl. Counterions were added to neutralize the system
charge. Simulations were performed at 300 K and 1 atm in the
NPT ensemble, using the NAMD software package and the
CHARMM36m force field [32–34]. The histidine residues were pro-
tonated. Electrostatic interactions were treated with the Particle
Mesh Ewald (PME) method, and van der Waals interactions were
calculated using a switching distance of 10 Å and a cutoff of 12 Å
[35]. After energy minimization, the system was gradually heated
up from 100 K to 300 K at an interval of 5 K over 200 ps. The heavy
atoms were constrained during the heating process. The scaling
factor for harmonic constraint energy function was 2.5 kcal/Å2.
After heating, the constraints were gradually turned off by chang-
ing the scaling factor from 2.0, 1.5, 1.0, and 0.5 kcal/ Å2 over 80 ps.
The integration time step was set to 1 fs during the heating and
relaxation steps. The production run was 1 ns, and the integration
time step was set to 2 fs by applying rigid bond constraints to
hydrogen-containing bonds.

2.5. Calculation of spatial charge map scores

The spatial charge map (SCM) is a score to rank antibodies that
exhibit high viscosity in a condensed protein solution. The calcula-
tion of SCM scores follows previous work [10]. Briefly, the atomic
SCM value has the following form.

SCMi ¼<
X

exposed residues<10Åð Þ;j
qj

� �
> ð1Þ

where <> indicates ensemble average from MD simulations. The
atomic SCM value is the summation of all the partial charges (qj)
on the surrounding atom j, which belongs to exposed residues
whose side-chain atoms are within 10 Å of atom i. The exposed resi-
dues are defined as the solvent-accessible surface area of the side-
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chain atoms � 10 Å
2
. Partial charges were taken from the forcefield

for MD simulations. The SCM score on the Fv region is expressed as.

SCM score ¼
X

Fv

SCMi � H �SCMið Þ
�����

����� ð2Þ

where H is the Heaviside function, and :j j is the absolute value
function.

2.6. Machine and deep learning model construction

Machine learning models were built in Python 3.7.12. The
train_test_split function was implemented using Scikit-learn
v1.0.2 [36]. CNNs were built using the Keras v2.7.0 Sequential
model [37] as a wrapper for TensorFlow v2.7.0 [38]. The CNN archi-
tecture and hyperparameters were optimized by performing differ-
ent combinations of CNN layers (1, 2, 3), numbers of filters (32, 64,
128, 256) and kernel sizes (3, 5, 7). The MAE values of the best val-
idation model were used to evaluate the model performance.

2.7. Machine and deep learning model training and testing

The dataset used for regression was split into a training set
(60%), a validation set (20%), and a test set (20%). For the CNN
model, the activation function was Relu. During model training,
the number of epochs was 50, the batch size was 64, the optimizer
was Adam [39], and the loss function was MAE. The best models
were recorded by ModelCheckpoint from keras.callbacks. The
CNN architecture and weights were saved to JSON and HDF5
(H5) formats, respectively.

2.8. Sequenced-based viscosity prediction models

The Sharma method is based on the Fv charge, the product of
VH and VL charges, and the hydrophobicity index at pH 6.0 to pre-
dict viscosity at 180 mg/mL using only VH and VL sequences [6].
The TAP: Therapeutic Antibody Profiler web server was utilized
to predict the number of developability flags [40].
3. Results

3.1. Comparison of the viscosity prediction models for preclinical to
marketed mAbs

Before developing a surrogate model for the structure-based
SCM model, it is imperative to compare the accuracy of the SCM
model with other sequence-based viscosity prediction models.
Table 1 compares the SCM model, the Sharma method [6], and
the therapeutic antibody profiler (TAP) [40]. The Sharma model
predicts viscosity at 180 mg/mL, is based on the Fv charge, the pro-
duct of heavy chain variable region (VH) and light chain variable
region (VL) charges, and the hydrophobicity index at a given pH.
In Table 1, the predicted viscosity was linearly interpolated to
150 mg/mL. TAP is a general antibody developability predictor
based on five metrics. The 61 mAbs viscosity data at 150 mg/mL
were from our previous works [7–9]. The first 20 data were pre-
clinical and clinical stage mAbs, and the remaining 41 were com-
mercial mAbs. The solution was at pH 5.5 to pH 6.0 in a 10–20
histidine-HCl buffer. There were 14 high viscosity mAbs (>30 cP).
For prediction models, the cutoff value for the SCM score is 1000,
and the TAP criterion is with at least one flag. The prediction accu-
racy for the SCM model, Sharma method, and TAP were 0.70, 0.61,
and 0.64. For preclinical and clinical mAbs only, the accuracies for
the three models were 0.70, 0.55, and 0.60, respectively. The SCM
model performed better than the other two sequence-based mod-
2145
els, and the prediction results were consistent for the preclinical/-
clinical and the commercial mAbs. It is noted that the Sharma
model was fitted with the viscosity data in a buffered solution at
pH 5.5 and 200 mM arginine-HCl. The difference between the solu-
tion conditions may affect the performance of the model. Addition-
ally, the TAP flag may indicate other developability issues other
than high viscosity. Overall, the SCM model, although considering
only negative surface charges and having room for improvement,
is currently a good viscosity prediction model. The implementation
bottleneck is the computationally expensive MD simulation.
Therefore, developing a machine learning surrogate model for the
SCM calculation is preferred.

3.2. Antibody sequence dataset and statistical analysis

The antibody variable region sequences were retrieved from
SAbDab and AbYsis databases. After removing redundant
sequences and filtering out sequences based on some criteria such
as complementarity determining region (CDR) length, the number
of cysteine residues, and insertion (detailed in the Materials and
Methods section), there were 6596 antibody Fv sequences in the
dataset for this study. The Fv sequences covered therapeutic anti-
bodies and nontherapeutic antibodies to increase sequence
diversity.

Fig. 1 shows the length distribution of different antibody
regions in the dataset. The VH length was approximately normal
distributed, centered at 119. The number of antibodies having VL
length from 106 to 112 was, on average, 500, except for a high peak
at 107. The first complementarity determining region of the heavy
chain (CDRH1) length had the highest peak at 8. The first comple-
mentarity determining region of the light chain (CDRL1) length had
the highest peak at 6, and the number of antibodies having a length
of 5 and from 7 to 12 was on average 500. For the second comple-
mentarity determining region of the heavy chain (CDRH2) length,
the highest peak was at 8, and the second-highest peak was at 7.
The second complementarity determining region of the light chain
(CDRL2) length had the highest peak at 3. For the third comple-
mentarity determining region of the light chain (CDRL3) length,
the highest peak was at 9. The third complementarity determining
region of the heavy chain (CDRH3) length had a wide distribution
centered at 12, and there was a long tail extending to 30.

For the 6596 antibody Fv sequences, there were 21750310 pair-
wise alignments. Ninety-three percent of pairs have sequence sim-
ilarities of less than 5%. Five percent of pairs have sequence
similarity between 5% and 10%, indicating that the antibody data-
set has a high sequence diversity. Among the 6596 antibody
sequences, 2212 came from alpacas, 1740 came from humans,
2017 came from mice, 59 came from pigs, 18 came from rabbits,
and 550 came from rhesus.

3.3. MD simulations and SCM calculation of the antibody in the dataset

The homology models of the 6596 antibody variable regions
were constructed to performMD simulations. The SCM scores were
calculated by the ensemble averages over 1000 ps. Fig. 2 (A)
reports the box-and-whisker plot of the SCM score. The SCM scores
ranged from 255.2 to 2273.6. The first quartile was 675.8, and the
third quartile was 1034.4. The medium was 833.5. There were 187
outliers above the upper Whisker, 1572.4.

Fig. 2 (B) illustrates the time trajectory for three antibodies from
low, medium, to high SCM scores. The SCM scores fluctuated
around the mean, and the mean converged over the 1000 ps per-
iod. A longer simulation time is usually needed for a full-length
antibody with a flexible region. However, for a single variable
region obtained from homology modeling, the structure is rela-
tively stable, requiring only a short time to equilibrate the system



Table 1
Summary of the experimental viscosity at 150 mg/mL and viscosity prediction for 61 preclinical to
commercial mAbs. The SCM score is from the MD simulation, and the Sharma model is a viscosity regression
model. TAP is the therapeutic antibody profiler. The red labels indicate predicted or experimental high
viscosity. The cutoff value for high viscosity is 30 cP for the experiment and the Sharma model. The cutoff
value for the SCM score is 1000. The condition for TAP is with at least one flag. Their names in the source data
are also listed.
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Fig. 1. Distribution of VH, VL, CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 lengths of the 6596 Fv sequences in this study. The CDR regions are based on the IMGT
definition.
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and get converged SCM scores. Therefore, MD simulations using a
single variable region are more suitable for high throughput com-
puting for a large antibody dataset.
3.4. Antibody sequence preprocessing

Antibody sequences have variable lengths; however, the CNN
models require the input to have a fixed size. Therefore, the heavy
and light chain variable regions were annotated based on the IMGT
numbering scheme. This annotation ensured that the conserved
amino acid sequences were aligned. The maximum length of
CDRH1 and CDRL1 was 12, and the total length of CDRH2 and
CDRL2 was 10. The entire length of CDRL3 was 13. For the CDRH3
region, the maximum length in the model was chosen to be 30. All
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the gaps were padded with dashes. After the preprocessing step,
the heavy and light chain variable regions had fixed lengths of
145 and 127, respectively.
3.5. CNN model training for the DeepSCM model

CNN models have been shown to perform better than other
deep learning models such as ANN and RNN for predicting anti-
body binders [22]; therefore, the CNN model was chosen for model
development in this study. The ratio for training/validation/test
split was 60:20:20. The architecture and parameters were opti-
mized by hyperparameter tuning, as shown in Table 2, and Fig. 3
(A) illustrates the best CNN architecture and parameters. In the
hyperparameter tuning, only the number of 1D CNN layers



Fig. 2. (A) Box-and-Whisker plot of the SCM score (N = 6596). (B) Time trajectory
for the SCM score of three antibody Fv structures. Their means and standard
deviations are 673.7 ± 64.2, 989.3 ± 82.8, and 1234.7 ± 113.7, respectively.

Table 2
The MAE value of the best validation model using different numbers of CNN layers
and hyperparameters. The optimal architecture and parameters are shown in bold.

Conv1D_1 Conv1D_2 Conv1D_3

filter kernel filter kernel filter kernel MAE

32 3 – – – – 214
32 5 – – – – 236
32 7 – – – – 189
64 3 – – – – 307
64 5 – – – – 299
64 7 – – – – 280
128 3 – – – – 332
128 5 – – – – 361
128 7 – – – – 321
256 3 – – – – 402
256 5 – – – – 402
256 7 – – – – 395
64 3 32 3 – – 141
64 3 32 5 – – 159
64 5 32 3 – – 187
64 5 32 5 – – 174
64 5 32 7 – – 142
64 7 32 5 – – 122
64 7 32 7 – – 130
128 3 64 3 – – 146
128 3 64 5 – – 127
128 5 64 3 – – 161
128 5 64 5 – – 143
128 5 64 7 – – 132
128 7 64 5 – – 140
128 7 64 7 – – 121
256 3 128 3 – – 127
256 3 128 5 – – 101
256 5 128 3 – – 153
256 5 128 5 – – 117
256 5 128 7 – – 115
256 7 128 5 – – 123
256 7 128 7 – – 98
256 3 128 3 64 3 92
256 3 128 5 64 7 94
256 5 128 5 64 5 90
256 7 128 5 64 3 91
256 7 128 7 64 7 91
128 3 64 3 32 3 90
128 3 64 5 32 7 97
128 5 64 5 32 5 92
128 7 64 5 32 3 91
128 7 64 7 32 7 93
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(1,2,3), number of filters (32,64,128,256), and kernel size (3,5,7)
were varied to evaluate the model performance of the best valida-
tion model using mean absolute error (MAE). Other layers were the
same. The MAE ranged from 189 to 402 using one 1D CNN layer
and ranged from 98 to 187 using two 1D CNN layers. The optimal
architecture and parameters are consisted of three 1D CNN layers
(MAE = 90) with the least parameters compared to the other three
1D CNN architectures.

Fig. 3 (A) shows that the input shape is (272, 21). The number of
columns is the sum of heavy chain variable region length (145) and
light chain variable region length (127). The rows came from one-
hot encoding, including 20 amino acids and one gap. The input
layer was connected with a 1D CNN layer using the activation func-
tion of the rectified linear unit (Relu). The number of filter and ker-
nel sizes was 128 and 3, respectively. This layer was followed by a
batch normalization layer connected to a dropout layer. The drop-
out rate was 0.5. The next was two 1D CNN layers and a max pool-
ing layer. The nodes were then flattened to 1 dimension before
connecting to a fully connected layer of size 32. Finally, the fully
connected layer was connected to an output layer of size 1. The
output layer was the SCM score of the antibody.

Fig. 3 (B) plots the loss function of the best model over epochs.
The MAE values for the training set dropped smoothly. The MAE
values for the validation set initially increased and decreased
rapidly until epoch 12. The optimal model was found at epoch
36. At this epoch, the MAE values for the training and validation
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sets were 86 and 90, respectively. After epoch 40, the model over-
fitted the training set, and the MAE value of the validation set
started to climb.

Fig. 3 (C) shows the scatter plot of the SCM scores and the
DeepSCM scores on the test set. The linear correlation coefficient
and MAE were 0.9 and 93.5, respectively. The MAE value was close
to the training and validation sets, indicating a good model perfor-
mance without significant overfitting. Furthermore, the MAE val-
ues were in the range of intrinsic fluctuation from MD
simulations, as shown in the standard deviations in Fig. 2 (B).
3.6. Applying DeepSCM to screen high concentration antibody viscosity

The performance of the DeepSCM as an effective surrogate
model for the SCM model to screen high concentration antibody
viscosity was assessed by 38 therapeutic antibodies from three dif-
ferent sources. The SCM scores correctly predicted the viscosity of
these 38 antibodies. The criterion for high viscosity is >30 cP at
150 mg/mL. When the SCM score is >1000, the antibody is pre-
dicted to have high viscosity. Fig. 4 plots the DeepSCM scores
and viscosity at 150 mg/mL. Among the 38 antibodies, 18 were
not in the dataset for the CNN model, and only one antibody was



Fig. 3. (A) Architecture of the best CNN model. The essential parameters of each layer are shown in the square brackets. The shape of each layer is shown in the round
brackets. (B) Loss curves of training and validation loss over epochs. The loss is calculated by mean absolute error (MAE). (C) Scatter plot of the SCM score and the DeepSCM
score for the test set. The dashed line is the identity line.

Fig. 4. Experimental viscosity at 150 mg/mL with the DeepSCM score of 38
therapeutic antibodies. Blue circles are in the dataset of this study, either in
training, validation, or test. Orange triangles are not in the dataset. The horizontal
dashed line is the threshold value for high viscosity (30 cP), and the vertical dashed
line is the threshold value for predicted high viscosity (1000). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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misclassified. Those in the dataset could be in the test sets that
were not included for training. This result demonstrates that the
DeepSCM model is a good surrogate model for the SCM model.
Table 3 summarizes the SCM score, DeepSCM score, and static
SCM score for the 38 antibodies used in this test. Static SCM scores
were calculated based on the homology models without MD simu-
lations. There were only 21 mAbs correctly classified using the sta-
tic SCM scores. The result indicates that MD simulations were
necessary for the SCM calculations, and the DeepSCM scores out-
performed the static SCM scores.

3.7. Availability and implementation of the DeepSCM model

DeepSCM source code and pretrained parameters are freely
available at https://github.com/Lailabcode/DeepSCM. Fig. 5 shows
2149
the implementation flowchart. The FASTA files of the heavy chain
and light chain Fv sequences need to be numbered by the ANARCI
program using the IMGT definition in a CSV format. The seq_pre-
processing.py program combines the numbered heavy chain and
light chain CSV files to generate an input file. Currently, the prepro-
cessing step ignores any insertions on the framework regions
based on the IMGT definition. In addition, residues longer than
the maximum length of each CDR region are excluded. The pred.
py program takes the input file to calculate the DeepSCM scores.
4. Discussion

The advantages of the DeepSCM using CNN models over the
SCM using MD simulations are twofold. The first advantage is
speed. MD simulations for an antibody take several hours to days
using modern supercomputers; however, CNN models take only
a few seconds on personal computers. In addition, the CNN models
require no homology models. The second advantage is repro-
ducibility. MD simulations are stochastic by nature; therefore,
the SCM scores vary slightly every run, even with the same input,
making it challenging to transfer models with others. On the other
hand, the sequence-based DeepSCM model guarantees exact
reproducibility.

It remains a challenge to interpret the physical meaning of deep
learning models. By developing a surrogate model for MD simula-
tion, the interpretability of the CNN model is derived from the
physically-based model. The accuracy of the DeepSCM model in
predicting therapeutic antibody viscosity also depends on the
underlying assumption of the SCM model. The SCM model
accounts for the surface exposed negative charges on the Fv region,
a major driving force for inducing high viscosity. However, other
factors like aromatic rings and hydrophobic patches that could
contribute to elevated viscosity are not included in the SCM model
[41]. Improving physical models to describe antibody viscosity
behavior is still an outstanding problem.

Antibodies might exhibit other stability issues, such as high
aggregation at high protein concentrations. Table S1 summarizes
the experimental viscosity and accelerated aggregation rate at
150 mg/mL for the 61 preclinical to commercial mAbs [8,9]. It is
noted that the temperature for accelerated aggregation
assay (40–45 �C) is higher than that for viscosity measurement

https://github.com/Lailabcode/DeepSCM
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Table 3
Summary of the DeepSCM score and the experimental viscosity at 150 mg/mL for the 38 mAbs. The SCM score is from the MD simulation, and the
static SCM score is from the homology model. The red labels indicate predicted or experimental high viscosity. Their names in the source data are
also listed. The asterisk signs indicate that the sequences are not in the dataset of this study.
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(18–20 �C). The viscosity data in the context of protein aggregation
was not available from the literature.MAbs having high viscosity do
not correlate well withmAbs having a high accelerated aggregation
rate, indicating they are governed by different mechanisms.
2150
Since the underlying mechanisms of aggregation and viscosity
are different, SCM that focuses primarily on charge distribution
on the surface may not be a good predictor for aggregation.
However, the protocol described in this study to simulate many



Fig. 5. The flowchart of the DeepSCM program. The input files are FASTA files of heavy and light chains. The ANARCI program is used to number the heavy chain and the light
chain antibody sequences in the IMGT scheme. The seq_preprocessing.py program converts the numbered sequences into DeepSCM input format. The pred.py will output the
DeepSCM score.
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antibody sequences for deep learning training can be applied to
other structural descriptors such as spatial aggregation propensity
[42] or solvent accessible surface area. These properties have been
shown to have a good prediction for antibody aggregation [42,43].
In this work, only the antibody sequences from public databases
were used for training. The training dataset can be augmented by
a combinatorial design of different antibody regions to improve
the deep learning model. In addition, biophysical properties from
experiments such as melting temperature, retention time from
hydrophobic interaction chromatography, and self-interaction
from charge-stabilized self-interaction nanoparticle spectroscopy
[44] could be trained by the CNN model if combined with high
throughput screening to generate larger datasets. These are poten-
tial future research topics. Deep learning paves a promising way
for predicting antibody functions to facilitate drug design.
5. Conclusion

DeepSCM was developed as a surrogate model for MD
simulation-based high concentration viscosity screening tool for
antibodies. It was trained using high-throughput MD simulation
results and 1D convolutional neural network architecture.
DeepSCM enables viscosity screening for hundreds of antibody
drug candidates using only antibody Fv sequences within a few
seconds. This tool will facilitate early-stage drug development.
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