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cGAS, a DNA sensor in mammalian cells, catalyzes the generation of 2’-3’-cyclic AMP-
GMP (cGAMP) once activated by the binding of free DNA. cGAMP can bind to STING,
activating downstream TBK1-IRF-3 signaling to initiate the expression of type I interferons.
Although cGAS has been considered a traditional DNA-binding protein, several lines of
evidence suggest that cGAS is a potential RNA-binding protein (RBP), which is mainly
supported by its interactions with RNAs, RBP partners, RNA/cGAS-phase-separations as
well as its structural similarity with the dsRNA recognition receptor 2’-5’ oligoadenylate
synthase. Moreover, two influential studies reported that the cGAS-like receptors (cGLRs)
of fly Drosophila melanogaster sense RNA and control 3′-2′-cGAMP signaling. In this
review, we summarize and discuss in depth recent studies that identified or implied cGAS
as an RBP. We also comprehensively summarized current experimental methods and
computational tools that can identify or predict RNAs that bind to cGAS. Based on these
discussions, we appeal that the RNA-binding activity of cGAS cannot be ignored in the
cGAS-mediated innate antiviral response. It will be important to identify RNAs that can
bind and regulate the activity of cGAS in cells with or without virus infection. Our review
provides novel insight into the regulation of cGAS by its RNA-binding activity and extends
beyond its DNA-binding activity. Our review would be significant for understanding the
precise modulation of cGAS activity, providing the foundation for the future development
of drugs against cGAS-triggering autoimmune diseases such as Aicardi-
Gourtières syndrome.
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INTRODUCTION

As highlighted by the current COVID-19 pandemic, viral
infection poses a great threat to human health and economics
(1). The elimination of viruses by the host largely depends on the
immune system, including innate immunity and adaptive
immunity. Innate immunity is the first line of defense against
viral infection due to its timely response and broad-spectrum
effect (2). The innate antiviral response mainly refers to the
process of the elimination of the virus, which involves NF-kB
and interferon signaling (3). Numerous pattern recognition
receptors (PRRs) can recognize pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs), triggering the expression of innate antiviral factors
and inflammatory factors (3). Viral PAMPs mainly include viral
nucleic acids such as DNA and RNA (4). Currently, the common
intracellular DNA sensors include endosomal Toll-like receptor
9 (TLR9), cytosolic absent in melanoma 2 (AIM2), interferon
gamma inducible protein 16 (IFI16), DNA-dependent protein
kinase (DNA-PK), RNA polymerase III, and cyclic GMP-AMP
synthase (cGAS) (5, 6). Recently, two novel DNA receptors,
heterogeneous nuclear ribonucleoprotein A2B1 (7) and the
transmembrane protein CCDC25 (8), have been identified.
Among these DNA sensors, cGAS has been well characterized
and widely studied (9). Once free DNA, including viral DNA and
host DNA, is recognized, cGAS synthesizes the crucial second
messenger cGAMP to bind and activate the downstream
stimulator of interferon genes (STING). Consequently, TANK1
binding kinase 1 (TBK1)-interferon regulatory factor-3 (IRF-3)
signaling is activated to initiate the expression of type I
interferons (I-IFNs), establishing the innate antiviral response
(10). The absence of cGAS leads to a serious deficiency of
immune defense against a series of viruses (11). Indeed, cGAS-
STING is a conserved and primordial defense pathway (10, 12,
13). cGAS also plays a key role in the regulation of autoimmune
diseases (14, 15) and tumor immunity (16).

Although cGAS is traditionally recognized as a DNA-binding
protein (17), numerous studies have suggested the RNA-binding
activity of cGAS. cGAS also plays a redundant or essential role in
mediating the defense against infection with RNA viruses, such
as West Nile virus (WNV) (18), dengue virus (DENV) (19), and
murine norovirus (MNV) (20). Moreover, numerous studies
have implied the potential of RNA-binding activity of cGAS
and its involvement in cGAS-mediated innate antiviral response,
which were supported by the direct binding of RNA to cGAS, the
RNA-binding protein (RBP) partners of cGAS, and the structural
similarity of cGAS with dsRNA recognition receptor 2’-5’
oligoadenylate synthase (OAS) (21–25). In addition, cGAS
undergoes a variety of post-translational modifications in the
process of performing its function (26), which partially depend
on RBP modifiers. Furthermore, considering the role of
noncoding RNAs and RNA-related metabolic enzymes in the
DNA virus-activated innate antiviral response supported by
clinical studies (23, 27, 28), we cannot ignore the RNA-binding
potential of cGAS in the initiation of the innate antiviral
response in addition to the traditionally recognized DNA-
binding activity.
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Herein, we highlighted recent studies supporting or implying
the RNA-binding activity of cGAS. Simultaneously, we discussed
the subcellular location of cGAS based on the reported
membrane, cytosol, and nucleus localization. Moreover, we
summarized current experimental and computational methods
that can identify or predict the RNA interactors of cGAS. We
used bioinformatics tools to analyze the interaction propensity
between mouse- or human-derived cGAS and RNA. This review
provides novel insight into the noncanonical regulatory manner
of cGAS activity in the innate antiviral response.
CGAS-STING DEFENSE PATHWAY

cGAS-STING signaling is the main pathway mediating immune
defense against viruses containing DNA or producing DNA
during their life cycle, such as DNA viruses and retroviruses
(29, 30). Once it has recognized DNA, cGAS synthesizes 2’-3’-
cGAMP using GTP and ATP as materials (10). 2’-3’-cGAMP acts
as a second messenger to activate endoplasmic reticulum
membrane (ER)-resident STING to form a dimer that is
subsequently transported from the ER to the Golgi
intermediate compartment and inter-Golgi (31) (Figure 1). In
this process, STING recruits and activates TBK1 via the carboxyl
terminus to phosphorylate IRF-3 (32–34) (Figure 1).
Phosphorylated IRF-3 is dimerized and subsequently enters the
nucleus to initiate the expression of IFN-b (35–37). STING also
activates inhibitors of nuclear factor kB (IkB) kinase (IKK) that
phosphorylate IkB, an inhibitor of NF-kB (32). The
phosphorylated IkB protein is degraded by the ubiquitin–
proteasome pathway, leading to the nuclear import of NF-kB
(32, 38). Notably, IKKϵ allows for the redundant activation of
NF-kB by STING (39). Nuclear transported NF-kB acts in
concert with IRF-3 to drive the expression of IFN-b and
inflammatory cytokines such as tumor necrosis factor (TNF),
interleukin-1b (IL-1b), and interleukin-6 (IL-6) (32, 38)
(Figure 1). Binding of IFN-b to the type I IFN receptor
(IFNAR), which is composed of subunits IFNAR1 and
IFNAR2, induces the Janus kinase (JAK)-signal transcription
and activator of transcription (STAT) signaling pathway in an
autocrine and paracrine manner, leading to the downstream
expression of hundreds of antiviral host effector proteins (ISGs)
(40, 41). These proteins block the completeness of the virus life
cycle and assist neighboring cells in establishing their resistance
to infection by targeting viral proteins and nucleic acids (42).
However, the binding of DNA to cGAS does not always activate
cGAS because the activation of downstream immune signaling
pathways requires the stabilization of activated cGAS-DNA
complexes and the formation of cGAS dimers (43). For
example, short-stranded DNA can bind to cGAS, but such
binding induces weak dimerization of cGAS (44). For longer
DNA, the clustering oligomerization and arrangement of DNA
induced by cGAS forms stable active dimer structures (43) and
facilitates the formation of large-scale liquid-liquid phase-
separated condensates (45). In these condensates, cGAS is
highly concentrated, stabilizing the active dimer state and
November 2021 | Volume 12 | Article 741599
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promoting its catalytic activity (45). In general, dsDNA activates
cGAS more efficiently than ssDNA (46), and cGAS is much more
sensitive for longer DNA than shorter DNA (47, 48).

Although cGAS has been well recognized in the process of
defending against DNA viruses, many studies in recent years
have shown that it also plays an instrumental role in the defense
against RNA viruses (49). For instance, cGas−/− mice are more
vulnerable to lethal WNV infection than wild-type mice (18).
Consistently, another in vitro study showed that ablation of
cGAS enhances MNV replication by regulating the transcription
of ISGs (20). This may be because the lack of cGAS leads to
decreased RIGI/MDA5 sensing of RNA (18). In addition, there is
growing evidence that DNA leaking from mitochondria can
Frontiers in Immunology | www.frontiersin.org 3
engage cGAS in cells infected with RNA viruses, such as
lymphocytic choriomeningitis virus (LCMV), dengue virus
(DENV), encephalomyocarditis virus (EMCV), and influenza
virus (19, 50–52). Specifically, influenza virus and EMCV
stimulate mitochondrial DNA (mtDNA) release into the
cytosol through their viroporin activity. Subsequently, cytosolic
mtDNA promotes cGAS-STING-dependent innate antiviral
immunity and confers resistance to RNA viruses (52). The
resistance of cGAS to RNA viruses may not be due to viral
RNA binding and activation of cGAS and most likely occurs in
an indirect way, such as virus-induced leakage of mtDNA.
Nevertheless, further research is urgently needed on the
mechanism of action of cGAS against RNA virus infection.
FIGURE 1 | The cytosolic DNA-activated cGAS-STING pathway. The recognition of free dsDNA in the cytoplasm by cGAS activates the production of 2’-3’-cGAMP,
a natural ligand of ER-resident STING. The binding of 2’-3’-cGAMP to STING results in its translocation to the ER-Golgi intermediate compartment (ERGIC) and the
Golgi apparatus. The relocated STING activates TBK1 and IKK. First, activated TBK1 phosphorylates STING, which consequently recruits and phosphorylates IRF3.
The phosphorylated activated IRF3 dimerizes and enters the nucleus to initiate transcription of type I IFN. In addition, activated IKK results in the activation and
nuclear transport of NF-kB to induce the expression of type I IFN and inflammatory cytokines such as TNF and IL-6. The interaction between cGAS and
nucleosomes prevents the activation of cGAS. Notably, nuclear cGAS suppresses homologous recombination and promotes tumorigenesis.
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THE DNA SENSOR CGAS: A CYTOSOLIC,
NUCLEAR, OR MEMBRANE PROTEIN?

cGAS was first reported as a cytoplasmic protein that can prevent
cGAS from interacting with deoxyribonucleic acid in the nucleus
or mitochondria (53). However, copious studies have recently
found that cGAS is also localized at the cell membrane (54) and
nucleus (53, 55). In detail, Orzalli et al. (55) first observed nuclear
accumulation of cGAS in human fibroblasts and keratinocytes
transfected with plasmid DNA. Liu et al. found that cGAS can
translocate into the nucleus in response to DNA damage in the
immortalized human fibroblast HCA2-TERT cell line and two
primary human skin fibroblast cell lines and localize at the site
where DNA damage occurs (56). Subsequently, numerous
studies have shown that cGAS is constitutively present in the
nucleus and even predominantly distributed in the nucleus of
immune cells (57–59). More specifically, endogenous cGAS is
almost exclusively localized to the nucleus in HeLa cells, primary
bone marrow-derived macrophages (BMMs) (57), bone marrow‐
differentiating monocytes (BMDMos) (58), and primary human
monocyte-derived dendritic cells (DCs) (60), except for
exogenously expressed GFP‐tagged human cGAS (GFP‐
hcGAS) in HEK 293T cells (58).

Although cGAS is abundant in the nucleus, several studies
almost simultaneously found that cGAS does not interact with
nucleosome DNA but interacts with histones 2A and 2B of
chromosomes and tightly anchors them to the “acidic patch” (59,
61–65) (Figure 1). This interaction masks one of the DNA-
binding sites of cGAS and hinders the formation of active cGAS
dimers, thereby preventing cGAS from interacting with its own
genomic DNA (59, 61–65). Moreover, some extra regulatory
mechanisms also limit cGAS activation, ensuring that cGAS is
highly unresponsive to endogenous DNA (66, 67). For instance,
barrier-to-autointegration factor 1 (BAF) dynamically inhibits
the binding of cGAS to DNA and limits cGAS enzyme activity
when cytoplasmic cGAS accumulates on chromatin around the
nucleus during nuclear membrane rupture (66). Furthermore,
the selective inhibition of cGAS activity during mitosis is
attributed to two parallel mechanisms, including the
hyperphosphorylation of cGAS at the N-terminus blocking the
sensing of chromatin and inhibition of oligomerization of
chromatin-bound cGAS (67). Intriguingly, Barnett et al. first
pointed out that cGAS is not a cytoplasmic protein, as previously
understood, but a membrane-localized protein that binds to
plasma membrane lipids through its N-terminal domain (54).
Membrane sequestration of the intracellular localization can
keep cGAS away from endogenous DNA and help cGAS
effectively detect viral DNA (54). Indeed, the N-terminal
region of cGAS constitutes a major cytoplasmic retention
signal that enables its detection and recognition in the cytosol
(57) and fills an important role in regulating its activation (68).
Different results regarding the localization of cGAS may be
attributed to specific cells, advances in experimental
techniques, and the specificity of cGAS antibodies (57). The
future determination of cGAS localization requires specific cGAS
antibodies that are screened by using Cgas-/- cells.
Frontiers in Immunology | www.frontiersin.org 4
CGAS COULD BIND RNA AND
RECOGNIZE DNA-RNA HYBRIDS

Although cGAS has been widely regarded as a classical DNA-
binding protein, some recent studies have uncovered or implied
RNA-binding activity of cGAS. Recent in vitro and in vivo
research has shown that 2′-O-methyl (2′-OMe) gapmer
antisense oligonucleotides (ASOs) exhibit sequence-dependent
inhibition of sensing by the RNA sensor TLR7 (69) and two
major DNA sensors, cGAS and TLR9 (70). The 2’-OMe-
modified RNA motifs within synthetic oligonucleotides can
inhibit the recognition of cGAS DNA in a sequence-dependent
manner which is independent of cGAS mRNA targeting. The 2’-
OMe-modified RNA motifs compete directly for DNA binding
to cGAS. Interestingly, a few ASOs can enhance cGAS sensing
when used at low concentrations. The binding of these ASOs to
the third DNA binding domain within cGAS was speculated to
facilitate the formation of the cGAS oligomer and thus increases
its enzymatic activity (70, 71). These works suggest that RNA
may compete for cGAS binding to dsDNA and inhibit cGAS
activity, which has also been confirmed by a preprint study (25).
The test tube assay showed that RNAs compete for binding to
cGAS with dsDNA, promote the formation of phase separations,
enhance cGAS activity when the dsDNA concentration is low
(Figure 2A) and inhibit cGAS activity when the dsDNA
concentration is high (Figure 2B) (25). Indeed, the
concentration of RNA (both tRNA and mRNA) is much
higher than that of DNA in the cytoplasm (72–74) under
normal conditions, which is also established under the
condition of virus infection (75, 76). This makes it reasonable
that RNA binds to cGAS and regulates its activity in the cytosol.
However, the preliminary nature of this work must be noted: this
conclusion remains to be fully supported experimentally in cells
because endogenous RNAs (such as tRNA) can modulate the
sensing of DNA by cGAS through the modulation of phase
separations. In the absence of dsDNA, human cGAS
preferentially binds to intracellular tRNA to form phase-
separated droplets in the cytoplasm via an unidentified
mechanism, ensuring a nonactivated state of cGAS; when
exposed to dsDNA, the tRNAs bound by cGAS in the phase-
separated particles are gradually replaced by dsDNAs due to
multivalent interactions between the DNA-binding domain
within cGAS and DNA (25, 45).

Another study reported the RNA-binding activity of cGAS.
Covalently closed single-stranded circular RNAs (circRNAs), a
class of noncoding RNAs, are characterized by a covalent bond
linking the 3’ and 5’ ends during the process of RNA splicing (77,
78). cia-cGAS, an exonic circular RNA containing a paired stem
region, showed a strong affinity with the DNA binding domains
within cGAS. In detail, in both human and murine long-term
hematopoietic stem cells (LT-HSCs), cia-cGAS binds cGAS and
inhibits the binding of self-DNA to cGAS, thereby reducing the
production of I-IFNs to avoid the exhaustion of HSCs to
maintain the resting state of HSCs (Figure 2C) (22). cia-cGAS
is also expressed in several tissues. Importantly, the inhibitory
effect of cia-cGAS on cGAS activity also manifested in tissues
November 2021 | Volume 12 | Article 741599
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expressing cia-cGAS (22). Therefore, the cia-cGAS-mediated
inhibition of cGAS activity may exist in cell types but is not
limited to LT-HSCs (22). However, whether cia-cGAS can bind
to cGAS under viral infection conditions and participate in the
regulation of antiviral natural immune responses needs to be
further investigated. Of note, it has been shown earlier that cGAS
can also bind to dsRNA with an affinity comparable to that of
binding dsDNA, while dsRNA does not activate cGAS (21). As
mentioned earlier in the article, cGAS binds to DNA in a
sequence-independent manner, which is mainly associated
with the length and structures of DNA (21). However, for
RNA, it is clear that short synthetic oligos can compete with
DNA to bind cGAS in a sequence-dependent manner (70, 79),
suggesting that it is the sequence rather than the length of the
Frontiers in Immunology | www.frontiersin.org 5
RNA that may be important for the DNA binding activity of
cGAS. In summary, a series of RNAs, such as synthetic oligos
(70), tRNA (25), and circRNA (22), which all belong to ssRNA,
can bind to cGAS and regulate its activity, whereas dsRNA can
bind cGAS but does not affect the activity of cGAS (21). These
results indicate that ssRNA may be able to influence cGAS
activity to a greater extent than dsRNA.

cGAS can also recognize synthetic RNA : DNA hybrids and
activate downstream STING-TBK1-IRF-3 signaling to initiate
the expression of I-IFNs in MAVS-knockout THP-1 cells
(Figure 2C) (80). In vitro studies also showed that
recombinant cGAS could produce cGAMP in the presence of
RNA : DNA hybrids (Figure 2D) (80). Moreover, although
synthetic heterodimers were used in the experiments, natural
FIGURE 2 | Binding of cGAS to RNA or RNA: DNA hybrids. (A, B) Binding of cGAS to tRNA as reported by a preprint server, which remains to be fully supported
experimentally in cells. Cytoplasmic tRNA regulates cGAS activity by interfering with the formation of cGAS-containing aggregates. (A) In the context of low
concentrations of DNA, cytoplasmic tRNA forms aggregates with cGAS, providing a platform for dsDNA-mediated cGAS activation. (B) In the context of a high
concentration of DNA in the cytoplasm, DNA is sufficient to induce phase separation and activate cGAS. However, tRNA harbors a higher affinity than dsDNA for
cGAS. Consequently, cGAS competes with dsDNA to bind cGAS and inhibit cGAS activity to avoid an excessive immune response. (C) Binding of cGAS to cia-
cGAS. A circular RNA named cia-cGAS was highly expressed in the nucleus of LT-HSCs. Under homeostatic conditions, cia-cGAS binds cGAS in the nucleus to
inhibit its binding to genomic DNA. As a consequence, cia-cGAS suppressed cGAS-mediated production of type I IFNs, thereby protecting dormant LT-HSCs from
cGAS-mediated exhaustion. (D) RNA : DNA hybridization products can bind and activate cGAS.
November 2021 | Volume 12 | Article 741599
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RNA : DNA heterodimers can be detected from the intracellular
replication cycle of retroviruses and DNA viruses such as
Herpesviridae (81, 82). Therefore, there may be aberrant
recognition of endogenous nucleic acids by cGAS during the
life cycle of several viruses. Further studies need to be carried out
based on the improvement of experimental techniques such as
purification and detection of RNA : DNA hybrids (82, 83).
Notably, the dose of cytoplasmic RNA : DNA hybrids that can
induce potent antiviral immune responses by binding and
activating cGAS is 10-fold less than that of dsDNA (80),
suggesting that RNA/DNA hybrids are potent activators of
cGAS. Alternatively, there is a study implying that cGAS may
bind to RNA. Briefly, following exogenous DNA and KSHV
infection, cGAS binds to the ribonucleoprotein complex HDP-
RNP (HEXIM1-DNA-PK-paraspeckle) containing lncRNA
NEAT1, leading to the remodeling of HDP-RNP and
subsequent release of the paraspeckle protein from this
complex and the recruitment of STING (84). As a
consequence, downstream TBK1-IRF-3 signaling is activated.
This implied that lncRNA NEAT1 may bind to cGAS and serve a
regulatory function in the cGAS-mediated innate antiviral
response (84). However, it will be important to address in
greater detail whether cGAS can interact with NEAT1 directly,
as this study did not investigate the interaction between cGAS
and NEAT1 (84). Furthermore, as mentioned above, the
subcellular localization of cGAS may also prompt its
interaction with RNA. The distribution of cGAS in the cytosol
may be involved in RNA-related physiological functions in
different membrane compartments, such as stress granules
(SGs) (85), liquid-liquid phase, or separated aggregates (54).
Given that RNAs are first produced in the nucleus and that an
RNA-filling environment is also formed in the nucleus, there
may be some nuclear RNAs that regulate the activity of cGAS in
the nucleus and affect the immune response: of note is the
example of cia-cGAS (22). Collectively, RNA may be a crucial
medium regulating the activity of cGAS by competitively binding
to dsDNA rather than directly activating cGAS, ensuring
precise recognition of intracellular free dsDNA to avoid
immune overload.
THE RBP INTERACTORS OF CGAS

In addition to the cGAS-RNA interaction, convincing evidence
indicates that the binding of some classical and emerging RBPs to
cGAS prompts the pivotal role of the RNA-binding activity of
cGAS in the innate antiviral response. In particular, cGAS is
subjected to numerous post-translational modifications to
maintain immune homeostasis (26). The post-translational
modifications (PTMs) that cGAS undergoes include proteasomal
breakdown, acetylation, glutamylation, ubiquitination,
SUMOylation, and phosphorylation (26). Most of the factors
involved are RBPs, implying a strong link between cGAS and
RNA. Tripartite motif (TRIM) family proteins, as multifunctional
ubiquitin E3 ligases, play a central role in host defense against viral
infection, which is achieved partially by regulating the PTMs of
Frontiers in Immunology | www.frontiersin.org 6
cGAS (86). TRIM56, a recently identified RBP (87, 88), binds to
ZIKV RNA in infected cells and acts as a restriction factor of ZIKV
(89). The binding of TRIM56 to cGAS in the cytosol induces
monoubiquitylation-based dimerization of cGAS, which is
important for sensing dsDNA by cGAS (24) (Figure 3A).
Human TRIM14 recruits USP14 to cleave K48-linked cGAS
ubiquitination at the K414 site, disrupting cGAS-p62
interactions to stabilize cGAS (90, 91). In addition, other
classical RBPs, such as zinc finger (ZnF) CCHC-type containing
3 (ZCCHC3) (Figure 3B) (92) and poly (C)-binding protein 1
(PCBP1) (Figure 3C) (93), can bind cGAS in the cytoplasm as a
cofactor to enhance the binding of cGAS to DNA, enhancing
downstream antiviral natural immune responses (92, 94, 95).

In particular, G3BP1, a core component of SGs, is a classical
RBP (85). Additionally, the G3BP1-RNA interaction network is a
key node in the formation of SG particles (96–98). G3BP1 can
bind and promote the binding of cGAS to DNA, which in turn
enhances downstream I-IFN signaling (Figure 3D) (99). The
close relationship between G3BP1, SG, and cGAS implies that
the abundant RNA and RBPs inside SG particles may be crucial
regulators of cGAS activity (Figure 3E). Indeed, SGs are
produced in response to stress, such as virus infection. In such
a context, RNAs, a large number of RBPs, and other molecules
are rapidly condensed into cytoplasmic SGs by phase separation
(100). Moreover, it has been shown that cGAS occurs in this
liquid-liquid phase separation structure (53), indicating that
cGAS may interact with related components of SGs
(Figure 3E). NONO is another multifunctional RBP implicated
in transcription, splicing, DNA damage response, circadian
rhythm, and neuronal development (101). NONO can
recognize the HIV capsid and facilitate the binding of cGAS to
HIV DNA, which is required for cGAS activation (Figure 3F)
(101, 102). A recent study also showed that the disruption of the
ribosome-associated protein quality control (RQC) pathway
under stressful conditions such as viral infection, which detects
and resolves ribosome collision during translation, results in
cGAS-dependent ISG expression and causes relocalization of
cGAS from the nucleus to the cytosol (103). Nevertheless, the
RBP interactors of cGAS only suggest the potential RNA-binding
activity of cGAS. In the future, it will be important to uncover the
RNA interactors of cGAS in more detail by using RNA pull-
down and RNA-immunoprecipitation experiments.
STRUCTURE-BASED ANALYSIS OF THE
RNA-BINDING ACTIVITY OF CGAS

Typical RBPs are defined by the presence of RNA-binding domains
(RBDs), such as hnRNP K homology domains, RNA recognition
motifs, dsRNA-binding domains, and ZnF domains (104–106).
However, many proteins lacking conventional RBDs or even
DNA-binding proteins have been gradually recognized as factors
with RNA-binding activity (23, 107–109). From the perspective of
protein structure, cGAS consists of a disordered, positively charged
N-terminal domain, a central nucleotidyltransferase (NTase)
structural domain, a zinc-finger domain, and a C-terminal Mab-
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21 homologous structural domain (17, 110). The unique zinc-finger
domain might be the decisive structural domain for its DNA
binding activity. Interestingly, cGAS shares striking structural and
functional similarities with the dsRNA recognition receptor 2′-5′-
OAS (21, 111). In detail, both cGAS and 2′-5′-OAS are template-
Frontiers in Immunology | www.frontiersin.org 7
independent NTases. Moreover, cGAS and 2′-5′-OAS share overall
folding structure, characterization of several active sites, the
arrangement of blade 1 and blade 2, and even the 3D structural
elements of the nucleic acid binding site (49, 112). Furthermore, the
activation of both cGAS and 2′-5′-OAS is associated with the length
FIGURE 3 | The RBP partners of cGAS. (A) The binding of TRIM56 to cGAS induces the Lys335 monoubiquitylation of cGAS, thereby increasing the
dimerization and DNA-binding activity of cGAS. (B) ZCCHC3 acts as a co-sensor for the recognition of dsDNA by cGAS. Briefly, ZCCHC3 binds to dsDNA
and interacts with cGAS in the cytoplasm, enhancing the binding of cGAS to dsDNA and the formation of a large cGAS complex. (C) PCBP1 is a critical
regulator of DNA recognition by cGAS. PCBP1 was recruited to cGAS in a viral infection-dependent manner. PCBP1 bound to DNA and enhanced cGAS
binding to dsDNA. (D) G3BP1 physically interacts with and primes cGAS for efficient activation. G3BP1 enhanced the DNA binding of cGAS by promoting
the formation of large cGAS complexes. (E) The binding of cytosolic dsDNA to cGAS induces a robust phase transition to liquid-like droplets, which are
considered as microreactors with concentrated RNA and RBPs, suggesting a potential link between cGAS and RBPs. (F) NONO is an essential sensor of
the HIV capsid in the nucleus. NONO forms a complex with cGAS in the nucleus. Detection of the nuclear viral capsid by NONO promotes the recognition of
DNA by cGAS.
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of nucleic acids (111). From the perspective of function, cGAS and
2′-5′-OAS can be activated by similar double-stranded nucleic acid-
inducible structural switches (21, 111). Once activated, cGAS and
2′-5′-OAS can generate a unique 2’-5’ phosphodiester-linked
second messenger of nucleotides to initiate the relevant IFN-I
immune pathway (21, 111). Based on evolutionary terms, the
structures of cGAS are highly similar to those of 2′-5′-OAS (21,
46), especially the shared structure fold (21, 46), suggesting a
common evolutionary ancestral origin as a structurally related but
functionally distinct family of cytoplasmic nucleic acid sensors.
Indeed, some scholars havemerged cGAS and 2′-5′-OAS into a new
family of catalytic OAS-like second messenger receptors (OLRs)
(46). Notably, two recent studies have identified a class of cGAS-like
receptors (cGLRs) inDrosophila that share a bi-lobed architecture, a
caged nucleotidyltransferase core, a Gly-[Gly/Ser] activation loop,
and a putative catalytic triad with cGAS (113). cGLRs recognize
dsRNA and activate the production of the nucleotide product 3′-2′-
cGAMP, and the signal is preferentially recognized by the
Drosophila stimulator of interferon genes (dSTING), which exerts
antiviral immunity in conjunction with the NF-kB pathway (114). It
can be speculated that this conserved nucleic acid recognition
structure is of great significance in the evolution of postnatal 2′-
5′-OAS, cGAS, and cGLR animal proteins.
Frontiers in Immunology | www.frontiersin.org 8
catRAPID (http://service.tartaglialab.com/page/catrapid_
group) is an online algorithm predicting the propensity of
prote in-RNA interact ions based on the respect ive
contributions of secondary structure, hydrogen bonding, and
Van Der Waals interactions (115). catRAPID has been widely
used to study protein-RNA interactions with high accuracy
(116–120). We first used the catRAPID signature (121) to
predict the RNA-binding potential of murine cGAS. The
overall prediction score of mcGAS was 0.5 (Figure 4),
reflecting potential RNA-binding activity of mcGAS. Further
analysis indicated that the RNA-binding activity of cGAS was
mainly attributed to amino acids 234-331 within the Mab-21
structural domain (Figure 4). We also analyzed the RNA
binding activity of 2’-5’-OAS1 as a well-characterized RBP
using the catRAPID signature, and the results indicated a
higher predicted RNA binding score of 0.68 compared to
cGAS (Figure 5). We next used catRAPID omics (123, 124)
to discover the potential RNA interactors of murine cGAS
(Table 1) and human cGAS (Table 2), which provides novel
insight for future study of the RNA interactors of cGAS.
However, the potential RNA interactors of cGAS should be
determined by using relevant experimental methods.
Nevertheless, these predicted results based on bioinformatic
A

B

FIGURE 4 | RNA-binding ability of murine-cGAS determined by catRAPID signature. (A) The propensity of murine cGAS for classical (0.5), putative (0.47), and
nonclassical (0.41) RBPs. The overall interaction score (0.5) for murine cGAS as an RBP was also present. (B) The profile shows protein regions and their propensity
to interact with RNA. All results were predicted by using catRAPID.
November 2021 | Volume 12 | Article 741599
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analysis further demonstrated the potential RNA-binding
activity of cGAS.
COMPUTATIONAL AND EXPERIMENTAL
METHODS FOR DETECTING OR
PREDICTING CGAS-RNA INTERACTIONS

Numerous experimental methods and computational methods
have been devised to reveal RNA-protein interactions (125, 126).
We comprehensively summarized the current experimental
methods (Table 3) and computational tools (Table 4) for
studying RNA-protein interactions as well as their respective
advantages and disadvantages. These methods would be
beneficial for us to identify RNAs that bind to cGAS and
reveal the RNA-binding activity of cGAS and its regulatory
function in the antiviral immune response. The experimental
methods can be further classified according to cells and test tubes
in terms of experimental conditions. The latter mainly include
electrophoretic mobility shift assay (EMSA), RNA pull-down,
Frontiers in Immunology | www.frontiersin.org 9
systematic evolution of ligands by exponential enrichment
(SELEX), RNAcompete, and RBNS (Table 3). The in cells assays
mainly include RNA binding protein immunoprecipitation (RIP)
and crosslinking immunoprecipitation (CLIP) assays (Table 3). In
fact, the concentrations of RBPs and RNAs used in test tubes are
much higher than those levels in a physiological context (144).
Furthermore, the artificially created in vitro environment is pure
and susceptible to technical influence (145). Therefore, the results of
the test tube assays cannot represent the true physiological
mechanisms of interactions in vivo.

Although experimental methods could provide convincing
evidence supporting the RNA-protein interaction, most of the
experimental methods are technically challenging and time-
consuming (Table 3). In contrast, the computational approaches
are simple, fast, and time-saving and can be used as ideal
amendments to the experimental methodology (125, 146–149)
(Table 4). The growing numbers of public experimental data also
offer the possibility to train computational models for inferring
new interactions. Most of these computational methods for
predicting RNA-protein interactions (such as catRAPID, lncPro,
and RNAcontext) calculate their propensity based on the
A

B

FIGURE 5 | RNA-binding ability of murine-2’-5’-OAS1 predicted by catRAPID signature. (A) The propensity of murine-2’-5’-OAS1 for the nonclassical (0.51),
classical (0.43) and putative (0.35) RBPs. The overall interaction score (0.68) for murine-2’-5’-OAS1 as an RBP was also present. (B) The profile shows protein
regions and their propensity to interact with RNA. The catRAPID signature correctly identifies the RNA binding domain of murine-2’-5’-OAS1, which carries the
region of enzymatic activity between 320 and 344 at the extreme C-terminal end (122).
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physicochemical properties of peptides and nucleotide chains (e.g.,
propensity for hydrogen bonding, van der Waals interactions, and
secondary structure) (125) (Table 4). On the basis of these
principles, there are also methods such as RPI-Pred and PRIPU
that further introduced statistical and machine learning
algorithms, including vector machines, in the prediction of
RNA-protein interactions (141, 142) (Table 4).
CONCLUSIONS AND FUTURE
PERSPECTIVES

In this review, we highlighted the RNA-binding activity of cGAS
based on the RNA interactors of cGAS, the numerous RBP
partners of cGAS, and its structural similarity with 2′-5′-OAS.
We also elucidated and discussed current experimental methods
and computational tools that can be used for exploring and
calculating cGAS-RNA interactions. These clues indicated that
the RNA-binding activity of cGAS may play an important role in
the innate antiviral response, which needs to be further
confirmed in the future. Although cGAS showed potential
RNA-binding activity, it should be noted that the RNA
binding activity of cGAS is different from that of known RNA
Frontiers in Immunology | www.frontiersin.org 10
sensors, such as RIG-1 and TLR3, which mainly recognize viral
RNA (23). In contrast, known dsRNA interactors cannot activate
cGAS (21). Furthermore, given that the known interacting RNAs
of cGAS are not derived from a virus (21, 22) and that cGAS
plays a redundant role in recognizing RNA viruses (49, 150), the
RNA-binding activity of cGAS may largely affect the DNA-
binding activity of cGAS but does not mean that cGAS can
recognize viral RNA or RNA interactors which directly activate
cGAS. In fact, since the discovery of cGAS as a novel receptor for
dsDNA, researchers have used a variety of physical and
biochemical methods to explore the mechanism of action of
dsDNA recognition by cGAS. However, numerous reports have
also begun to prove the RNA-binding activity of cGAS. Of note,
no studies have proven that binding RNA could act as a PAMP to
directly activate cGAS. The RNA-binding ability of cGAS in the
innate antiviral response represents a scientific question that
urgently needs to be resolved. In summary, the RNA interactor of
cGAS could largely modulate cGAS function rather than activate
it. Nevertheless, we cannot ignore the role of the RNA-binding
activity of cGAS in the innate antiviral response, although cGAS
is recognized as a classical DNA-binding protein. Moreover,
cGAS can be activated by self-DNA, which triggers the
development of autoimmune diseases such as Aicardi-
TABLE 1 | The RNA interactors of murine cGAS predicted by catRAPID omics (version 2.0).

RNA ID Gene Name Interaction
Propensity

Z-
score

RBP
Propensity

RNA-Binding
Domains

RNA-
Binding
Motifs

Conserved
Interactions

Ranking

protein-
coding RNAs

ENSMUST00000000080 Kruppel-like Factor 6
(Klf6)

88.83 1.73 0.5 1 0 0/0 0.405431

ENSMUST00000000291 max binding protein (Mnt) 73.94 1.34 0.5 1 0 0/0 0.389061

ENSMUST00000000579 sex determining region Y-
box 9 (Sox9)

56.82 0.89 0.5 1 0 0/0 0.37024

ENSMUST00000000619 chloride channel, voltage-
sensitive 4 (Clcn4)

74.44 1.35 0.5 1 0 0/0 0.389611

ENSMUST00000000724 K (lysine)
acetyltransferase 2B
(Kat2b)

61.09 1 0.5 1 0 0/0 0.374934

long
noncoding
RNAs

ENSMUST00000047876 Gm10710 45.58 0.59 0.5 1 0 0/0 0.357883

ENSMUST00000052189 B230317F23Rik 49.89 0.7 0.5 1 0 0/0 0.362621

ENSMUST00000097612 Gm10545 49.12 0.68 0.5 1 0 0/0 0.361774

ENSMUST00000098303 Gm9934 42.98 0.52 0.5 1 0 0/0 0.355024

ENSMUST00000100713 Gm10384 41.97 0.49 0.5 1 0 0/0 0.353914

small
noncoding
RNAs

ENSMUST00000082459 Gm23627 25.98 0.07 0.49 1 0 0/0 0.333001

ENSMUST00000082490 Gm22749 28.99 0.15 0.49 1 0 0/0 0.33631

ENSMUST00000082508 Gm26225 27.07 0.1 0.49 1 0 0/0 0.3342

ENSMUST00000082509 Gm26226 36.2 0.34 0.49 1 0 0/0 0.344237

ENSMUST00000082534 Gm25081 25.39 0.06 0.49 1 0 0/0 0.332353
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Table summarization of the top 5 predicted coding-RNA interactors (RNA ID and Gene Name) of murine-cGAS by catRAPID omics (version 2.0). The table shows Z-scores (interaction
propensity normalization relative to experimental cases), discriminative ability (relative to training sets), interaction strength (enrichment relative to random interactions), the presence of
RNA-binding domains, and RNA motifs. RNAs were ranked by the score, which is the sum of three individual values: 1) catRAPID normalized propensity, 2) RBP propensity and 3)
presence of known RNA-binding motifs. The full score is 1.
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TABLE 3 | Experimental methods for uncovering the interaction between proteins and RNAs.

Classes Methods Advantages Disadvantages References

In the
test
tube

EMSA Separation of numerous types of complexes, such as
monomer and dimer; Works well with crude cell extracts.

Low-throughput; Failure of detecting binding sites. (125, 127)

RNA pull-
down

A simple protocol; Enrichment of low-abundance RBPs. Failure of confirming direct or indirect interaction; Failure of
forming RNA-protein interactions that only occur in vitro under
non-physiological conditions.

(125, 128)

SELEX Direct interaction of the oligonucleotides with the target is closely
application-oriented; Independence of in-depth knowledge
regarding the respective target for aptamer selection.

No standardized aptamer selection protocol for target. (129–132)

RNAcompete Accurate estimation of the relative preference for a large
numbers of individual sequences; Querying preferences are
available for structured RNA; Time-saving.

Limited size of the current RNA pool for the represented
combinations of sequence and structure.

(125, 133)

RBNS Accurate estimation of dissociation constants of RBP-RNA
complex; A more reliable prediction of RNA folding and a better
identification of the binding structural determinants than
RNAcompete.

N/A (125, 134,
135)

In cells RIP Assay A simple and standard protocol; Preserves the intracellular
native complexes.

Failure of confirmation of direct or indirect interaction between
RNA and protein; Failure of determination of the precise site within
the RNA interacting protein; Poor resolution; Antibody-consuming.

(125, 136)

CLIP A sensitive determination of binding sites. Low abundance of RNA-ribonucleoprotein complexes;
Potentially inefficient library preparation; Large amounts of raw
material required.

(108, 125,
137)

PIP-seq A simultaneous view of the global landscapes of both RNA
secondary structure and RNA-protein interactions.

High concentrations of structure-specific RNases. (138)
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EMSA, Electrophoretic Mobility Shift Assay; SELEX, Systematic Evolution of Ligands by Exponential Enrichment; RBNS; RNA Bind-n-Seq; RIP, RNA Immunoprecipitation; CLIP, Cross-
linked Immunoprecipitation; PIP-seq, Protein Interaction Profile Sequencing; N/A, not applicable.
TABLE 2 | The RNA interactors of human cGAS predicted by catRAPID omics (version 2.0).

RNA ID Gene Name Interaction
Propensity

Z-
score

RBP
Propensity

RNA-
Binding
Domains

RNA-
Binding
Motifs

Conserved
Interactions

Ranking

protein-
coding
RNAs

ENST00000078429 G protein subunit alpha 11 (GNA11) 57.38 0.9 0.35 1 0 0/0 0.320855

ENST00000169298 ST6 beta-galactoside alpha-2,6-
sialyltransferase 1 (ST6GAL1)

56.82 0.89 0.35 1 0 0/0 0.32024

ENST00000170168 RNA exonuclease 1 homolog (REXO1) 59.47 0.96 0.35 1 0 0/0 0.323153

ENST00000174618 MAX network transcriptional
repressor (MNT)

60.79 0.99 0.35 1 0 0/0 0.324604

ENST00000193322 osteoclastogenesis associated
transmembrane protein 1 (OSTM1)

54.06 0.81 0.35 1 0 0/0 0.317205

long
noncoding
RNAs

ENST00000242109 KIAA0087 24.68 0.04 0.35 1 0 0/0 0.284905

ENST00000309874 AC020659.1 19.83 -0.09 0.35 1 0 0/0 0.279573

ENST00000316786 C9orf106 21.42 -0.05 0.35 1 0 0/0 0.281321

ENST00000325390 AC018865.2 20.01 -0.09 0.35 1 0 0/0 0.279771

ENST00000329618 B3GALT5-AS1 20.99 -0.06 0.35 1 0 0/0 0.280849

small
noncoding
RNAs

ENST00000347538 MIR133A2 4.53 -0.49 0.35 1 0 0/0 0.262753

ENST00000362117 MIR16-2 6.2 -0.45 0.35 1 0 0/0 0.264589

ENST00000362317 MIR365B 7.6 -0.41 0.35 1 0 0/0 0.266128

ENST00000362349 RNU6-500P 6.08 -0.45 0.35 1 0 0/0 0.264457

ENST00000362356 RNU6-50P 5.19 -0.48 0.35 1 0 0/0 0.263478
rtic
Table summarization of the top 5 predicted coding-RNA interactors (RNA ID and Gene Name) of murine-cGAS by catRAPID omics (version 2.0). The table shows Z-scores (interaction
propensity normalization relative to experimental cases), discriminative ability (relative to training sets), interaction strength (enrichment relative to random interactions), the presence of
RNA-binding domains, and RNA motifs. RNAs were ranked by the score, which is the sum of three individual values: 1) catRAPID normalized propensity, 2) RBP propensity and 3)
presence of known RNA-binding motifs. The full score is 1.
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Gourtières syndrome (151). Therefore, it is important to address
the RNA-binding activity of cGAS in the innate antiviral
response in more detail to understand the precise modulation
of cGAS activity. Our review provides a comprehensive
understanding of the regulation of cGAS activity, which
extends beyond the DNA-binding activity of cGAS. Our review
is significant for understanding cGAS signaling.
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