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Eribulin rapidly inhibits TGF-β-induced Snail expression and
can induce Slug expression in a Smad4-dependent manner
Roma Kaul1, April L. Risinger1,2 and Susan L. Mooberry 1,2

BACKGROUND: Evidence shows that the anticancer effects of microtubule targeting agents are not due solely to their antimitotic
activities but also their ability to impair microtubule-dependent oncogenic signalling.
METHODS: The effects of microtubule targeting agents on regulators of TGF-β-induced epithelial-to-mesenchymal transition (EMT)
were evaluated in breast cancer cell lines using high content imaging, gene and protein expression, siRNA-mediated knockdown
and chromatin immunoprecipitation.
RESULTS: Microtubule targeting agents rapidly and differentially alter the expression of Snail and Slug, key EMT-promoting
transcription factors in breast cancer. Eribulin, vinorelbine and in some cases, ixabepalone, but not paclitaxel, inhibited TGF-β-
mediated Snail expression by impairing the microtubule-dependent nuclear localisation of Smad2/3. In contrast, eribulin and
vinorelbine promoted a TGF-β-independent increase in Slug in cells with low Smad4. Mechanistically, microtubule
depolymerisation induces c-Jun, which consequently increases Slug expression in cells with low Smad4.
CONCLUSION: These results identify a mechanism by which eribulin-mediated microtubule disruption could reverse EMT in
preclinical models and in patients. Furthermore, high Smad4 levels could serve as a biomarker of this response. This study
highlights that microtubule targeting drugs can exert distinct effects on the expression of EMT-regulating transcription factors and
that identifying differences among these drugs could lead to their more rational use.
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BACKGROUND
Microtubule targeting agents are highly effective anticancer
drugs that remain a mainstay in the treatment of a wide variety
of cancers.1 Microtubule targeting agents are classified as either
microtubule stabilizers, which increase the density of cellular
microtubules, or microtubule destabilizers, which cause net
microtubule loss.2 Microtubule stabilizing drugs, including the
taxanes and ixabepilone, as well as the microtubule destabilizing
vinca alkaloids and eribulin have clinical efficacy in breast
cancer.1 All microtubule targeting agents disrupt microtubule
dynamics and structure, thus inhibiting microtubule-dependent
interphase and mitotic events. Growing evidence demonstrates
that in addition to their antimitotic effects, microtubule targeting
agents impair intracellular transport and trafficking in interphase
cells resulting in disruption of oncogenic signalling.3–8 Key
oncogenic proteins that traffic along microtubules include p53,
Myc, Smad2/3, Rb, and Src.4 Microtubule targeting agents inhibit
androgen receptor trafficking to the nucleus,5,6 nuclear transport
of DNA repair proteins following DNA damage7 and prevent
E-cadherin internalisation in a Src-dependent manner.8 The
ability of microtubule targeting agents to interrupt a wide range
of oncogenic signalling pathways likely contributes to their
anticancer effects.
Given the differences among microtubule targeting

agents with regard to their distinct tubulin/microtubule-binding

sites and allosteric effects on microtubule structure, they
could differentially impact cellular signalling pathways which
ultimately dictate patient responses. Differences between
paclitaxel and docetaxel were noted early in the clinical
development of docetaxel9 and ixabepilone has activity in
patients resistant to taxanes.10 More recently in the EMBRACE
trial, eribulin provided a survival advantage compared to
treatment of physician’s choice in patients who had failed to
respond to a taxane and an anthracycline.11 Additionally, breast
cancer cell lines also show different sensitivities to these
drugs.12 Although microtubule targeting agents are often
conceptually grouped together, these studies highlight the
importance of understanding the differences among micro-
tubule targeting agents that might underlie optimal utility of
individual drugs of this class.
The TGF-β pathway is a master regulator of EMT due to its

ability to activate multiple transcriptional pathways that ultimately
coordinate to drive a cell towards a mesenchymal phenotype. In
canonical TGF-β signalling, TGF-β binds the TGF-β receptor I, a
serine/threonine receptor kinase, which transactivates TGF-β
receptor II to both recruit and phosphorylate Smad2 and Smad3.
Activated Smad2/3 translocates into the nucleus along micro-
tubules in a dynein-dependent manner.13 Phosphorylated Smad2
and Smad3 require dynein-light chains km23-1 and km23-2,
respectively, for their nuclear transport, and depletion of either of
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these two dynein light chains inhibits Smad2/3 transcriptional
activity.14–16 In the nucleus, activated Smad2/3 complexes with
Smad4 to regulate target gene expression, including SNAI1, SNAI2,
ZEB1, and TWIST1, genes central to EMT.17,18

Eribulin has been shown to reverse EMT in triple-negative
breast cancer (TNBC) cells, in a TNBC xenograft model19 and in
patients.20 A 7-day exposure of cells to eribulin initiated EMT
reversal that was defined by phenotypic changes, including loss of
N-cadherin and expression of E-cadherin together with suppres-
sion of Snail.19 Eribulin also initiated EMT reversal in a TGF-β-
induced model of EMT.19 However, the underlying molecular
mechanisms describing how eribulin-mediated microtubule dis-
ruption can ultimately lead to EMT-reversal remains unidentified.
We hypothesised that microtubule disruption would inhibit TGF-β-
induced expression of the breast cancer EMT-driving transcription
factors Snail (SNAI1) and Slug (SNAI2) because a key mediator of
their transcription, Smad2/3, is trafficked to the nucleus along
microtubules.21

METHODS
Cell lines and reagents
BT-549 cells were obtained from the Lombardi Comprehensive
Cancer Center, Georgetown University, Washington, DC.
SUM185PE cells were purchased from BioIVT (Westbury, NY) and
CAL-51 cells were purchased from Creative Bioarray (Shirley, NY).
All other cell lines were purchased from ATCC (Manassas, VA). Cell
lines were validated by Genetica (Burlington, NC). Cells were
maintained in the following growth media: MDA-MB-231,
SUM185PE, MDA-MB-453 in IMEM; BT-549, HCC1937, MCF-7,
T47D, MDA-MB-468, HCC1806, CAL-51 in RPMI, and Hs578T in
DMEM. Media were supplemented with 10% FBS and 50 μg/mL
gentamycin, and cells were grown at 37 °C with 5% CO2. Replete
conditions refer to cells grown in complete media whereas serum-
starved conditions denote cells placed in media supplemented
only with gentamycin. Paclitaxel (Sigma Aldrich, St Louis, MO),
ixabepilone (LC Labs, Woburn, MA), vinorelbine (AdooQ Bios-
ciences, Irvine, CA), docetaxel (Sigma Aldrich) and eribulin (Eisai
Inc., Woodcliff Lake, NJ) were reconstituted in DMSO and stored at
−20 °C. TGF-β was purchased from R&D Systems (Minneapolis,
MN, Cat. 240-B-002) and reconstituted per manufacture’s recom-
mendation in sterile 4 mM HCl in H2O containing 0.1% bovine
serum albumin. TGF-β used was used at 2 ng/mL unless
otherwise noted.

Western blotting
Cells were lysed with cell extraction buffer (Life Technologies,
Carlsbad, CA,) supplemented with protease inhibitors (Sigma
Aldrich, Cat. P2714) and PMSF (Sigma Aldrich). Equal amounts
of proteins were resolved by PAGE and evaluated by immuno-
blotting. The list of antibodies is provided in Supplementary
Table 1. REVERT™ (LI-COR Biosciences, Lincoln, NE) protein stain
was used to measure total protein on a membrane and the
Odessey® Fc Imager (LI-COR Biosciences) was used to image all
western blots.

Indirect immunofluorescence
Cells were plated on coverslips and fixed with 4% paraformalde-
hyde (Electron Microscopy Sciences, Hatfield, PA). Cells were
permeabilized using 0.5% Triton-X in PBS and blocked using 10%
bovine calf serum in PBS, followed by immunostaining. Immuno-
fluorescence images were obtained using a Nikon Eclipse 80i
fluorescence microscope using NIS elements software to decon-
volve and focus stacked images or the Operetta™ high content
imager (PerkinElmer, Waltham, MA) as indicated.
For Operetta™ imaging, cells were plated in 96-well cell-carrier

plates (PerkinElmer) and imaged in a single focal plane at ×20
magnification. Using Columbus™ (PerkinElmer) software, the

protein intensity in the cytoplasm and nucleus were quantified.
The nucleus and cytoplasm were defined by DAPI staining
and CellMask™ Blue (Thermo Fisher Scientific) staining, respec-
tively. The percentage of protein in the nucleus was calculated
as the ratio of signal intensity present in the nucleus
divided by the signal intensity present in the entire cell. The
percentage of protein present in the nucleus was calculated for
every cell and median values reported per well. To compare
treatment conditions, the average of these median values
was calculated for multiple wells within each independent
experiment.

qRealTime-PCR
RNA was extracted using the RNeasy mini kit (Qiagen, German-
town, MD) and purified using the RNase-Free DNase kit (Qiagen).
RNA was reverse transcribed to cDNA using the High-capacity
cDNA reverse transcription kit (Thermo Fisher Scientific) in the
T100™ thermal cycler (Bio Rad, Hercules, CA). SYBR green
chemistry (SYBR green master mix, Applied Biosystems, Foster
City, CA) was used to evaluate transcript abundance by the CFX
Connect™ real-time PCR detection system (Bio Rad). mRNA fold
change was calculated using the 2-ΔΔCt method,22 where GAPDH
was used as the control gene. For all TGF-β-stimulation experi-
ments, the fold-change of the mRNA of interest was set to 1 in the
vehicle-unstimulated sample and all other treatments were
reported relative to this sample. The list of primers is provided
in Supplementary Table 2.

Chromatin immunoprecipitation
Pierce™ Magnetic ChIP kit (Thermo Fisher Scientific, Cat. 26157)
was used for chromatin immunoprecipitation. Nuclear lysate was
pre-cleared with normal IgG followed by protein A/G beads.
Equivalent amounts of nuclear lysate were used for Smad4
immunoprecipitation and IgG immunoprecipitation, while 10%
was saved as input. Smad4 and IgG bound DNA were evaluated
for SNAI1 and ID1 promoter regions using qPCR, and data are
reported relative to input for each treatment condition.

siRNA transfection
Cells were transfected using Lipofectamine RNAiMAX (Thermo
Fisher Scientific Cat. 13778150) as per the manufacturer’s
recommendation. Pools of pre-designed siRNAs targeted to
SMAD2 (SASI_Hs02_0030429, SASI_Hs02_00304296), SMAD3
(SASI_Hs01_00208931, SASI_Hs02_00340511), SMAD4 (SASI_Hs01_
00207793, SASI_Hs01_00207794) and JUN (SASI_Hs02_00333461,
SASI_Hs01_00150279), were purchased from Sigma Aldrich. Mock-
transfection consisted of transfection reagent only. For the Smad4
and c-Jun knock-down, the two sets of siRNAs were used at
equimolar concentrations for a final concentration of 100 nM,
while the Smad2/Smad3 knock-down used equimolar concentra-
tions of the siRNAs for a final siRNA pool concentration of 200 nM.
All siRNA experiments were terminated after 72 h of transfection.
The 72 h time period included serum-starvation, drug treatment
and TGF-β stimulation.

Transient transfection
pBabe-puro-Smad4-Flag was a gift from Sam Thiagalingam
(Addgene plasmid #37041).23 Plasmid was purified using the
Qiagen QIAprep® spin miniprep kit and 1 µg of plasmid was used
to transfect a single well of a 6-well dish containing MDA-MB-468
cells using the Lipofectamine 3000 reagent (ThermoFisher) as per
manufacturer’s instructions. Selection with 1 µg/mL of puromycin
(InvivoGen, San Diego, CA) was initiated within 24 h of transfec-
tion. The transfection experiments were terminated within 72 h of
transfection. The 72 h time period included puromycin treatment,
serum-starvation and drug treatment. The results from this
experiment were compared to un-transfected and drug-treated
MDA-MB-468 cells shown in Fig. 5b.
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TCGA data analysis
cBioPortal was used to analyse the METABRIC dataset24,25

consisting of genomic landscape and gene expression data of
2509 samples. SMAD4 and SNAI2 were used as query genes, and
their mapped mutations, copy number alterations, and deletions
were analysed. The changes in mRNA expression were assessed
using a threshold Z-score of ± 2.0. The Kaplan–Meier curves were
generated by the cBioPortal software, where overall survival of
patients with tumours harbouring alterations in query genes were
compared to patients with tumours not containing any alterations
in the query genes. The Logrank test was conducted to compare
survival distribution of the two sample subsets.

RESULTS
Effect of microtubule targeting agents on TGF-β-mediated Snail
expression
The ability of eribulin to rapidly interrupt TGF-β-mediated
expression of EMT-promoting transcription factors was evaluated
in breast cancer cell lines and compared to the effects of other
microtubule targeting agents. The goal was to evaluate the early,
initial effects of these drugs on key drivers of EMT in breast cancer
that could explain the ability of eribulin to reverse EMT in patients
and preclinical models.19,20 The experimental design utilised a 2 h
pre-treatment of cells with microtubule targeting agents at
concentrations that are clinically relevant and that cause maximal
microtubule disruption.8 A 2 ng/mL concentration of TGF-β was
sufficient to induce robust Snail protein (Fig. 1a) and SNAI1
transcript expression (Fig. 1b and Supplementary Fig. S1a, b)
within 2–3 h in serum-starved TNBC cells. The effects of a 2 h pre-
treatment of cells with vehicle, eribulin (ERI), vinorelbine (VIN),
paclitaxel (PTX), or ixabepilone (IXA) on TGF-β-induced Snail
expression were then evaluated. The results show that the
microtubule destabilizers eribulin and vinorelbine inhibited
TGF-β-induced Snail expression in BT-549, HCC1937, MDA-MB-
231, and Hs578T cells (Fig. 1c and Supplementary Fig. S1c, d). The
microtubule stabilizer ixabepilone also attenuated Snail expres-
sion in three of the four cell lines. In contrast, paclitaxel had no
effect on TGF-β-induced Snail expression in any of these cell lines
(Fig. 1d and Supplementary Fig. S1e, f). Similar effects were
observed in replete medium without exogenous TGF-β, albeit with
a lower signal than was observed with acute pathway stimulation
(Supplementary Fig. S2). To determine whether the effects of the
microtubule targeted drugs on Snail were mediated by transcrip-
tional changes we evaluated the Snail transcript, SNAI1. Eribulin,
vinorelbine and ixabepilone caused significant inhibition of SNAI1
in BT-459 and HCC1937 cells (Fig. 1d) but only eribulin and
vinorelbine reduced SNAI1 transcript in MDA-MB-231 and
Hs578T cells (Supplementary Fig. S1e, f). These results demon-
strate that a 2 h pre-treatment with eribulin, vinorelbine, and in
some cases ixabepilone, is sufficient to inhibit the transcriptional
activation of the TGF-β target gene SNAI1, resulting in reduced
Snail expression.

Effect of microtubule targeting agents on Smad2/3 nuclear
localisation
To address how some microtubule targeting agents inhibit
SNAI1 transcription, their effects on upstream events were
evaluated. Smad2/3/4 proteins are canonical TGF-β pathway
mediators and part of the transcriptional machinery responsible
for SNAI1 expression. siRNA mediated depletion of Smad2/3
was used to evaluate whether the effects of microtubule
targeting agents on SNAI1 were mediated by this canonical
pathway. Consistent with the results presented in Fig. 1, eribulin,
vinorelbine, and ixabepilone, but not paclitaxel, inhibited TGF-β-
induced Snail expression in mock-transfected cells (Fig. 1e, f).
Smad2/3 depletion completely attenuated TGF-β-mediated
Snail expression in BT-549 and HCC1937 cells (Fig. 1e, f) (upper

band – Smad3, lower band – Smad2). These results demonstrate
that Smad2/3 is required for Snail expression and that this
signalling occurs through the canonical TGF-β pathway.
An initial step in the execution of the canonical pathway is the

phosphorylation and activation of Smad2/3 following TGF-β
stimulation, suggesting that this could be a point of pathway
inhibition by microtubule targeting agents. However, the results
(Fig. 1g, h) show that microtubule targeting agents do not affect
Smad2/3 phosphorylation levels following TGF-β stimulation
suggesting that the ability of microtubule targeting agents to
inhibit Snail expression is not due to changes in the initial
activation (phosphorylation) of Smad2/3.
After activation, Smad2/3 proteins translocate from the

cytoplasm to the nucleus to initiate transcription. Since
cytosolic Smad2/3 traffics to the nucleus along microtubules in
a dynein-dependent manner14–16 and microtubule targeting
agents have been shown to inhibit nuclear transport of other
transcription factors,26 the effects of microtubule targeting
agents on the TGF-β-induced nuclear accumulation of Smad2/3
were evaluated. TGF-β initiated a robust time-dependent
increase in nuclear Smad2/3 in BT-549 and HCC1937 cells
within 1 h (Supplementary Fig. S3). However, in cells pre-treated
with eribulin or vinorelbine, the TGF-β-mediated nuclear
localisation of Smad2/3 was significantly inhibited as compared
to TGF-β stimulated controls, with a more dispersed
cytoplasmic localisation of Smad2/3 observed in both cell lines
(Fig. 2 and Supplementary Fig. S4). In contrast, paclitaxel had no
effect on Smad2/3 localisation in either cell line, while
ixabepilone reduced Smad2/3 nuclear localisation in BT-549
but not HCC1937 cells. The eribulin and vinorelbine-mediated
inhibition of nuclear Smad2/3 localisation is consistent with
their ability to attenuate SNAI1 transcript and Snail protein
expression.

Effects of microtubule targeting agents on Smad4-dependent
Snail expression
In addition to Smad2/3, Smad4 is an integral part of the
transcription machinery required to regulate SNAI1 expression.
The effects of Smad4 depletion on TGF-β-induced Snail expres-
sion were evaluated. Consistent with Smad2/3 knockdown,
Smad4 depletion inhibited TGF-β-mediated Snail expression
(Fig. 3a, b and Supplementary Fig. S5a, c) and SNAI1 transcript
(Fig. 3c, d and Supplementary Fig. S5b, d) in all four cell lines
under all treatment conditions. The direct binding of Smad4 to
the SNAI1 promoter was evaluated by ChIP-qPCR. Enrichment of
Smad4 at two distinct Smad-binding elements of the SNAI1
promoter was observed with TGF-β stimulation of vehicle-treated
cells (Fig. 3e). Interestingly, Smad4 enrichment at the SNAI1
promoter was even higher in eribulin-treated cells when
compared to vehicle (Fig. 3e), even though SNAI1 expression
was inhibited by eribulin. The same trend of increased Smad4
binding with eribulin pre-treatment was also observed at the
promotor of another Smad-dependent gene, ID1 (Supplementary
Fig. S6a). The specificity of the Smad4 antibody was confirmed by
the lack of enrichment of these SNAI1 and ID1 promoter regions
in MDA-MB-468 cells that do not express Smad427 (Supplemen-
tary Fig. S6b). Together, these data show that in the presence of
eribulin, Smad4 retains the ability to localise to the nucleus and
bind the SNAI1 promoter. However, the eribulin-mediated
inhibition of Smad2/3 transport into the nucleus results in a lack
of Smad2/3/4-dependent transcriptional activation, likely leading
to an accumulation of Smad4 at the promoter region. Thus,
Smad4 binding to the SNAI1 promoter is necessary, but not
sufficient to induce SNAI1 transcription after TGF-β stimulation.
This could explain why increased Smad4 recruitment to the SNAI1
promoter is unable to overcome eribulin-mediated inhibition of
nuclear Smad2/3 accumulation resulting in decreased Snail
expression.
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Effects of microtubule targeting agents on Slug expression
In addition to Snail, Slug is another other important TGF-β
responsive transcription factor that promotes EMT in breast
cancer.21,28 Like Snail, Slug expression increased in a time-

dependent manner after TGF-β stimulation with robust expression
observed within 3 h in both BT-549 and HCC1937 cells (Fig. 4a).
However, unlike what was observed for Snail, microtubule
targeting agents had no appreciable effect on TGF-β-induced
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Fig. 1 TGF-β causes rapid induction of Snail, which is differentially inhibited by microtubule targeting agents. a Western blot analysis of
lysates from BT-549 and HCC1937 cells that were serum-starved for 18 h then stimulated with TGF-β at the indicated times and concentrations.
Immunoblots were probed for Snail and GAPDH. b mRNA expression analysis of SNAI1 in BT-549 and HCC1937 cells. Cells were serum-starved
for 18 h then stimulated with 2 ng/mL of TGF-β for indicated times. Data are an average of two independent experiments (±SEM). c Western
blot analysis of Snail and GAPH from whole-cell lysates from BT-549 and HCC1937 cells that were serum-starved for 18 h, then pre-treated with
microtubule targeting agents for 2 h followed by a 3 h stimulation with TGF-β. d mRNA analysis of SNAI1 transcript in cells that were serum-
starved for 18 h, pre-treated with microtubule targeting agents for 2 h, then stimulated with TGF-β for either 1 h (BT-549 cells, N= 3) or 2 h
(HCC1937 cells, N= 4). Data are the average of independent experiments (± SEM). A one-way ANOVA with Dunnett’s post-hoc test was used to
determine statistical significance as compared to TGF-β-stimulated vehicle control cells (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05).
e, f. Smad2/3 proteins were transiently knocked-down by siRNA in BT-549 and HCC1937 cells after which cells were serum-starved for 18 h,
pre-treated with microtubule targeting agents for 2 h, and then stimulated with TGF-β for 3 h. Whole-cell lysates were subject to
immunoblotting and probed for Smad2/3, Snail, and GAPDH. g, hWestern blot analysis of whole-cell lysates from cells serum-starved for 18 h,
pre-treated with microtubule targeting agents for 2 h, then stimulated with TGF-β for either 45 min (BT-549) or 1 h (HCC1937). Immunoblots
were probed for total Smad2/3, their phosphorylated forms, and GAPDH
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Slug expression in BT-549 cells (Fig. 4b). In contrast, in HCC1937
cells, eribulin and vinorelbine caused an unanticipated increase in
Slug (Fig. 4b) and SNAI2 transcript expression (Supplementary
Fig. S7a). This effect was not seen with either paclitaxel or
ixabepilone. In HCC1937 cells, Slug induction by eribulin or
vinorelbine occurred independent of serum-starvation or TGF-β-
stimulation (Supplementary Fig. S7b, c, d).
Previous studies showed that Slug expression can occur in a

Smad4-independent manner.29 Therefore, the effects of Smad4

knock-down on microtubule destabilizer-mediated increases in
Slug expression were evaluated. Depletion of Smad4 reduced TGF-
β-induced Slug mRNA (Supplementary Fig. S8a) and protein
expression (Fig. 4c) in BT-549 cells in the presence or absence of
microtubule targeting agents, consistent with TGF-β-induced Slug
expression being Smad4 dependent in this cell line. In contrast, in
the HCC1937 cells, Smad4 depletion did not inhibit eribulin or
vinorelbine-induced increases in Slug transcript (Supplementary
Fig. S8b) or protein levels (Fig. 4d). Similar results were also seen
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Fig. 2 Microtubule targeting agents differentially impair the TGF-β-mediated nuclear accumulation of Smad2/3. a, b Smad2/3 localisation was
evaluated by immunofluorescence in BT-549 and HCC1937 cells that were serum-starved for 18 h, pre-treated with microtubule targeting
agents for 2 h, and stimulated with TGF-β for either 45min (BT-549) or 1 h (HCC1937). Images were obtained using the Operetta™ high
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way ANOVA with Dunnett’s post-hoc test was used to determine statistical significance as compared to TGF-β-stimulated vehicle controls.
(****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05)
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with Smad2/3 depletion (Supplementary Fig. S8c, d), demonstrat-
ing that the eribulin- or vinorelbine-induced, TGF-β-independent
expression of Slug in HCC1937 cells is Smad2/3/4 independent.
Together, these data demonstrate that microtubule targeting
agents can elicit different effects on Slug expression in distinct
molecular contexts. This differs from the effects of microtubule
targeting agents on Snail, which were generally consistent across
all four TNBC cell lines evaluated.

Role of c-Jun in microtubule destabilizer-mediated upregulation
of Slug
We hypothesised that the mechanism of Smad-independent Slug
upregulation by eribulin and vinorelbine in HCC1937 cells could
be due to c-Jun, a transcription factor that positively regulates

SNAI2 expression30 and is upregulated after short-term treatment
with the microtubule destabilizers nocodazole, colchicine, or
vinblastine.31,32 The effects of microtubule targeting agents on
c-Jun expression were evaluated in HCC1937 (Fig. 4e, f) and in BT-
549 cells (Supplementary Fig. S9a). In each case, c-Jun and
phospho-c-Jun were increased by eribulin and vinorelbine, but not
paclitaxel or ixabepilone. Immunofluorescence experiments
showed that the nuclear localisation of c-Jun was enhanced in
eribulin-treated HCC1937 cells (Fig. 4g), where it can drive
transcription of target genes, including SNAI2. Indeed, c-Jun
depletion attenuated eribulin-mediated Slug upregulation in
HCC1937 cells (Fig. 4h). These eribulin-mediated increases in
c-Jun and Slug were also observed when HCC1937 cells were
treated chronically (7 days) with low doses (1–6 nM) of eribulin in
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an experimental paradigm that has been shown to reverse
EMT-associated phenotypes19 (Fig. 4i). In BT-549 cells, chronic
treatment with low concentrations of eribulin led to increased
c-Jun expression but no upregulation of Slug (Supplementary
Fig. S9c), consistent with the response of these cells to eribulin in
short-term experiments.

Correlation of Smad4 expression levels with eribulin-mediated
Slug upregulation
In efforts to understand why increased c-Jun expression resulted
in increased Slug expression in HCC1937 but not BT549 cells, we

noted that HCC1937 cells have lower Smad4 levels than BT-549
cells (Supplementary Fig. S9b). This led us to hypothesise that low
Smad4 levels lead to c-Jun-dependent Slug expression in response
to microtubule destabilization. To extend this observation, a panel
of 12 breast cancer cell lines was used to evaluate the association
between low Smad4 expression and microtubule-destabilizer-
mediated Slug upregulation. The four cell lines expressing the
lowest levels of Smad4 were SUM185PE, HCC1806, HCC1937, and
MDA-MB-468 (Fig. 5a). Strikingly, HCC1937, SUM185PE, and MDA-
MB-468 cells were the only models to elicit upregulation of SNAI2
transcript after eribulin treatment (Fig. 5b and Supplementary
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Fig. 4 Microtubule targeting agents differentially impact Slug expression in breast cancer cell lines. a Western blot analysis of Slug from BT-
549 and HCC1937 cells that were serum-starved for 18 h, and then stimulated with TGF-β for the indicated times. b Western blot analysis of
Slug and GAPDH from whole-cell lysates from BT-549 and HCC1937 cells that were serum-starved for 18 h, pre-treated with microtubule
targeting agents for 2 h followed by a 3 h stimulation with TGF-β. c, d Smad4 was transiently knocked-down by siRNA in BT-549 and HCC1937
cells. Cells were then serum-starved for 18 h, pre-treated with microtubule targeting agents for 2 h, then stimulated with TGF-β for 3 h. Cell
lysates were subject to immunoblotting for Smad4, Slug, and GAPDH. e Western blot analysis of whole-cell lysates from HCC1937 cells that
were serum-starved for 18 h and treated with microtubule targeting agents for 5 h. Immunoblots were probed for total and phosphorylated
forms of c-Jun, Slug, and GAPDH. f mRNA analysis of JUN transcript in HCC1937 cells that were serum-starved for 18 h and then treated with
microtubule targeting agents for 4 h (N= 2). Data are reported as mean ± SEM. Statistical significance compared to vehicle controls was
determined using a one-way ANOVA with Dunnett’s post-hoc test (***p < 0.001). g HCC1937 cells were serum-starved for 18 h and then treated
with microtubule targeting agents for 5 h. Immunofluorescence images of c-Jun and DAPI are shown. h c-Jun was transiently knocked-down
in HCC1937 cells by siRNA. Cells were serum-starved for 18 h and then treated with microtubule targeting agents for 5 h. Cell lysates were
subject to immunoblotting for c-Jun, Slug, and GAPDH. iWestern blot analysis of whole-cell lysates from HCC1937 cells treated with vehicle or
eribulin for 7 days. Immunoblots were probed for Slug, c-Jun, and GAPDH
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Fig. S10a). Importantly, in the Smad4-null MDA-MB-468 cells, re-
expression of Smad4 attenuated eribulin-mediated SNAI2 upregu-
lation (Fig. 5c). These data indicate that low Smad4 expression,
particularly in more basal-like TNBC cells, is associated with
microtubule destabilizer-mediated increases in Slug and that
Smad4 expression is sufficient to attenuate this response.
However, there are exceptions, for example, MDA-MB-231 cells
respond to eribulin with an increase in SNAI2 transcript even
though they have high Smad4 levels, suggesting that other factors
can be involved.
The METABRIC dataset24,25 was queried to evaluate the

prognostic value of alterations in SMAD4 and SNAI2. Using gene
expression data from 2509 breast cancer patients followed for ~35
years, SMAD4 or SNAI2mRNA expression alterations occur in 8 and
13% of patients, respectively. The overall low expression of Smad4
and high expression of Slug correlates with lower overall survival
(Supplementary Fig. S11a). Additionally, when the same METABRIC
dataset was evaluated and the subset of patients with genetic
alterations (including mutations and copy-number alterations) in
SMAD4 (1.9% of all patients) and SNAI2 (12% of all patients) were
assessed, there was significantly lower overall survival in that
subset of patients (Supplementary Fig. S11b).
Together, these findings indicate that a subset of breast cancer

patients with low Smad4 expression might not be susceptible to
the known EMT-reversing effects of eribulin, due to upregulation
of the EMT-promoting transcription factor Slug. Consequently, we
hypothesise that high Smad4 expression could serve as a potential
biomarker of the ability of eribulin to reverse EMT in breast cancer
patients.

DISCUSSION
TGF-β initiates oncogenic signals that can transform cancer cells
from an epithelial to a mesenchymal phenotype.33,34 We
hypothesised that the ability of eribulin to reverse EMT in
breast cancer cells, xenograft models, and circulating tumour
cells in patients19,20 could be due to a rapid microtubule
depolymerisation-mediated inhibition of TGF-β signalling. The
effects of a panel of clinically relevant microtubule targeting
agents on key breast cancer EMT-promoting transcription factors
were investigated, with the goal of understanding the initial
events that could link microtubule disruption to EMT reversal.
Our results in a panel of TNBC cell lines show that the
microtubule destabilizers, eribulin and vinorelbine, rapidly inhibit

TGF-β-induced expression of Snail, a central transcriptional driver
of EMT in breast cancer, providing a mechanism by which
eribulin can downregulate the TGF-β/Smad signalling pathway.19

Attenuation of TGF-β signalling by eribulin and vinorelbine is
associated with inhibition of Smad2/3 transport to the nucleus, a
pathway that has previously been shown to be dynein and
microtubule dependent.14–16,35 Inhibition of Smad2/3 nuclear
accumulation diminished both SNAI1 transcript and Snail protein
expression after a 2 h pre-treatment with eribulin or vinorelbine
demonstrating that microtubule depolymerisation rapidly dis-
rupts canonical TGF-β signalling. While Smad2/3 nuclear trans-
port was inhibited, the levels of Smad4 at the SNAI1 promoter
were elevated by eribulin, consistent with previous literature
showing that the nuclear transport of Smad2/3 and Smad4 are
independent.27,36 Together, these data show that nuclear
delivery of Smad2/3, but not Smad4, is inhibited by microtubule
destabilization and that Smad4 is necessary, but not sufficient, to
initiate SNAI1 transcription following TGF-β stimulation. This
pathway is shown graphically in Fig. 6, left panel.
Our results showing that eribulin and vinorelbine inhibit Snail

expression in each cell line evaluated suggests that this
effect likely contributes to the ability of eribulin to reverse EMT
in other experimental models.19,20 Consistent with the effects of
the microtubule destabilizers, ixabepilone also inhibited TGF-β-
induced SNAI1 and Snail expression in BT-549 and HCC1937 cells,
but not in MDA-MB-231 or Hs578T cells. In BT-549 cells the
mechanism is likely mediated by attenuation of Smad2/3 nuclear
transport, consistent with the effects of the microtubule
destabilizers, however, in HCC1937 cells, ixabepilone did not
inhibit nuclear Smad2/3 accumulation, suggesting another
mechanism. Paclitaxel did not inhibit TGF-β-induced Snail
expression in any of the four cell lines. The divergent effects of
paclitaxel and ixabepilone demonstrate that significant differ-
ences exist even between these microtubule stabilizers. The
ability of the microtubule destabilizers and, in some cell lines,
ixabepilone, but not paclitaxel, to inhibit TGF-β-induced SNAI1
and Snail expression could be important for their clinical efficacy,
especially in breast cancer patients whose tumours have
undergone EMT.
The EMT promoting transcription factors Snail and Slug are

often considered as having similar effects; however, they regulate
numerous non-overlapping genes.28,37 Genome-wide analysis of
Snail and Slug promoter recruitment shows that Snail binds at
~8000 promoter regions while Slug binds at about 1500.28 Slug is
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expressed predominantly in the basal cells of the normal
mammary duct while Snail is expressed in stromal fibroblasts,28

indicative of their distinct biological roles in normal mammary
gland biology. Our data demonstrate that the effects of eribulin
and vinorelbine on these two EMT-promoting transcription factors
are distinct. While TGF-β-induced Snail expression was consis-
tently inhibited by these drugs, TGF-β-mediated Slug expression
was not inhibited by any of the microtubule targeting agents
evaluated across a panel of molecularly diverse breast cancer cell
lines. Surprisingly, in a subset of TNBC cell lines, eribulin and
vinorelbine induced Slug expression in a TGF-β and Smad-
independent manner. Slug expression is regulated by a variety of
transcription factors, including c-Jun,30,38 and microtubule
destabilizer-initiated c-Jun expression has been reported
previously.31,32 However, the question of how microtubule
depolymerisation increases c-Jun expression remains unanswered.
c-Jun expression is regulated transcriptionally by c-Jun N-terminal
kinase (JNK) and JNK is required for microtubule elongation
through its direct binding to the motor protein kinesin-1.39

Additionally, pre-treatment of cells with a JNK inhibitor prevented
microtubule-destabilizer-mediated c-Jun induction.40 We hypothe-
sise that microtubule depolymerisation reduces the microtubule
localisation of JNK, enabling it to activate c-Jun and this is shown
in Fig. 6, right panel.
While the microtubule destabilizers increased c-Jun expression

in all cell lines evaluated, Slug was preferentially upregulated by
eribulin in cells with low Smad4 expression, suggesting that Slug is
regulated by c-Jun when Smad4 is limited. Additionally, exogen-
ous expression of Smad4 in a Smad4-null cell line attenuated the
eribulin-mediated SNAI2 upregulation, further indicating an
important role of Smad4 in regulating this response. Smad4 is a
predictive biomarker of poor prognosis in multiple cancers41–46

and the METABRIC data confirm that alterations in the SMAD4 and
SNAI2 genes or their altered expression correlate with lower
overall survival in breast cancer. Although this difference may be
minor for prognosis in general, the specific role of Smad4
expression in response to microtubule targeting agents has not
been systematically evaluated as a potential biomarker for
response to these agents. We hypothesise that Smad4 expression
would positively correlate with the known EMT-reversal in
response to eribulin. In contrast, tumours with low Smad4
expression would not be expected to exhibit robust EMT reversal
due to Slug upregulation is this molecular context.
Evidence is rapidly accumulating that the anticancer efficacy

of microtubule targeting agents is not solely due to their
antimitotic effects.5,7,8 The efficacy of these drugs warrants
detailed investigations into their abilities to alter cell signalling
pathways that could help explain their clinical efficacies in
distinct molecular contexts. Differences between microtubule
stabilizers and destabilizers and even among members of a
single class with regard to inhibition of TGF-β signalling
highlight the mechanistic distinctions among these drugs.
Differences among microtubule stabilizers on microtubule
structure and in patient responses are well documented,47–50

suggesting that distinct effects among drugs of this class
on microtubule-associated signalling and trafficking are not
unanticipated. The continued identification of signalling con-
sequences that differ among microtubule targeting agents is
critical to promote their utilisation in a more rational and
targeted manner.51 Our data, together with other studies,
demonstrate that microtubule targeting agents can disrupt
key oncogenic signalling pathways and can do so differently.
Our findings that eribulin and vinorelbine inhibit Snail expres-
sion in TNBC cell lines while inducing the expression of
Slug specifically in cells with low Smad4 expression suggest
that Smad4 should be evaluated as a predictive biomarker for
the known EMT reversing effects of eribulin (summarised in
cartoon, Fig. 6).
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