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fore required to assess which patients will benefit from TMVR and
which type of device is best suited for specific anatomical and functional
patterns.

Pre- and peri-procedural imaging are key to the success of both TAVI
and TMVR,with contrast-enhanced cardiac computed tomography (CT)
Onemillion individuals aged 65 and over are affected by heart valve
disease in theUK. Given the rapidly ageing population, the prevalence of
clinically significant valve disease is projected to double by 2050 [1].
These forecasts carry serious implications for healthcare providers
tasked with addressing the needs of this growing cohort of patients,
who are mostly too old and frail for open-heart surgery.

Aortic stenosis and mitral regurgitation are the most frequent valve
conditions. Both share an adverse prognosis and a lack of effectivemed-
ical therapies. In response, there have been groundbreaking develop-
ments in minimally-invasive transcatheter technology to implant
bioprosthetic devices in the failing native valve. Transcatheter aortic
valve implantation (TAVI) is already established as an alternative to
conventional surgery for inoperable and high/intermediate-risk pa-
tients, and trials in low-risk cohorts are currently being concluded.
Within 5 years, TAVI is likely to become the default treatment for the
majority of patients with aortic stenosis.

Based upon this paradigm shift, attention is now firmly focused on
transcatheter mitral valve replacement (TMVR). Unlike TAVI, TMVR re-
quires sophisticated engineering solutions to address the unique chal-
lenges posed by the heterogeneity and complexity of mitral valve
anatomy and physiology, and its interaction with the left ventricle. Spe-
cific concerns include difficulty in anchoring the device to the deformed
mitral annulus (with risk of valve migration or paravalvular leak), and
potential for left ventricular outflow tract (LVOT) obstruction by the im-
planted valve (with risk of refractory heart failure and latemortality) [2,
3]. The latter is themost important and independent predictor of 30-day
and 1-yearmortality in patientswithmitral annular calcification under-
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and echocardiography playing a crucial role in the evaluation of patient
suitability and procedural planning (Fig. 1: Panels A–B) [5]. Early at-
tempts to provide pre-procedural guidance by overlaying device geom-
etries using multi-modal imaging provided a swift initial assessment.
However, this approach to TMVR has so far failed to establish formal
criteria for patient and device selection, due to oversimplification of
themultifactorial relationship that links risks of LVOT obstruction to an-
atomical parameters (shape and kinematics of mitral annulus, calcium
distribution, aorto-mitral angulation, septal geometry) and device char-
acteristics (shape, size and positioning).

Although anatomical measurement may be insufficient for effective
risk assessment, it can provide key information for performingmore so-
phisticated analyses [6]. Previous experiences with TAVI and the new
challenges of TMVR have generated interest in the use of computer sim-
ulation to predict the effects of different devices on patient-specific
pathophysiology and the risks of procedural complications. These ad-
vanced techniques combine state-of-the-art imaging with computer-
aided design to model themechanical behavior of the device during de-
ployment (Fig. 1: Panels C–F) [7]. Finite-element analysis can then sim-
ulate deformation of the device after deployment and other interactions
of the device with neighbouring anatomy, significantly improving the
predictive power of geometric measurement [8,9].

Such analyses can accurately predict the likelihood of LVOT obstruc-
tion and paravalvular leak based on device characteristics, ventricular
anatomy and kinematics. However, they cannot model the left ventric-
ular haemodynamic response to variations in preload and afterload fol-
lowing resolution ofmitral regurgitation or the final device position and
shape. Assessment of these crucial aspects of TMVR success has been re-
cently enabled by cutting-edge biophysical computer models that sim-
ulate patient-specific ventricular blood flow and quantify metrics such
as transvalvular and LVOT pressure gradients (Fig. 1: Panels G–H).
Such models can be used before intervention to provide non-invasive
assessment of the physiological consequences of mitral regurgitation
and enhance patient selection for TMVR. When used to predict TMVR
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Fig. 1. Patient-specific planning of minimally invasive transcatheter intervention. A: Overlay of simple valve geometry to CT images accounting for different levels of atrial placement. B:
Normal projection of the outflow plane into the left ventricle to measure the proportion of outflow area obstructed by the valve frame. C–F: Finite-element simulation of patient-specific
device implantation in a calcifiedmitral annulus (illustrated inwhite) with low (C–D) and high probability of LVOT obstruction (E–F). G–H: Patient-specific computational fluid-dynamic
simulation of intraventricular pressure (G) and blood flow streamlines coloured according to velocity (H) following device implantation.
(Panels A–B and G–H modified from De Vecchi et al. Sci Rep 2018;8:15540)
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outcomes, they can also provide a tailored assessment of the ventricular
response to device implantation (including detailed quantification of
potential paravalvular leaks and the haemodynamic impact of any an-
ticipated LVOT obstruction) in individual patients [10].

Integration of structural mechanics and flow modelling can there-
fore advance the boundaries of procedural planning to simulate virtual
TMVR using different devices in order to select the one that best
matches the anatomy and pathophysiology of an individual patient.
Over the next decade, these new technologies hold major potential to
augment early feasibility trials of new transcatheter valves and improve
the quantity and quality of life of a growing cohort of patients.
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