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Introduction
Epigenetic markers are mitotically heritable yet potentially 
reversible modifications to DNA that regulate gene expression 
without affecting the genetic code itself. While epigenetic mark-
ers are critical to biological functioning and controlled and regu-
lated by complex biologic processes, they have also been shown 
to be responsive to environmental exposures.1,2 Epigenetic marks 
are also considered important factors in the development of age-
related diseases, including cancers.3 As a result, epigenetic mark-
ers have been proposed as biomarkers of effect from toxic 
exposures as well as biomarkers of health and early markers of 
certain diseases. For example, among firefighters, we have 

previously observed longitudinal epigenetic alterations in both 
DNA methylation and microRNA (miRNA) in mid-life, that 
are consistent with specific health outcomes overrepresented 
among firefighters, including cancer.4-6

DNA methylation is an enzyme catalyzed process involving 
the addition of a methyl group to the 5-carbon of cytosine resi-
dues at CpG dinucleotides. Sometimes, methylation of CpG 
sites can result in the regulation of nearby genes.7 Knowledge 
about methylation patterns has been utilized recently to esti-
mate cellular or biological aging via epigenetic clocks. 
Epigenetic clocks are estimated based on DNA methylation at 
multiple CpG sites that change with chronological age. 
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Epigenetic age acceleration (EAA) is a measure of discrepancy 
between epigenetic age and chronological age, where a positive 
value suggests more advanced biological aging compared to 
chronological age. Studies have reported associations between 
EAA and risk of age-related health endpoints (eg, cardiovascu-
lar health loss, cardiovascular disease, Alzheimer’s disease, can-
cers), age-related clinical phenotypes (eg, physical functioning, 
walking speed, grip strength, Mini Mental State Examination, 
Montreal Cognitive Assessment), and all-cause mortality.8-11 
Additionally, there is growing evidence linking environmental 
and occupational exposures to EAA.1,12-14 Incumbent fire-
fighters, for instance, have greater epigenetic age acceleration 
than new recruit firefighters,14 and some species of per- and 
poly-fluoro alkylated substances (PFAS), a chemical that fire-
fighters are commonly exposed to, is also associated with 
greater epigenetic age acceleration among firefighters.1

Another type of epigenetic marks include microRNA 
(miRNA) expression profiles. MiRNAs are small, endogenous, 
non-coding RNAs that regulate gene expression at the post-
transcriptional level by targeting messenger RNA for degrada-
tion or by inducing translational repression.15 Recognition of 
miRNAs as important regulators of aging and longevity has 
grown, as research has revealed that the miRNA regulatory 
network is extensive and miRNA-mediated regulation plays an 
important role in developmental timing, apoptosis, senescence, 
and proliferation.16-18 Additionally, dysregulated miRNA 
expression has been shown to play a role in the age-related 
pathologies of cardiovascular diseases, neurodegenerative dis-
eases, and cancer.16,19-22 Studies of circulating levels of miR-
NAs in humans have identified associations between 
dysregulated miRNAs and increased risk for cardiovascular 
aging, heart failure, hypertension, atherosclerosis, atrial fibrilla-
tion, as well as diabetes.19 MiRNAs have also been suggested to 
be a key regulator of homeostasis in neurons, and some studies 
have demonstrated that their dysregulation may contribute to 
neurodegenerative diseases including Alzheimer’s disease, 
Parkinsons’s disease, and Huntington’s disease.20,21 Recent 
research has also suggested that miRNAs can regulate tumor 
development by acting as tumor suppressors or oncogenes.23,24

A growing area of research indicates that epigenetic markers 
can work together in various combinations and can cross-regu-
late each other.25,26 One such interaction has been identified 
between miRNAs and DNA methylation, where miRNA 
expression is regulated by DNA methylation at miRNA pro-
moters, and aberrant methylation patterns at these promoters 
have been associated with aging-related diseases, including 
cancer and Huntington’s disease, among other diseases.26-29 
However, it is not yet understood if EAA, measured via epige-
netic clocks, is associated with miRNA expression.

Firefighting has been shown to be associated with dysregu-
lated miRNA, epigenetic age, epigenetic profiles, and aging-
related diseases.1,4-6,14,30-32 miRNAs have also been associated 
with aging-related diseases, although currently no summary 

measure equivalent to the DNAm clocks exist for miRNA. By 
identifying those miRNAs that are associated with epigenetic 
DNAm clocks, which may function as a subacute summary 
indicator of overall health, we can further identify molecular 
drivers of disease and biological targets for prevention and 
treatment. With this in mind, in our current study, we inte-
grated data on DNA methylation and miRNA expression pro-
files of blood samples collected from 2 U.S.-based occupational 
cohorts to determine if EAA was associated with miRNA 
expression, to explore if these associations varied across differ-
ent epigenetic clocks, and to identify miRNA-based health 
implications. Research that helps address these topics could 
provide evidence that biological aging influences miRNA 
expression and broaden our understanding of cancer and other 
aging-related disease processes.

Materials and Methods
Study population and data collection

Our analysis included participants from 2 studies investigating 
disease and cancer risk factors among United States (U.S.) fire-
fighters as a convenience population to address our study ques-
tions. The first study was conducted by the University of 
Arizona in partnership with the Tucson Fire Department. The 
second study, the Fire Fighter Cancer Cohort Study (FFCCS) 
(https://www.ffccs.org/), is an ongoing, prospective, multi-site 
study including fire departments across the U.S. and collabora-
tion with multiple academic and research institutions. Study 
protocols and materials were reviewed and approved by institu-
tional review boards (IRBs) (University of Arizona IRB 
(approval No. 1509137073) and University of Miami IRB 
(approval No. 20170997)) and all participants provided their 
written informed consent. At the time of enrollment, partici-
pants provided blood samples as well as demographic and 
occupational information (fire department, total years of ser-
vice as a firefighter) via a survey.

Eligibility criteria in the current analysis included enroll-
ment in the University of Arizona study between 2015 and 
2018, or enrollment in the FFCCS between 2018 and 2020, 
and having both miRNA and DNA methylation data that met 
quality control standards. For individuals who had enrolled in 
both studies (n = 47), only the earlier study enrollment was con-
sidered. The final study sample in our current analysis included 
332 firefighters: 143 (43%) from the University of Arizona 
study and 189 (57%) from the FFCCS.

MiRNA expression processing and measurement

Sample collection and processing have been reported previ-
ously.5,6 Briefly, whole blood samples were collected using 
Tempus™ Blood RNA tubes (Applied Biosystems, Foster City, 
CA), shaken and aliquoted into 5 mL cryogenic tubes (VWR 
International, Radnor, PA, Cat. # 89094-820) and stored fro-
zen until further processing (at −20°C temporarily and at 
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−80°C for long-term storage). RNA was isolated following the 
manufacturer’s recommendations using MagMAXTM for 
Stabilized Blood Tubes RNA Isolation Kit (Life Technologies, 
Carlsbad, CA, Catalog #4451893) and total RNA was meas-
ured using the NanoDrop 1000 Spectrophotometer (Thermo 
Fisher Scientific, Wilmington, DE).

MiRNA expression was measured using the nCounter® 
Human v3 miRNA expression panel (NanoString Technology 
Inc., Seattle, WA), a profile of 798 curated and clinically rele-
vant human miRNAs from miRBase v21 as well as 5 house-
keeping genes and 20 assay controls (6 positive, 8 negative and 
6 ligation controls) in 5 batches analyzed in 2016, 2017, 2018, 
2019 and two batches analyzed in 2021. This panel accounts 
for almost all (>95%) observed sequencing reads in miRbase 
21 (Dennis 2015 white paper). Raw counts of each gene were 
normalized against background genes and the overall assay 
performance was assessed through the evaluation of the posi-
tive controls.

To further normalize and remove unwanted variation, or 
batch effects, from our miRNA expression data, we utilized the 
Removing Unwanted Variation-III method (RUV-III) via the 
“ruv” R package,33 as previously described.5 This method makes 
vital use of pseudo-replicates and control genes.34 In our 
miRNA expression measurement, we purposely measured 3 to 
4 samples in all batches, serving as pseudo-replicates. RUV-III 
(i) takes the residuals from the replicate expression measure-
ments and estimates one aspect of the unwanted variation; (ii) 
takes the results of (i) together with the expression of the nega-
tive controls of the NanoString platform and estimates another 
aspect of the unwanted variation; and (iii) estimates total 
unwanted variation (results of (i) and (ii) combined) and sub-
tracts this value from the data. Relative log expression (RLE) 
plots by batch were used to visualize and confirm batch 
correction.

DNA methylation data for epigenetic clocks

Collection and processing of DNA methylation data have 
been previously reported.1,35 Blood samples were collected 
using 6 mL dipotassium ethylene diamine tetraacetic acid tubes 
for isolation of DNA (BD, Franklin Lakes, NJ). DNA was 
isolated from blood leukocytes, quantified using a QuantiFluor 
dsDNA System (Promega, Madison, WI), and bisulfite con-
verted using Zymo kits prior to Infinium MethylationEPIC 
array analysis.36 Samples were randomized across array chips, 
hybridized, and scanned in batches at the University of Utah 
DNA Sequencing and Genomics Core Facility or the 
University of Michigan Advanced Genomics Core. The 
“minfi” R package37 was used to read in raw image files and 
“ENmix”38 was used to perform quality control, background 
correction via noob, and dye bias correction with regression on 
logarithm of internal control (RELIC) probes followed by 
quantile normalization.39,40

We then used the EPIC data to estimate the proportion of 
blood cell types (CD4+ T cells, natural killer cells (NK cells), B 
cells, monocytes, granulocytes; relative abundance of plasma 
blasts, CD8+CD28-CD45RA- T cells, and naive CD8+ T 
cells) using established algorithms.10,41 We also computed 
seven widely used and validated epigenetic age biomarkers, or 
epigenetic clocks, with the New Methylation Age Calculator 
(https://dnamage.genetics.ucla.edu/new).10 These included 
the multi-tissue Horvath clock,10 the Hannum et al clock 
designed for blood samples,42 and the skin-blood clock 
designed for skin, blood, or saliva samples.43 Second generation 
clocks—PhenoAge and GrimAge—were also computed.8,44 In 
statistical analyses, we used measures of EAA, residuals after 
regressing each clock on chronological age. We also estimated 
intrinsic epigenetic age acceleration (IEAA) and extrinsic epi-
genetic age acceleration (EEAA), markers of intrinsic cellular 
aging and immune system aging, respectively.45

Statistical analysis

Descriptive statistics were generated for demographic varia-
bles, including age (years), BMI (kg/m2), sex, race/ethnicity 
(non-Hispanic White, Hispanic White, Black, and Other), 
smoking status (current, former, never), state, incumbent or 
recruit status, and years as a firefighter. In regression models, 
race/ethnicity was categorized as non-Hispanic White, 
Hispanic White, and other (due to small numbers of partici-
pants). The exposures of interest included the 7 measures of 
EAA (5 based on the Horvath, skin-blood, Hannum, 
PhenoAge, GrimAge clocks, as well as IEAA and EEAA) and 
the outcome of interest was differential expression of the 
798 miRNAs. In our main analysis, separate linear regression 
models of each measure of EAA were fit for each miRNA and 
adjusted for sex, chronological age, and race/ethnicity. We ini-
tially considered adjusting for smoking status, however, due to 
the high degree of missing values (61%) and sparseness of the 
data across the variable categories, chose not to include this 
variable in our final models. Because we used data from fire-
fighter study participants as a convenience population to 
address questions concerning EAA and miRNA expression, 
we considered incumbent or recruit status as a potential con-
founder as we hypothesized that incumbents would have 
increased cumulative occupational exposures and we have pre-
viously shown that miRNA expression can differ between 
incumbents and recruits6 and that incumbents have higher 
EAA compared to new recruits.14 However, we chose to not 
include this variable in our final models since model fit 
(expression levels of miRNAs) did not improve after adjust-
ment,46 within the top 10 miRNAs (ordered by p-value) for 
the measures of EAA. Five of the 7 EAA measures (Horvath, 
skin-blood, Hannum, PhenoAge, and GrimAge) were also 
adjusted for cell type estimates (granulocytes, plasmablasts, 
CD8+ naive T cells, and CD8+CD28-CD45RA- T cells).  

https://dnamage.genetics.ucla.edu/new
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A 5% false discovery rate (FDR, q-value < 0.05) was used to 
identify miRNAs associated with EAA.

For measures of EAA that were found to be associated with 
differential miRNA expression, we also performed a separate 
pathway enrichment analysis as a secondary analysis to investi-
gate potential downstream effects of miRNAs. The pathway 
analysis was performed using the “rbioapi” package47 and the 
miRNA Enrichment Analysis and Annotation Tool 
(miEAA).48 Specifically, we performed a gene set enrichment 
analysis adapted for miRNAs (miRNA enrichment analysis) 
where the test set consisted of the full array list of miRNAs 
(n = 798) ranked by effect size. The enrichment categories were 
limited to miRNA-disease annotations (MNDR v2.0) and 
miRNA-pathway annotations (Gene Ontology (GO) cellular 
components, GO molecular functions, GO biological pro-
cesses; miRPathDB 2.0),49,50 and a q-value threshold of 0.05 
on the pathways was used for statistical significance. The 
MNDR v2.0 database contains 28 144 predicted miRNA-
associated entries for Homo sapiens and miRPathDP 2.0 data-
base contains 28 352 miRNA targets and 16 833 miRNA 
pathways for Homo sapiens.49,50 Separate miRNA enrichment 
analyses were performed for each measure of EAA considered. 
All statistical analyses were performed using R (version 4.1.0).51

Results
A total of 332 participants were included in our analysis. 
Median values for chronological age and BMI were 38 years 
old (interquartile range (IQR) 31,48) and 26.9 kg/m2 (IQR 
24.4, 29.0) (Table 1). The majority of study participants were 
male (88%) and non-Hispanic white (75%), which is reflective 
of current estimates of the fire service in the United States.52 
Approximately 10% were Hispanic white, 5% were Black, and 
13% reported other race. Of participants who reported infor-
mation about their smoking status (n = 131, 38%), the majority 
reported being never smokers (n = 127). Participants were dis-
tributed mostly across the western United States, with over 
60% of participants recruited from fire departments in Arizona 
and California, and most were incumbents (85%) within their 
departments rather than recruits (15%). The median reported 
work duration was 12 years (IQR 3, 19 years).

EAA varied based on the epigenetic clock used. Averages of 
3 of the 7 measures of EAA (based on the Hannum and 
PhenoAge clocks, and EEAA) were positive, indicating that 
on average, study participants had accelerated epigenetic aging 
compared to their chronological age, while 3 (based on the 
Horvath and GrimAge clocks, and IEAA) were negative 
(Table 1). The average value of EAA based on the skin-blood 
clock was positive but null (0.01, standard deviation 4.12), sug-
gesting no difference between epigenetic and chronological 
age. The correlation between the 7 measures of EAA ranged 
from 0 to .94 (Supplemental Table 1). Measures of EAA that 
had the highest correlation included Hannum and EEAA 
(r = .94), Horvath and IEAA (r = .86). All other estimated cor-
relations were less than 0.50.

Table 1. Characteristics of study participants, n = 332.

N (%)

Chronological age in years, median [IQR] 38 [31, 48]

Epigenetic age indicators

Epigenetic age in years, median (IQR)

 Horvath 41 [33,50]

 Hannum 31 [25, 39]

 Skin-blood 36 [28, 46]

 PhenoAge 29 [22, 38]

 GrimAge 39 [33, 47]

Epigenetic age acceleration, mean (SD)a

 Horvath −0.66 (5.45)

 Hannum 0.13 (4.13)

 Skin-blood 0.01 (4.12)

 PhenoAge 0.36 (5.71)

 GrimAge −0.32 (4.17)

 IEAA −0.22 (4.71)

 EEAA 0.52 (5.62)

BMI (kg/m2), median [IQR] 27.0 [25.0, 29.0]

Sex

 Male 292 (88)

 Female 40 (12)

Race/ethnicity

 Non-Hispanic white 240 (72)

 Hispanic white 34 (10)

 Black 16 (5)

 Other 42 (13)

Smoking status

 Current smoker <5 (<1)

 Former smoker <5 (<1)

 Never smoker 127 (38)

 Missing 201 (61)

State

 Alaska 28 (8)

 Arizona 144 (43)

 California 77 (23)

 Florida 29 (9)

 Oregon 18 (5)

 Washington 36 (11)

Job status

 Incumbent 281 (85)

 Recruit 51 (15)

Work duration in years, median (IQR) 12 [3, 19]

Abbreviations: IQR, interquartile range; SD, standard deviation; IEAA, 
intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age 
acceleration; BMI, body mass index.
aA positive value indicates accelerated epigenetic aging compared to 
chronological age.
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In our analysis of EAA and miRNA expression, we identi-
fied a total of 183 miRNAs that were significantly associated 
with at least one of 4 measures of EAA (PhenoAge, GrimAge, 
Horvath, and skin-blood) (Supplemental Table 2). Most miR-
NAs were associated with PhenoAge (n = 126), followed by 
GrimAge (n = 59), Horvath (n = 1), and skin-blood (n = 1). 
There was little overlap between miRNAs associated with the 
4 measures of EAA, and no miRNA that was significantly 
associated with more than 2 of the 4 measures of EAA (Table 
2). PhenoAge and GrimAge had the greatest overlap, with 4 
miRNAs in common (miR-1180-3p, miR-193a-3p, miR-
3144-3p, and miR-4421) and 2 (miR-3144-3p and miR-4421) 
that were expressed in the same direction (Table 2). PhenoAge 
also had one miRNA in common with skin-blood (miR-
510-5p) while miR-873-5p was associated with both GrimAge 
and Horvath. The remaining measures of EAA (Hannum, 
IEAA, and EEAA) were not significantly associated with 
miRNA expression.

A miRNA enrichment analysis was performed for each 
measure of EAA identified above (PhenoAge, GrimAge, 
Horvath, and skin-blood). We sorted the 798 miRNAs by their 
effect size, based on regression models including adjustment 
for sex, chronological age, race/ethnicity and cell type composi-
tion. Out of 9218 total miRNA annotations for Homo sapiens 
from the MNDV v2.0 (n = 1197) and miRPathDB 2.0 data-
bases (8021)48 considered, we found that there were 425 anno-
tations significantly enriched for miRNAs associated with 
Horvath, consisting of 205 diseases and 220 pathways (156 
GO biological processes, 21 GO cellular components, 43 GO 
molecular functions) (Supplemental Table 3). Among these 
disease annotations, the majority were cancer related. Some of 
the most prominent cancers included cancers of the brain, lung, 

blood, and to a lesser extent, cancers of the gastrointestinal sys-
tem, bladder, liver, and thyroid. Several cancers of the female 
reproductive system were also significantly enriched among 
miRNAs, including cervical, endometrial, and uterine cancer. 
Common non-cancers included other age-related diseases 
such as metabolic, cardiovascular, and related disorders (eg, 
type 2 diabetes, obesity, non-alcoholic fatty liver disease, stroke, 
coronary artery disease, acute coronary syndrome), as well as 
muscular disorders, and psoriasis. Identified pathways were 
largely related to the regulation of metabolic processes, protein 
modification, cellular responses to stress and DNA damage, 
and gene expression.

There were 81 annotations significantly enriched for miR-
NAs associated with GrimAge, consisting of 15 diseases and 
66 pathways (39 GO biological processes and 27 GO molecu-
lar functions) (Supplemental Table 4). More than 75% of these 
annotations (n = 61) were also significantly enriched for miR-
NAs associated with Horvath (Supplemental Table 5) and the 
top shared diseases and pathways are shown in Tables 3 and 4. 
These top shared diseases included cancers of the brain, blood, 
lung, as well as uterus. Non-cancer disease pathways also 
included stroke, non-alcoholic fatty liver disease, and muscular 
disorders. Similar to our enrichment analysis of Horvath-
associated miRNAs, again, pathways enriched for miRNAs 
associated with GrimAge were mostly related to metabolic 
processes, protein binding and modification, cellular response 
to DNA damage stimulus, and gene expression. We also identi-
fied one GO molecular function pathway (ATPase activity) 
significantly enriched for miRNAs associated with PhenoAge 
(14 miRNAs, q-value = 0.021) that was not associated with 
either Horvath or GrimAge. No pathways were significantly 
enriched for EAA derived from the skin-blood clock.

Table 2. Comparison of miRNAs associated with epigenetic age acceleration.a

MIRNA PHENOAGE GRIMAGE HORvATH SkIN BLOOD

BETA P-vALUE q-vALUE BETA P-vALUE q-vALUE BETA P-vALUE q-vALUE BETA P-vALUE q-vALUE

hsa-miR-
1180-3p

−1.97 4.6e-5 0.005 0.96 3.3e-3 0.048 0.00 .99 1.000 −1.10 4.0e-3 0.289

hsa-miR-
193a-3p

−2.05 4.9e-4 0.012 1.26 1.5e-3 0.033 0.95 .093 0.337 −0.71 .13 0.694

hsa-miR-
3144-3p

−3.73 1.5e-3 0.019 −2.96 1.7e-4 0.011 −3.66 1.2e-3 0.073 −0.65 .49 0.878

hsa-miR-
510-5p

−2.04 1.6e-3 0.019 −0.59 .18 0.371 −1.17 .060 0.298 −2.07 4.1e-5 0.034

hsa-
miR-4421

1.94 6.2e-3 0.043 1.44 2.4e-3 0.040 2.49 2.3e-4 0.065 0.87 .12 0.685

hsa-miR-
873-5p

0.55 .30 0.48 1.28 2.3e-4 0.013 1.99 5.3e-4 0.044 0.65 .11 0.684

Abbreviations: miRNA, microRNA; q-value, Benjamini Hochberg FDR adjusted P-value.
Bolded text denotes miRNAS with q-value < 0.05.
a6 of 183 total miRNAs from models adjusted for sex, chronological age, race/ethnicity, and cell type composition were associated with more than 
one measure of epigenetic age acceleration, and q-value < 0.05. Epigenetic age acceleration was calculated with 4 different epigenetic clocks (Phe-
noAge, GrimAge, Horvath clock, and skin blood clock). Beta values represent log(count) of miRNA expression.



6 Epigenetics Insights 

Discussion
In this study, we examined associations between epigenetic age 
and miRNA expression across multiple epigenetic clocks and 
performed pathway analyses to investigate miRNA-based 
health implications. We identified several miRNAs signifi-
cantly associated with 4 of the 7 EAA measures considered in 
our analysis: EAA derived from the PhenoAge, GrimAge, 
Horvath, and skin-blood clocks.

The Horvath clock is a widely used pan-tissue clock devel-
oped in 2013, that was based on methylation at 353 specific 
CpG sites and developed to predict chronological age across all 
sources of DNA.10 However, due to the suboptimal perfor-
mance of the Horvath et al clock to estimate fibroblast age, the 
skin-blood clock was developed to improve accuracy in estima-
tion in fibroblasts and other cell types used in ex vivo stud-
ies.10,43 PhenoAge and GrimAge are among some of the 
recently developed blood-based clocks, that account for age-
related and disease phenotypes in addition to chronological 
age. Nine age-related biochemical measures, including lym-
phocyte percentage, serum glucose, and albumin were used 
when designing PhenoAge.8 PhenoAge has also been shown 
to capture tobacco-related methylation changes, a driving fac-
tor in mortality associated predictive methylation changes, 
which does not influence more traditional clocks such as 

Horvath and Raj.53,54 The GrimAge clock directly accounts for 
history of smoking, using methylation-based biomarkers for 
smoking pack-years, and estimators of plasma proteins.44 
PhenoAge and GrimAge have been shown to have improved 
ability to predict all-cause mortality, cancer, and other health 
outcomes and clinical phenotypes compared to other epige-
netic clocks.8,9

The number of significantly different associations that we 
observed between EAA and miRNAs varied between epige-
netic clocks used, with little overlap. The majority of statistically 
significant miRNAs that we identified were associated with 
either PhenoAge (n = 126) or GrimAge (n = 59). Given the use 
of whole blood samples in our study, the PhenoAge and 
GrimAge clocks, trained using whole blood methylation, may 
be especially well-suited for this analysis. Of the 6 miRNAs that 
were associated with at least 2 measures of EAA, 4 miRNAs 
(miR-3144-30, miR-4421, miR-510-5p, and miR-873-5p) are 
of particular interest because their estimates of effect were of the 
same direction of expression (increased or decreased) and were 
consistently associated with biological aging across multiple 
epigenetic clocks. To our knowledge, no previous studies have 
identified differential expression of these miRNAs in whole 
blood samples, though examinations of other tissues have iden-
tified potential associations with age-related health outcomes 

Table 3. Top shared miRNA-disease annotations significantly enriched for miRNAs associated with Horvath and GrimAge-derived 
measures of epigenetic age acceleration.a

CATEGORyb SUBCATEGORy ENRICHMENTc OBSERvEDd HORvATHe GRIMAGEf

P-vALUE q-vALUE P-vALUE q-vALUE

Diseases Burkitt lymphoma Enriched 158 1.0e-6 0.001 1.6e-4 0.048

Diseases medulloblastoma Enriched 223 2.2e-5 0.005 2.9e-4 0.048

Diseases Stroke, Lacunar Enriched 184 2.5e-5 0.005 3.3e-4 0.048

Diseases Duchenne muscular dystrophy Enriched 95 3.0e-5 0.005 6.1e-4 0.048

Diseases Mesothelioma Enriched 59 1.1e-4 0.009 2.9e-4 0.048

Diseases uterine cancer Enriched 117 1.2e-4 0.009 9.4e-5 0.048

Diseases Muscular Disorders, Atrophic Enriched 76 1.8e-4 0.010 5.3e-4 0.048

Diseases myelodysplasticmyeloproliferative 
neoplasm

Enriched 57 2.2e-4 0.010 5.2e-4 0.048

Diseases Non-alcoholic Fatty Liver Disease Enriched 73 2.8e-4 0.011 4.6e-4 0.048

Diseases myeloid leukemia Enriched 52 3.1e-4 0.011 5.3e-4 0.048

Abbreviation: miRNA, microRNA; q-value, Benjamini Hochberg FDR adjusted P-value.
aMiRNAs ranked by effect size using models adjusted for sex, chronological age, race/ethnicity, and cell type composition for gene set enrichment 
analysis adapted for miRNAs. MiRNA enrichment analysis performed using miRNA Enrichment Analysis and Annotation Tool (miEAA) and q-val-
ue < 0.05.
bCurated miRNA-disease annotations obtained from MNDR v2.0.
cEnriched (absolute maximal deviation from zero is positive and miEAA assumes an enrichment at the top of the ordered list of miRNAs) or de-
pleted (inverse enrichment, the absolute maximal deviation from zero is negative and miEAA assumes an enrichment at the end of the ordered list 
of miRNAs).
dObserved number of miRNAs significantly enriched for a given pathway.
eTop 10 of 205 disease pathways, ranked by p-value, displayed here.
fTop 10 of 15 disease pathways, ranked by p-value, displayed here.
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such as diseases affecting the eyes, Parkinson’s disease,55-57 and 
multiple cancers, which supports known associations of 
EAA.8-10,44

MiRNAs identified in our study that were associated with 
increased measures of biological aging were also generally 
linked with increasing cancer and other age-related disease risk 
in previous studies. We found that EAA derived from 
PhenoAge and GrimAge were both associated with decreased 
expression of miR-3144-3p and increased expression of miR-
4421. High levels of miR-3144-3p have been shown to inhibit 
cell growth and promote apoptosis in HPV 16-positive cervical 
cancer cells in vitro, suggesting that decreased expression could 
be associated with oncogenic effects.58 Separate studies have 
also reported that differential expression of miR-3144-3p was 
associated with glaucoma and psuedoexfoliation syndrome (a 
systemic, age-related, disorder of the extracellular matrix), both 
diseases that can affect the eyes.55,56 While the function of 
miR-4421 has not been fully investigated, its expression has 
been reported to be associated with telomere length and a 
genetic variation in telomerase reverse transcriptase (TERT), 
important factors in aging and cellular senescence.59 Differential 
expression of miR-4421 in patients with Parkinson’s disease 
has also been reported to be involved in the regulation of genes 
associated with neuronal survival and the FoxO and PI3K-
AKT signaling pathways, which are processes closely related to 
Parkinson’s disease.57 Another study found that miR-4421 
downregulated ERP29 expression and may alter risk and prog-
nosis of oropharynx squamous cell carcinoma.60 We also 
observed that PhenoAge and skin-blood were both associated 
with decreased expression of miR-510-5p. Studies have sug-
gested that miR-510-5p has tumor suppressive effects in mul-
tiple cancers, including liver, renal, lung, and ovarian, and 
decreased expression was shown to be associated with poorer 
prognosis and overall survival.61-64 Both the GrimAge and 
Horvath derived measures of EAA were associated with 
increased expression of miR-873-5p, which was previously 
reported to be upregulated in non-alcoholic fatty liver disease, 
lung cancer, and liver cancer.65-67

In our secondary analysis we used a comprehensive miRNA 
enrichment tool to perform miRNA enrichment analyses, a 
threshold free analysis similar to a gene set enrichment analy-
sis,68 to examine potential downstream effects of miRNAs. We 
observed almost no enriched pathways associated with 
PhenoAge, which was unexpected given the number of differ-
entially expressed miRNAs identified in the main analysis. The 
one pathway that was enriched for miRNAs was ATPase activ-
ity, which is involved in muscle contractions and has been 
implicated to decrease through complex mechanisms during 
aging.69,70 In comparison, we observed a greater number of 
enriched pathways associated with GrimAge and Horvath 
derived EAA, with many shared pathways. Based on ranking 
by statistical significance, the top ten shared enriched disease 
pathways included multiple cancers (Burkitt lymphoma, 

medulloblastoma, mesothelioma, uterine cancer, and blood 
cancers) and age-related diseases (stroke, muscular disorders, 
and non-alcoholic fatty liver disease). A recent evaluation by 
the International Agency for Research on Cancer has pub-
lished that occupational exposure as a firefighter is carcino-
genic on the basis of sufficient evidence of cancer in humans 
for mesothelioma and bladder cancer as well as limited evi-
dence for colon cancer, prostate cancer, testicular cancer, mela-
noma, and non-Hodgkin lymphoma.32 There is also a 
well-documented increased risk for morbidity and mortality 
due to cardiovascular diseases among members of the fire ser-
vice,30,71,72 which some have suggested could be a result of 
occupational exposures to toxins such as particulate matter, 
stress, or other lifestyle factors. Whether exposure-induced 
biological aging—reflected in EAA and altered miRNA 
expression—could also affect this risk is unknown. However, 
there is some evidence that could support an underlying link 
between exposure-induced biological aging and risk of liver 
injury and disease. A cohort study published in 2023 of cancer 
and disease risk among Scottish firefighters found that there 
was increased risk of kidney and liver disease among firefight-
ers.72 Another recently published review of rodent studies and 
epidemiological studies found that there may be a link between 
exposure to per- and polyfluoroalkyl substances and markers of 
liver injury and disease,73 while one of our previous analyses 
determined that PFAS levels in firefighters were associated 
with EAA and differential methylation.1

The top pathway annotations were mostly related to pro-
teins and protein modification (cellular protein metabolic pro-
cess, protein binding, cellular protein modification process, 
protein modification process, gene expression, regulation of 
protein metabolic process, transferase activity, kinase binding) 
as well as cellular response to DNA damage stimulus. MiRNAs 
assessed in our study were taken from a curated array of clini-
cally relevant miRNAs, so there may be some bias for enrich-
ment of certain diseases and pathways. However, the miRNA 
array utilized in this study has been used broadly in biological 
research, including cancer biology, infectious disease, immu-
nology, and others,74-77 and not only did the majority of our 
results fall within the categories described above, but the dis-
eases and pathways identified are consistent with studies 
reporting associations between epigenetic clocks and age-
related outcomes.10,44 The breadth of these diseases addition-
ally supports the notion that biological aging is the most 
important contributor to almost all diseases.

The reason for the large number of overlapping enriched 
diseases and pathways of miRNAs associated with GrimAge 
and Horvath-derived EAA is not immediately known. There 
is little overlap in CpG sites used to develop different epige-
netic clocks, which could explain why some clocks are more 
strongly associated with some outcomes than others.78 
GrimAge and Horvath clocks were correlated among our study 
population, firefighters (Spearman’s r = .823). Previous studies 
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among non-firefighting populations, that have directly com-
pared GrimAge and Horvath clocks, have noted relatively 
weak correlations and that GrimAge outperforms when pre-
dicting age-related clinical phenotypes and all-cause mortal-
ity.9,44 However, future studies are required to investigate this 
finding. Additionally, groupings of functional annotations and 
pathways associated with GrimAge (eg, immune functions, 
adipocytokine signaling pathway, lipid function, and epigenetic 
regulation of gene expression) and Horvath clock (eg, cell 
death/survival, cellular growth/proliferation, organismal/tissue 
development, and cancer) have been reported previously.10,44 In 
our current analysis, we noted a number of cancers that were 
significantly enriched as well as pathways involved in gene 
expression and protein modification and regulation.

Our convenience sample of firefighters was composed of 
mostly (85%) incumbents, and relatively few recruits (15%). 
The relatively small number of new recruits prevented our abil-
ity to examine if relationships between EAA and 

miRNAs differ by occupational exposure. During our analysis 
we evaluated potential confounding by incumbent or recruit 
status, but observed generally small differences in model fit46 
and assumed that incumbent or recruit status was likely not a 
meaningful confounder on the association between EAA and 
miRNA expression. In 2 previous studies we found that that 
firefighting is associated with differential expression of 18 total 
miRNAs across both studies.5,6 Four of these miRNAs (miR-
494-3p, miR-422a, miR-26a-5p, and miR-548h-5p) were also 
implicated in the current analysis and had estimates of a similar 
direction and magnitude. We have also previously shown that 
concentrations of certain per- and polyfluoroalkyl substances 
were associated with increased EAA in firefighters.1 Taken 
together this may support that there is a previously undescribed 
relationship between occupational exposures, epigenetic aging, 
and miRNAs, which could support mechanistic evidence link-
ing firefighting exposures with increased cancer and disease 
risk.32 A second possibility is that there are unaccounted for 

Table 4. Top shared miRNA-pathway annotations significantly enriched for miRNAs associated with Horvath and GrimAge-derived 
measures of epigenetic age acceleration.a

CATEGORyb SUBCATEGORy ENRICHMENTc OBSERvEDd HORvATHe GRIMAGEf

P-vALUE q-vALUE P-vALUE q-vALUE

GO Biological 
process

Cellular protein metabolic 
process

Enriched 110 .000002 0.004 .000058 0.037

GO Molecular 
function

Protein binding Enriched 131 .000002 0.002 .000001 0.001

GO Biological 
process

Cellular response to DNA 
damage stimulus

Enriched 62 .000003 0.004 .000218 0.046

GO Biological 
process

Phospholipid metabolic 
process

Enriched 12 .000004 0.004 .000001 0.005

GO Biological 
process

Cellular protein 
modification process

Enriched 110 .000004 0.004 .000123 0.039

GO Biological 
process

Protein modification 
process

Enriched 110 .000004 0.004 .000123 0.039

GO Biological 
process

Gene expression Enriched 173 .000004 0.004 .000049 0.035

GO Molecular 
function

Transferase activity Enriched 71 .000005 0.002 .000017 0.008

GO Biological 
process

Regulation of protein 
metabolic process

Enriched 117 .000016 0.007 .000229 0.046

GO Molecular 
function

kinase binding Enriched 72 .000018 0.006 .000354 0.028

Abbreviations: miRNA, microRNA; q-value, Benjamini Hochberg FDR adjusted P-value; GO, gene ontology.
aMiRNAs ranked by effect size using models adjusted for sex, chronological age, race/ethnicity, and cell type composition for gene set enrichment 
analysis adapted for miRNAs. MiRNA enrichment analysis performed using miRNA Enrichment Analysis and Annotation Tool (miEAA) and q-val-
ue < 0.05. q-values calculated independently across categories.
bCurated miRNA-pathway annotations obtained from miRPathDB.
cEnriched (absolute maximal deviation from zero is positive and miEAA assumes an enrichment at the top of the ordered list of miRNAs) or de-
pleted (inverse enrichment, the absolute maximal deviation from zero is negative and miEAA assumes an enrichment at the end of the ordered list 
of miRNAs).
dObserved number of miRNAs significantly enriched for a given pathway.
eTop 10 of 220 pathways, ranked by p-value, displayed here.
fTop 10 of 66 pathways, ranked by p-value, displayed here.
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occupational factors affecting these relationships. In this case, 
future studies of this occupational cohort should evaluate 
potential confounding by more descriptive or quantitative 
measures of occupational exposure than those that were avail-
able during our current analysis. Regardless, additional research 
is required to not only determine to what extent our findings 
may be relevant to the general adult population, but also to 
identify what exposures may affect these epigenetic age-
miRNA relationships, and potentially risk of diseases. 
Investigating the relationship between these markers could 
help us further our understanding of biological processes 
related to age-related diseases.

In our study, we investigated the association between EAA 
and miRNA, given the potential importance of both for bio-
logical aging and disease processes. DNA methylation and 
miRNA influence gene expression on the transcriptional and 
post-transcriptional level, respectively.79,80 Epigenetic clocks 
are composite biomarkers of DNA methylation at subsets of 
CpG sites selected based on their ability to predict age and/or 
measures of healthspan; these loci are not necessarily associated 
with the regulation of critical genes for aging, carcinogenesis, 
or other disease processes. Thus, associations between EAA 
and miRNAs with known cancer and disease associations 
could instead be due to the fact that these miRNAs are broadly 
changed with biological aging. Still, it is worth further investi-
gation given that aberrant methylation patterns of miRNA 
promoters have been associated with cancer.26-28 There is also 
evidence that miRNAs also have a regulatory role over DNA 
methylation. Several studies have reported that miRNAs regu-
late the expression of enzymes such as DNA methyltrans-
ferases and 10 to 11 translocation enzymes, which regulate 
DNA methylation machinery.81,82 Because of this complex 
interplay between miRNAs and other epigenetic mechanisms, 
studies investigating the implications that miRNA expression 
may have on EAA should also be considered.

To support advances in developing more effective ways to 
diagnosis, treat, and prevent age-related diseases, a comprehen-
sive understanding of the underlying mechanisms and regula-
tors that drive these different diseases is needed. Biological 
aging, reflected by EAA and miRNAs are examples of such 
mechanisms. Our findings contribute to a growing amount of 
literature investigating the interactions between different 
mechanisms of epigenetic regulation with the goal of improv-
ing our ability to predict diagnosis and clinical outcomes of 
age-related diseases,26,27,83 though to our knowledge, this is the 
first study to focus on the relationship between EAA and miR-
NAs. Our findings suggest that biological aging has some 
influence on miRNA expression though it is uncertain if this is 
due to direct regulation or if the miRNAs we identified are 
broadly changed with biological aging. Overall, our study 
results support previous studies linking EAA with cancer and 
other age-related diseases,8,10,44 while also suggesting that the 
underlying aging and disease pathways that the clocks 

represent may involve protein modification and regulation. We 
also observed that our results varied by epigenetic clock, rein-
forcing findings from other publications that each clock has 
varied utility for predicting disease risk and/or aging. This 
could be useful to support biomarker selection in future studies. 
Based on our results, studies interested in identifying risk fac-
tors for aging-related diseases may consider the GrimAge 
clock and associated miRNAs as potential biomarkers; addi-
tional studies will be required to inform whether the biomark-
ers identified here are generalizable to other populations or 
occupational groups.
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