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Abstract Many organisms, including species from all kingdoms of life, can survive desiccation by

entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary

phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer

larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was

reoriented toward production of sugars from non-carbohydrate sources. This mode depended on

full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS

was especially critical during preparation of worms for harsh desiccation (preconditioning) and

during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation

tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a

conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm

and yeast.

DOI: 10.7554/eLife.13614.001

Introduction
Terrestrial organisms regularly encounter severe drought. For species with no means of preventing

evaporative water loss, drought might result in desiccation, and eventually death. To cope with this

environmental insult, many organisms enter an ametabolic state known as anhydrobiosis (Kei-

lin, 1959; Leprince and Buitink, 2015). In this state, organisms can persist in the absence of water

for a long period of time; when water becomes available, they exit the anhydrobiotic state and fully

resume their normal activities. The nematode Caenorhabditis elegans and the budding yeast Saccha-

romyces cerevisiae are excellent anhydrobiotes. Studies of these two model organisms have

revealed various strategies for desiccation tolerance, many of which appear to be broadly conserved

among other anhydrobiotes (Dupont et al., 2014; Erkut and Kurzchalia, 2015).

One strategy for anhydrobiosis common to both worm and yeast is the biosynthesis and accumu-

lation of trehalose (Erkut et al., 2011; Tapia and Koshland, 2014), a disaccharide made of two

alpha-linked glucose moieties (Elbein, 2003). In C. elegans, trehalose preserves the native packing

of membranes in the dried state (Erkut et al., 2011; 2012) and stabilizes membranes against the

adverse effects of fast rehydration (Abusharkh et al., 2014). In yeast, trehalose also functions as a

long-lived chaperone, preventing protein aggregation upon desiccation (Tapia and Koshland,

2014). These observations suggest that this disaccharide plays conserved roles in desiccation toler-

ance. However, the metabolic basis for synthesis of trehalose remains largely unknown. In this study,

we sought to identify the source of trehalose carbons and the pathway(s) that promote trehalose

biosynthesis and accumulation.

Neither C. elegans nor S. cerevisiae invests in trehalose production during growth and develop-

ment. By contrast, in their non-proliferative stages, i.e., the dauer larva in C. elegans (as shown in

Penkov et al., 2015, and this study) and stationary phase in yeast (François and Parrou, 2001;
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Werner-Washburne et al., 1993), both species devote a substantial amount of their internal carbon

reserve to trehalose biosynthesis. In the non-feeding dauer larva (the only desiccation-tolerant stage

of the C. elegans life cycle), trehalose levels rise dramatically upon exposure to mild desiccation

stress (preconditioning) (Erkut et al., 2011). Similarly, stationary phase yeast cells, which are tolerant

to desiccation, also accumulate trehalose (Calahan et al., 2011). Thus, in these specific developmen-

tal stages, these organisms must be able to divert available carbon sources to the production of

sugars.

In these non-growing stages, both worm and yeast must enter metabolic modes distinct from

those that are active during growth. Reproductive stage larvae of C. elegans feed on bacteria, from

which they ingest mostly lipids and proteins, and to some extent sugars; they assimilate these

nutrients via glycolysis and/or the TCA cycle to produce energy (Figure 1A, Figure 1—figure sup-

plement 1A). On the other hand, when fed its preferred carbon source (glucose), budding yeast

grows exponentially and uses fermentative glycolysis for its energetic and biosynthetic needs

(Figure 1B). Under these conditions, the cells secrete ethanol as well as acetate.

Both species shift their metabolism during the transition to non-growing stages. The dauer larva

relies on its internal carbon reserves, which are mainly triacylglycerols (TAGs) (Hellerer et al., 2007;

Narbonne and Roy, 2008), but must also retain the ability to produce sugars. In yeast, as glucose is

consumed and glucose concentrations drop, cells undergo the diauxic shift, i.e., a transition to respi-

ratory metabolism (Schweizer and Dickinson, 2004). Following this shift, yeast produce acetyl-CoA

from accumulated ethanol, acetate, and glycerol, and switch to oxidative phosphorylation via the

TCA cycle (Schweizer and Dickinson, 2004), which provides energy as well as precursor metabolites

for amino acid biosynthesis and gluconeogenesis. Finally, in the stationary phase, yeast cells accumu-

late trehalose and glycogen (François and Parrou, 2001; Schweizer and Dickinson, 2004; Werner-

Washburne et al., 1993).

eLife digest Many organisms can survive losing all the water from their body in periods of

severe drought by suspending their life. This ability is called anhydrobiosis (from the Greek for ‘life

without water’). When the desiccated organisms encounter water again, they resume life as normal.

Two organisms commonly used in research, a roundworm called Caenorhabditis elegans and a yeast

called Saccharomyces cerevisiae, are anhydrobiotes.

To survive without water, anhydrobiotes alter the chemical reactions that sustain their life, and so

change their metabolic state. The organisms also produce molecules that preserve the structure of

their cells. One such essential molecule is a sugar called trehalose. However, both worms and yeast

can only enter anhydrobiosis during particular stages of life where they do not eat. So where does

the trehalose come from?

Erkut et al. have now addressed this question by studying the metabolism of C. elegans and S.

cerevisiae as these species entered anhydrobiosis. The experiments revealed that while preparing

for desiccation, both species change their metabolism to favor creating sugars rather than releasing

energy. In this process, the worms and yeast use a biochemical pathway called the glyoxylate shunt,

which can convert fat or acetic acid into sugar. Genetic mutations that deactivate this pathway

severely reduce the ability of both organisms to produce trehalose and tolerate desiccation. From

these findings, Erkut et al. conclude that the source of trehalose in non-feeding worms is their fat

deposits, while in yeast it is acetate: a molecule that is derived from ethanol, the end-product of the

fermentation process.

The glyoxylate shunt had been thought only to be a non-essential biochemical shortcut of

another well-known metabolic pathway called the Krebs cycle. Now that Erkut et al. have shown that

the glyoxylate shunt has its own specific biological role, further investigation is needed to

understand how it is activated to act as a metabolic switch. The molecules that regulate similar

metabolic transitions will also need to be identified in future studies. Ultimately, understanding

these processes could present new ways of diagnosing and treating metabolic diseases such as

diabetes and cancer.

DOI: 10.7554/eLife.13614.002
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Figure 1. Metabolic modes of C. elegans and S. cerevisiae. (A) C. elegans reproductive larvae, which are feeding and growing, can utilize nutrients

(purple) via TCA cycle and produce energy. Mitochondria are in a catabolic mode (blue). (B) During fermentative growth, S. cerevisiae uses glucose to

produce energy via glycolysis. (C) The non-feeding dauer larva utilizes internal TAG reserves via GS to drive gluconeogenesis and produce trehalose

(orange). Mitochondria are in an anabolic mode (yellow). (D) In low glucose, high acetate, ethanol and glycerol regime, yeast switches to

gluconeogenesis via GS.

DOI: 10.7554/eLife.13614.003

Figure 1 continued on next page
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These observations imply that in order to synthesize trehalose, both organisms must undergo a

transition to a gluconeogenic mode in which they synthesize glucose or glucose-6-phosphate from

non-carbohydrate precursors. How is this transition implemented? In theory, the TCA cycle could

provide the intermediates required for gluconeogenesis, but this pathway generates substantial

amounts of ATP, as well as NADH, which must be oxidized to NAD+ to maintain cellular redox bal-

ance (Voet and Voet, 2010). At first glance it seems counterintuitive that these two processes run in

parallel, considering the low energetic demands of dauer larvae and stationary phase yeast cells.

However, cells could be driven into gluconeogenesis via an alternate route, the glyoxylate shunt

(GS) (Figure 1C,D, depicted in red). The GS has been implicated in anhydrobiosis in the nematode

Aphelencus avenae (Madin et al., 1985). We hypothesized that, in C. elegans dauer larvae and sta-

tionary phase yeast cells, the GS serves a critical function in anabolic processes required for desicca-

tion tolerance, in particular by enabling or promoting gluconeogenesis for trehalose biosynthesis.

The GS, a shortcut in the TCA cycle (Kornberg and Madsen, 1958), is conserved in bacteria

(Kornberg, 1966), fungi (Lopez-Boado et al., 1988; Lorenz and Fink, 2001), protists (Levy and

Scherbaum, 1965; Nakazawa et al., 2005), nematodes (Liu et al., 1995; Madin et al., 1985;

Siddiqui et al., 2000), and plants (Eastmond and Graham, 2001; Kornberg and Beevers, 1957). It

bypasses two CO2-releasing steps of the TCA cycle (Figure 1C, Figure 1—figure supplement 1A,

reactions 3 and 4) to produce succinate, and incorporates an additional molecule of acetyl-CoA to

form L-malate from glyoxylate (Figure 1C,D, Figure 1—figure supplement 1A, reaction 10). Instead

of remaining within the TCA cycle, excess malate can be converted into oxaloacetate and diverted

into gluconeogenesis (Figure 1C, Figure 1—figure supplement 1A, reaction 12) (Voet and Voet,

2010). Thus, the GS serves as a prototypical anaplerotic pathway, leading to the accumulation of

critical TCA cycle intermediates, particularly oxaloacetate, which can be consumed for gluconeogen-

esis. Moreover, this pathway generates less ATP and NADH than the TCA cycle (Kornberg, 1966).

To date, the biological importance of the GS has been largely ignored, and its physiological func-

tions remain obscure. The GS has primarily been studied in the context of microbial sporulation and

growth (Kornberg and Krebs, 1957; Megraw and Beers, 1964), fungal virulence (Lorenz and Fink,

2001), and plant seed germination (Eastmond et al., 2000). However, the GS is not physiologically

essential to any of these processes (Voet and Voet, 2010). On the other hand, it is astonishing that

C. elegans, a nematode and thus a member of the animal kingdom, has the full set of enzymes

required for the GS (Liu et al., 1995). Although the GS has been proposed to be involved in sugar

homeostasis in the worm (Frazier and Roth, 2009), its absence results in neither a detectable phe-

notype nor any effect on wild-type adult lifespan. However, it may be required for the extended lon-

gevity of some mitochondrial mutants (Gallo et al., 2011). Thus, at present, no physiological role

has been definitively assigned to this pathway in the worm.

Here, we present evidence that the dauer larva is in a hypoaerobic, gluconeogenic state, which

enables efficient production of trehalose using internal reserves (TAGs and amino acids). Impor-

tantly, during preconditioning, the GS is the major pathway for conversion of TAGs into trehalose; in

its absence, the dauer larva cannot produce sufficient trehalose to survive desiccation. Expanding

our studies to the budding yeast, we discovered that S. cerevisiae utilizes a similar metabolic strat-

egy, relying on the GS to drive trehalose synthesis and achieve desiccation tolerance. These results

reveal, for the first time, a functionally conserved and central role for the GS in a process that is

essential for survival under certain conditions.

Results

The dauer larva is in a hypoaerobic, gluconeogenic mode
We characterized the energetic/metabolic states of the dauer larva and its parallel reproductive

stage (the L3 larva). Dauer larvae are metabolically less active than L3 larvae (Burnell et al., 2005;

Figure 1 continued

The following figure supplement is available for figure 1:

Figure supplement 1. Metabolic pathways of glycolysis, gluconeogenesis, TCA cycle and glyoxylate shunt reactions during preconditioning.

DOI: 10.7554/eLife.13614.004
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Kimura et al., 1997; O’Riordan and Burnell, 1989; 1990; Vanfleteren and DeVreese, 1996). As an

indicator of metabolic activity, we compared the respiration rates of dauer and L3 larvae. To obtain

large quantities of homogeneous L3 or dauer larva populations, we used the temperature-sensitive

dauer-constitutive daf-2(e1370) strain. Oxygen consumption rates (OCRs) in these larvae were mea-

sured using an extracellular flux analyzer (Figure 2—figure supplement 1). To measure mitochon-

drial OCR, we specifically inhibited Complex IV with sodium azide (Figure 2—figure supplement 1)

and calculated the respiration rate as the difference between the overall OCRs of water- and azide-

treated worms (Figure 2A). In a given concentration of environmental oxygen, mitochondria of

dauer larvae consumed ~ 5-fold less oxygen than those of L3 larvae (Figure 2A), indicating that

dauer larvae exist in a hypoaerobic mode. Moreover, dauer larvae contain much less ATP than L3

Figure 2. Energetic modes of C. elegans reproductive and dauer larvae. (A) Respiration rates in terms of OCR

difference between water-treated and azide-treated worms (n = 4 for each group). ANOVA shows that in both

strains, L3 larvae consume significantly more oxygen than dauer larvae (F1,12 = 1469, p < 0.001). There is also a

minor effect of strain on oxygen consumption (F1,12 = 6.864, p = 0.022), however there is no interaction between

the larval stage and the strain (F1,12 = 0.166, p = 0.691). Error bars show 95% confidence intervals. (B) Steady-state

trehalose levels of daf-2 and daf-2;icl-1, L3 and dauer larvae (n = 3 for each group). L3 larvae produce less

trehalose than dauer larvae (F1,8 = 92.814, p < 0.001) independent of the strain (F1,8 = 0.083, p = 0.781). Error bars

show standard error of the mean. *p < 0.001.

DOI: 10.7554/eLife.13614.005

The following figure supplement is available for figure 2:

Figure supplement 1. Details of oxygen consumption rate measurements.

DOI: 10.7554/eLife.13614.006
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Figure 3. Metabolic modes of C. elegans reproductive and dauer larvae. (A–C) Radioactively labeled metabolites

of daf-2 L3, as well as non-preconditioned (NP) and preconditioned (P) dauer larvae. Enumerated spots indicate

trehalose (1), glucose (2), glutamate (3) and glutamine (4). (D–F) The same analysis for daf-2;icl-1. Equivalent

metabolome extracts were separated and exposed for 2 days for both strains and larval/experimental conditions.

(G) Steady state trehalose levels before and after preconditioning in daf-2 and daf-2;icl-1 dauer larvae (n = 3 for

each group). Both strains elevate their trehalose levels upon preconditioning (ANOVA for preconditioning reports

F1,8 = 85.20, p < 0.001) but to different extents (ANOVA for strain reports F1,8 = 30.11, p < 0.001; interaction

between strain and preconditioning F1,8 = 11.26, p = 0.010). Error bars show standard error of the mean.

*p < 0.001. (H) Induction of non-labeled and 14C-labeled trehalose upon preconditioning in daf-2 and daf-2;icl-1

dauer larvae expressed as fold changes (n = 3 for each group). ANOVA shows that daf-2 larvae induce both non-

labeled and labeled trehalose more than daf-2;icl-1 larvae (F1,8 = 26.229, p < 0.001) however induction in labeled

trehalose does not differ from non-labeled (F1,8 = 0.343, p = 0.571). Error bars show standard error of the mean.

DOI: 10.7554/eLife.13614.007

The following figure supplements are available for figure 3:

Figure supplement 1. Details for the detection of metabolites.

DOI: 10.7554/eLife.13614.008

Figure supplement 2. Trehalose 6-phosphate synthase (TPS) levels in worm and yeast.

DOI: 10.7554/eLife.13614.009
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larvae (Penkov et al., 2015; Wadsworth and Riddle, 1989), indicating that they are also

hypometabolic.

Next, we compared trehalose levels in L3 vs. non-feeding dauer larvae. The latter accumulated

substantially larger amounts of trehalose (Figure 2B). This observation suggested that, in addition to

being hypometabolic, dauer larvae rearrange their metabolism to favor intensive gluconeogenesis,

leading to trehalose accumulation.

To investigate this possibility, we adopted an approach that combined metabolic labeling with 2-

dimensional high-performance thin-layer chromatography (2D-HPTLC). This relatively simple method

enabled us to detect major small-molecules, including amino acids, sugars, and intermediates of the

TCA cycle (Figure 3—figure supplement 1A). First, we labeled C. elegans metabolites by feeding

the worms 14C-acetate-supplemented bacteria until they formed L3 or dauer larvae. This labeling

strategy allowed us to detect and identify metabolites derived from 14C-acetate that has entered

the TCA cycle. Subsequently, we extracted the metabolites from worms, separated the extracts into

organic and aqueous phases, and analyzed the latter with 2D-HPTLC.

The aqueous phase of L3 extract contained many labeled compounds, including various amino

acids (Figure 3A, Figure 3—figure supplement 1A), but trehalose was not abundant (Figure 3A,

spot 1). Thus, in this growth stage, the TCA cycle is mainly cataplerotic: in addition to reducing

NAD+ and producing ATP, L3 larvae use intermediates to synthesize various building blocks such

as amino acids, nucleotides, and sugars. By contrast, the aqueous fraction of dauer larvae con-

tained only a limited number of metabolites, and fluorograms of this extract had one predominant

spot, i.e., trehalose (Figure 3B, spot 1). Other, barely detectable spots corresponded to glucose,

glutamate, and glutamine (Figure 3B, spots 2, 3, and 4, respectively). These data suggest that

metabolism in dauer larvae is almost entirely switched to a gluconeogenic mode in which sugars

are produced by non-carbohydrate sources (acetate/fatty acids).

Previously, we showed that preconditioning of the dauer larva prior to harsh desiccation induces

production of a massive amount of trehalose (Erkut et al., 2011). For preconditioning, worms are

treated with mild desiccation at 98% relative humidity (RH) for an extended period of time (4 days),

after which they can survive in the almost complete absence of water (Erkut et al., 2011). In this

study, we preconditioned worms in this manner, and then analyzed the organic and aqueous frac-

tions of radioactively labeled dauer larvae before and after preconditioning. In the organic phase,

the amount of radioactivity incorporated into TAGs decreased substantially during preconditioning

(Figure 3—figure supplement 1B). At the same time, preconditioning dramatically increased the

level of radioactively labeled trehalose (Figure 3C, spot 1), and the amounts of glutamate and gluta-

mine also increased (Figure 3C, spots 3 and 4, respectively; this observation is discussed later).

These results suggest that the dauer larva takes advantage of its gluconeogenic mode to boost tre-

halose synthesis upon desiccation stress.

We next asked how the transition to this gluconeogenic mode is reflected in the transcriptome.

Previously, we surveyed differential expression of C. elegans genes during preconditioning

(Erkut et al., 2013). In this study, we revisited our data to focus on genes involved in the TCA cycle

and gluconeogenesis (Figure 1—figure supplement 1A). Transcripts encoding enzymes required

for gluconeogenesis, mdh-1, mdh-2, and pck-2 (Figure 1—figure supplement 1B, enzymes 9 and

12), were expressed at relatively high levels in dauer larvae even before preconditioning. Moreover,

mdh-1 (cytosolic malate dehydrogenase) and pck-2 (phosphoenolpyruvate carboxykinase), both of

which are crucial for gluconeogenesis, were significantly upregulated during preconditioning, consis-

tent with the increase in gluconeogenesis and sugar accumulation observed in the dauer larva.

Collectively, our data demonstrate that, during dauer formation, worms enter a gluconeogenic

mode associated with a large increase in the levels of sugars such as trehalose, and that this phe-

nomenon is even more pronounced during preconditioning.

An intact GS is required for utilization of acetate/fatty acids for
trehalose biosynthesis
We hypothesized that the GS in dauer larvae plays an important role in gluconeogenesis, and thus in

trehalose biosynthesis. We tested this idea in worm lines having no functional GS.

In plants, yeast, and bacteria, two enzymes are responsible for the GS: isocitrate lyase (EC

4.1.3.1), which breaks isocitrate down to glyoxylate and succinate, and malate synthase (EC

2.3.3.9), which condenses glyoxylate and acetyl-CoA to produce L-malate (Figure 1C, Figure 1—
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figure supplement 1A) (Cozzone, 1998). In C. elegans, these two enzymes are combined in one

protein, ICL-1 (formerly known as GEI-7), which has both isocitrate lyase and malate synthase

domains, and can thus carry out both reactions (Liu et al., 1995). We produced a strain (daf-2;

icl-1) with a deletion mutation in icl-1, and then exploited the daf-2 background to produce large

populations of pure dauer larvae. The deletion in the icl-1(ok531) allele introduces a frame-shift

and an early stop codon (A373*), which should completely inactivate the GS strains harboring

this mutation.

Compared to daf-2, the dauer and L3 larvae of daf-2;icl-1 exhibited no difference in respiration

rate (Figure 2A) or basal trehalose levels (Figure 2B), indicating that the GS has no influence on oxy-

gen consumption or basal gluconeogenesis. By contrast, trehalose induction upon preconditioning

differed dramatically between daf-2 and daf-2;icl-1 dauer larvae. We quantitated the total amount of

trehalose, normalized to the amount of soluble protein, in both strains before and after precondi-

tioning (Figure 3G). Similar to our previous findings (Erkut et al., 2011), the total trehalose level in

daf-2 dauer larvae was ~ 100 mg trehalose/mg protein at baseline, and increased ~ 5-fold upon pre-

conditioning (Figure 3G,H). In daf-2;icl-1, although the initial level of trehalose was the same as that

of daf-2, the increase was only 2-fold (Figure 3G,H). This suggests that the major source of trehalose

during preconditioning is the GS.

To further investigate this possibility, we labeled daf-2;icl-1 larvae with 14C-Ac, as described

above for daf-2 (Figure 3D–F). Incorporation of radioactivity into trehalose was considerably

reduced in daf-2;icl-1 relative to that in daf-2 (compare Figure 3B and E). Nevertheless, as in daf-2,

the level of 14C-labeled trehalose increased in daf-2;icl-1 (Figure 3E,F). Densitometry of fluorogram

spots revealed that, during preconditioning, radioactively labeled trehalose increased ~6-fold in

daf-2, but only 2-fold in daf-2;icl-1 (Figure 3H). The average increase in labeled trehalose in daf-2

was larger than the increase in total (i.e., unlabeled) trehalose (Figure 3H), suggesting preferential

use of lipid sources for sugar production in this strain. By contrast, in daf-2;icl-1, the levels of total

and labeled trehalose increased to similar extents. These differences in trehalose induction levels

between daf-2 and daf-2;icl-1 cannot be assigned to the trehalose biosynthetic pathway because the

trehalose 6-phosphate synthase (Figure 1—figure supplement 1A, reaction 25) activity of daf-2 is

not higher than that of daf-2;icl-1 (Figure 3—figure supplement 2A). Taken together, these results

suggest that the utilization of acetate (and thus fatty acids) for gluconeogenesis and trehalose bio-

synthesis depends on the existence of a functional GS.

The GS is essential for desiccation tolerance of the dauer larva
Next, we asked whether the absence of the GS affects desiccation tolerance. For this purpose, we

determined the survival rates of dauer larvae after mild (98% RH) and harsh (60% RH) desiccation. As

described above and in our previous studies (Erkut et al., 2011), preconditioning induced trehalose

accumulation strongly in daf-2 and slightly in daf-2;icl-1 (Figure 3G). As expected, a strain harboring

a knockout of trehalose 6-phosphate synthase (daf-2;DDtps) was unable to synthesize trehalose

(Figure 4A). The desiccation survival assay revealed that all strains were equally tolerant to mild des-

iccation at 98% RH (Figure 4B). However, daf-2;icl-1 was much more sensitive to harsh desiccation

than daf-2, and exhibited very poor survival under those conditions (Figure 4B), although it was sig-

nificantly more tolerant than daf-2;DDtps (Figure 4B). These results suggest that a threshold level of

trehalose must be reached during preconditioning in order for the worm to survive harsh

desiccation.

To investigate the possibility that the GS might play a role in protection against environmental

insults unrelated to desiccation stress, we also challenged dauer larvae with heat shock. Both daf-2

and daf-2;icl-1 dauer larvae survived at least 16 hr of heat shock at 30 or 32˚C (Figure 4—figure sup-

plement 1A). At 34˚C, survival dropped dramatically after 12 hr, with no dependence on strain (Fig-

ure 4—figure supplement 1A). Finally, heat shock at 37˚C could only be tolerated for 4 hr, again

independent of the status of the GS shunt (Figure 4—figure supplement 1A). These results suggest

that the GS is specifically involved in tolerance of desiccation, and possibly related stresses, in C.

elegans.
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The glyoxylate pathway in C. elegans is mitochondrial
In plants, the GS takes place in a specialized peroxisome called the glyoxysome (Eastmond and Gra-

ham, 2001), whereas in yeast, GS enzymes are distributed between the cytosol and peroxisomes

(Duntze et al., 1969; Kunze et al., 2006; McCammon et al., 1990). However, the localization of

the GS pathway in nematodes has not been previously investigated. Using a bioinformatics tool

(Claros and Vincens, 1996), we analyzed the C. elegans ICL-1 protein sequence. We identified a 20

amino acid N-terminal mitochondrial import sequence (MSSAAKNFYQVVKSAPKGRF) and calculated

an 88% probability that the protein is imported into mitochondria. To determine the localization of

ICL-1 (and thus the site of GS activity) in the worm, we generated a transgenic strain that expresses

the ICL-1::GFP fusion protein under the control of the icl-1 promoter, which mimics endogenous

expression.

We first analyzed the localization of ICL-1::GFP in reproductive stage, actively feeding L3 larva.

The protein was expressed at the highest levels in hypodermal cells (Figure 5A), although strong

expression was also detected in the pharynx (Figure 5—figure supplement 1A) and gut (Fig-

ure 5—figure supplement 1B). In hypodermal syncytium, the protein was present in a tubular

network interspersed with spherical structures (Figure 5A), resembling mitochondrial staining of

C. elegans (Lee et al., 2003). To verify that ICL-1 is indeed localized to mitochondria, we fed

worms the mitochondrial dye MitoTracker Red CMXRos (Figure 5B). In hypodermal cells

Figure 4. Effect of the glyoxylate shunt on desiccation tolerance. (A) Trehalose levels before (NP) and after (P)

preconditioning in daf-2, daf-2;DDtps and daf-2;icl-1 dauer larvae after separation with HPTLC and visualization via

Molisch’s staining. Tre: Trehalose, Glc: Glucose. (B) Survival levels of the same strains at 98% and 60% RH after

preconditioning (dark and light boxes, respectively). Statistical comparison was done with beta regression

followed by multiple hypothesis testing. Analysis of deviance results indicate that survival levels depend both on

the strain (�2

2
= 124.64, p < 0.001) and the RH (�2

1
= 141.46, p < 0.001). Error bars show 95% confidence

intervals. *p < 0.001

DOI: 10.7554/eLife.13614.010

The following figure supplement is available for figure 4:

Figure supplement 1. GS is not involved in heat-shock stress in C. elegans and S. cerevisiae.

DOI: 10.7554/eLife.13614.011
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expressing ICL-1, the MitoTracker and GFP signals fully overlapped, whereas seam cells did not

express ICL-1 at all (Figure 5C). It should be noted that TPS-1, the key enzyme in trehalose bio-

synthesis, is almost exclusively localized to hypodermis and is not expressed in seam cells

(Penkov et al., 2015).

Figure 5. ICL-1 is a mitochondrial protein. (A) Subcellular localization of ICL-1::GFP in L3 hypodermis (B)

Mitochondrial staining of L3 hypodermis. (C) Colocalization of mitochondria and ICL-1::GFP in L3 hypodermis.

Seam cells are circled with dashed curves. (D) Subcellular localization of ICL-1::GFP in dauer hypodermis. Seam

cells are circled with dashed curves. (E) Subcellular localization of ICL-1::GFP in dauer gut. Gut lumen is shown as a

dashed line. Scale bar corresponds to 10 mm for all images.

DOI: 10.7554/eLife.13614.012

The following figure supplement is available for figure 5:

Figure supplement 1. Expression of ICL-1 in different tissues.

DOI: 10.7554/eLife.13614.013
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Figure 6. Growth of GS-deficient yeast cells in media with different carbon sources. (A) Growth of wild-type S.

cerevisiae in YP + Glc medium in batch culture. The time of diauxic shift is shown with a dashed line. Error bars

show standard deviation (n = 3). (B–D) Growth of wild-type (WT) or GS-deficient yeast in amino acid rich (YP) or

minimal medium with glucose (B), ethanol (C) and acetate (D) as the carbon source. Note that particularly with

Figure 6 continued on next page
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Because they are non-feeding and impermeable, dauer larvae cannot be stained with Mito-

Tracker. Nevertheless, at the subcellular level, the distribution of the GFP signal in dauer larvae

closely resembled the mitochondrial network (Figure 5D). Once again, the hypodermis was the main

tissue expressing ICL-1, although the protein was also expressed in the gut (Figure 5E). Collectively,

these results indicate that C. elegans ICL-1 is mitochondrial, and suggest that in the worm, the GS

occurs within or in association with mitochondria.

The glyoxylate shunt is required for trehalose accumulation and
desiccation tolerance in S. cerevisiae
Based on the striking conceptual similarity between C. elegans dauer larvae and S. cerevisiae cells

entering stationary phase, we postulated the existence of a conserved mechanism for desiccation

tolerance. As described earlier, dauer larvae accumulate large amounts of trehalose, despite the fact

that worms in this stage of the life cycle do not feed or grow. A similar phenomenon occurs in bud-

ding yeast. In the presence of its preferred carbon source (glucose), yeast uses fermentative glycoly-

sis during rapid proliferation (Figure 1B); under these conditions, very little trehalose accumulates

(Tapia and Koshland, 2014). However, once glucose concentration falls, the cells undergo a diauxic

shift, thereafter using aerobic respiration for their energetic needs in order to continue proliferation

(Figures 1D, 6A); eventually, as external energy sources are depleted, the cells enter stationary

phase. Although both glycolytic and respiratory activities are low in stationary phase, the cells con-

tinue to accumulate trehalose and glycogen, which ultimately constitute >30% of total cell mass

(François and Parrou, 2001; Werner-Washburne et al., 1993). Thus, yeast might also rely on alter-

nate carbon metabolism to generate trehalose. Therefore, we asked whether the GS in yeast can be

used to drive gluconeogenesis for synthesis of trehalose.

In stationary phase, yeast can consume ethanol, glycerol, and particularly acetate to generate

acetyl-CoA, either directly or through gluconeogenesis. Acetyl-CoA can enter the TCA cycle as well

as the GS (Figure 1D). In yeast, the GS is carried out by isocitrate lyase, Icl1p (Fernandez et al.,

1992), and the malate synthases, primarily Mls1p but also Dal7p (Hartig et al., 1992). We first com-

pared the growth rates of WT yeast harboring mutations in GS components (Dicl1, Dmls1, Ddal7,

and combinations thereof) under conditions in which we altered carbon sources as well as the avail-

ability of free amino acids (Figure 6B–D).

As expected, GS mutants exhibited no significant growth defect when grown in high glucose,

irrespective of the presence or absence of amino acids (Figure 6B). By contrast, when grown in high

ethanol, GS mutants grew normally in YP medium, but their growth was impaired in minimal medium

(S min) lacking free amino acids (Figure 6C). This suggests that free amino acids can feed into car-

bon consumption in the TCA cycle, as C. elegans, and that in the absence of free amino acids, the

GS plays an important role in carbon metabolism. In addition, we compared the growth rates of WT

and GS-deficient cells growing on acetate as the sole carbon source (Figure 6D). Under these condi-

tions, yeast have high GS activity and exhibited elevated TCA-independent acetate metabolism

(Lee et al., 2011; Schweizer and Dickinson, 2004). Regardless of the availability of free amino

acids, GS mutants grew very poorly under these conditions (Figure 6D).

We predicted that after the diauxic shift, GS-deficient yeast would exhibit reduced synthesis and

accumulation of trehalose and glycogen. To test this idea, we quantitated these metabolites in WT

and GS-deficient cells (Figure 7A–D). In cells grown in glucose, following the diauxic shift (20 hr,

black bars) and in stationary phase (48 hr, grey bars), WT cells accumulated considerable amounts of

trehalose (Figure 7A) and glycogen (Figure 7C). By contrast, despite reaching high cell densities,

GS-deficient cells contained low (but detectable) amounts of trehalose, but no detectable glycogen

stores (Figure 7A,C) (Figure 7—figure supplement 1A). We also measured trehalose and glycogen

in WT and GS-deficient cells grown with acetate as a carbon source. Under these conditions, we

observed an even greater accumulation of trehalose and glycogen in WT cells, whereas GS-deficient

cells contained low levels of trehalose and no detectable glycogen (Figure 7B,D). As controls, we

Figure 6 continued

acetate as the primary carbon source, GS mutants (Dicl1, Dmls1, Ddal7, Dmls1/Ddal7 and Dicl1/Dmls1/Ddal7) grow

poorly regardless of amino acid availability.

DOI: 10.7554/eLife.13614.014
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Figure 7. Trehalose/glycogen synthesis and desiccation tolerance in GS-deficient yeast cells. (A, B) Steady-state

trehalose levels of WT, Dicl1 and Dicl-1/Dmls1/Ddal7 strains in YP + Glc (A) and YP + Ac (B) media after 20 hr (post-

diauxic shift, dark bars) and 48 hr (stationary phase, light bars). (C, D) Steady-state glycogen levels under the same

conditions. n.d.: Not detected/below assay sensitivity range. (E, F) Desiccation tolerance of the indicated WT and

mutant yeast cells, measured after 24 hr (E) or 30 days (F) of desiccation. Error bars show 95% confidence intervals.

***p < 0.001.

DOI: 10.7554/eLife.13614.015

The following figure supplement is available for figure 7:

Figure supplement 1. Cell density, trehalose and glycogen levels in WT and mutant yeast strains.

DOI: 10.7554/eLife.13614.016
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also measured the amounts of trehalose and glycogen in mutant cells lacking trehalose synthase

(Tps1) or the heat-shock protein Hsp104, both of which are important for yeast desiccation tolerance

(Tapia and Koshland, 2014). As expected, Dtps1 cells contained very low levels of trehalose, but

high levels of glycogen, whereas Dhsp104 cells had no defects in trehalose (Figure 7—figure sup-

plement 1B) or glycogen storage (Figure 7—figure supplement 1C). We also measured Tps1 and

Tps2 amounts (Figure 3—figure supplement 2B), which were unchanged in wild type and GS-defi-

cient cells. This rules out the trivial explanation that GS-deficient cells have limitations in trehalose 6-

phosphate synthase levels, and therefore have lower trehalose amounts. Collectively, these data

show that, much like preconditioned C. elegans dauer larvae, S. cerevisiae cells rely on TCA cycle-

independent acetyl-CoA consumption through the GS to synthesize trehalose and glycogen.

Therefore, we asked whether this GS-dependent trehalose accumulation was required for desic-

cation tolerance in yeast. We grew saturated cultures of WT, GS-deficient, Tps1-deficient, or Hsp104

deficient cells, desiccated them for up to 30 days, and then rehydrated them. All strains survived

very well after 1 day of desiccation (Figure 7E). The viability of cells in WT cultures remained high

after 30 days of desiccation (Figure 7F). By contrast, Dicl1, Dicl1/Dtps1, and Dicl1/Dhsp104 cells

exhibited very poor desiccation tolerance after 30 days, with viability at least 10-fold lower than that

of WT cells and comparable to that of Dtps1 cells lacking trehalose altogether (Figure 7F). Impor-

tantly, Dicl1 cells supplemented with trehalose in the medium 24 hr before desiccation exhibited

near-WT levels of desiccation tolerance (Figure 7F).

Finally, we expanded our study to investigate whether other environmental insults, such as heat-

shock and freezing/thawing, were affected by GS deficiency. We first tested the ability of S. cerevi-

siae cells to tolerate elevated temperatures, subjecting wild type or GS-deficient mutants to heat

shock at 50˚C either at different cell densities, or for increasing amounts of time (Figure 4—figure

Figure 8. Resistance of WT and GS-deficient cells to freezing and thawing. Equal numbers of cells were subjected

to multiple freeze-thaw cycles, and survival estimated by spotting onto YPD plates. The plates were imaged after

different times of recovery, to more carefully observe survival phenotypes.

DOI: 10.7554/eLife.13614.017
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supplement 1B and C). Under both conditions, wild type as well as GS-deficient cells showed similar

sensitivity to heat shock.

Another environmental insult that yeast seasonally encounter is freezing and thawing. This stress

could conceivably affect cell membranes and proteins similarly to desiccation. We subjected station-

ary phase cultures of WT or GS-deficient cells (resuspended in water) to multiple freeze-thaw cycles,

and monitored viability by simple spotting and growth assays (Figure 8). Although a considerable

proportion of WT cells survived even after six freeze-thaw cycles, GS-deficient cells underwent a dra-

matic loss in viability after just two cycles (Figure 8).

Together, our observations demonstrate that the GS plays an essential role in yeast desiccation

tolerance by promoting gluconeogenesis for the synthesis of trehalose. Our data also suggest that

GS-dependent trehalose synthesis is critical for survival under conditions of other water-related

stresses, such as freezing.

Discussion
Here, we demonstrated that dauer larvae exist in a hypometabolic state in which metabolism is redir-

ected largely towards gluconeogenesis. This state depends primarily on an active glyoxylate shunt

(GS), which serves as the main route for synthesis of trehalose from TAG reserves during precondi-

tioning. We also showed that budding yeast undergoes a conceptually convergent process. In order

to survive desiccation, stationary phase yeast cells must produce high levels of trehalose from ace-

tate or glycerol. This conversion can be successfully accomplished only in the presence of a func-

tional GS.

In addition to the GS, gluconeogenesis/trehalose biosynthesis should use alternative carbon sour-

ces, such as amino acids, glycerol, and pyruvate, because daf-2;icl-1 accumulated some trehalose

upon preconditioning. Amino acids, for example, can be converted into their corresponding a-keto

acids, which then undergo a specific series of reactions to enter the TCA cycle, in which they are sub-

sequently used for gluconeogenesis (Figure 1—figure supplement 1A). However, even via utiliza-

tion of amino acids or other metabolites, daf-2;icl-1 dauer larvae cannot tolerate desiccation as well

as daf-2. Our data indicate that an intermediate level of trehalose is insufficient for desiccation toler-

ance: Below some threshold level, trehalose cannot exert its protective effects and overcome the

adverse consequences of desiccation. This hypothesis was previously explored in yeast (Tapia et al.,

2015). Our results strongly suggest that a conceptually similar trehalose threshold may exist in the

worm as well. It is worth to note that gluconeogenesis is in general associated with the energetic

needs of the organism. In C. elegans and the yeast, however, it is additionally used as a defense

against environmental stress. Taking advantage of the GS, worms and yeast devote large amounts

of resources to the production of trehalose, which in turn protects the organism against desiccation

or other water-related stresses, such as freezing and thawing during winter.

Although the GS was discovered and dissected at the molecular level almost 60 years ago, no

clear physiological function has yet been assigned to it. For several decades, the germination of

plant seeds was considered to be the most prominent process requiring this pathway, and it was

assumed that production of sugars from seed oils was a prerequisite for germination. However, stud-

ies of Arabidopsis lines with no functional GS revealed that in the presence of light, this pathway is

non-essential (Eastmond et al., 2000; Eastmond and Graham, 2001). Other studies suggested a

requirement for the GS in fungal virulence (Lorenz and Fink, 2001), although at present we have no

mechanistic understanding of why this would be the case. To the best of our knowledge, our study

provides the first clearly defined physiological role for the GS in C. elegans and S. cerevisiae.

It remains unclear how the GS is regulated in animals. In the worm, regulation is directly con-

nected to sensing of a desiccative environment (hygrosensation). We previously showed that hygro-

sensation is at least partially mediated by head neurons (Erkut et al., 2013). Although we still do

not know the details of this sensation, one of its downstream effects is likely to be increased lipolysis.

This process, followed by b-oxidation of fatty acids, yields acetyl-CoA, the fuel for GS. It is therefore

reasonable to speculate that lipolysis determines the extent of the GS. Another finding that supports

this view is the localization of ICL-1 within the organism. As shown above, ICL-1 is predominantly

localized in the hypodermis. The major enzyme that synthesizes trehalose (TPS) is localized to the

same tissue (Penkov et al., 2015), but is not expressed in the gut. On the other hand, the major

TAG deposit in the form of fat droplets resides in the gut, and to some extent in the hypodermis
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(Mak, 2011). Thus, synthesis of trehalose in the hypodermis must depend on the transport of fatty

acids from the gut. Indeed, as we previously found, one of the fatty acid-binding proteins (FAR-3) is

strongly upregulated at both the transcriptional and translational levels upon preconditioning (~ 160

and four fold, respectively) (Erkut et al., 2013). FAR-3 is predicted to have a 20 amino acid signal

sequence for secretion, and could thus be involved in the transport of fatty acids between cells.

These observations strongly suggest that the regulation of the GS by substrate availability is a com-

plex process that depends on interactions between different tissues.

An interesting aspect of our study is that worm ICL-1 is localized to mitochondria, suggesting

that the GS takes place in this organelle. By contrast, in plants and the yeast, this pathway is split

between mitochondria and a specialized organelle (glyoxysome or peroxisome) or the cytoplasm.

Furthermore, in contrast to yeast and many other organisms, C. elegans ICL-1 is a bifunctional

enzyme with both glyoxylase and malate synthase activities. The physiological meaning of these dif-

ferences remains elusive, but they suggest that transition into gluconeogenic mode is regulated dif-

ferently in different organisms.

In summary, we showed that dauer larvae and stationary phase yeast switch to a gluconeogenic

mode, in which the GS plays an essential role. In both species, loss of the GS is deleterious during

desiccation. Our results reveal a novel physiological role for the GS and a conserved mechanism by

which diverse organisms can regulate their metabolism to achieve desiccation tolerance.

Materials and methods

Worm strains and culture conditions
C. elegans wild-type (N2), daf-2(e1370)III, icl-1(ok531)V, tps-1(ok373)X and tps-2(ok526)II strains

were received from Caenorhabditis Genetics Center (Minneapolis, MN), which is funded by the NIH

Office of Research Infrastructure Programs (P40 OD010440). The glyoxylate shunt mutant icl-1 was

outcrossed twice with N2 and subsequently crossed to daf-2 to generate daf-2(e1370)III;icl-1(ok531)

V (daf-2;icl-1). The trehalose-deficient strains tps-2(ok526)II;tps-1(ok373)X (DDtps) and tps-2(ok526)II;

daf-2(e1370)III;tps-1(ok373)X (daf-2;DDtps) were previously generated in our group (Penkov et al.,

2010).

The transgenic line was obtained by ballistic transformation of a fosmid construct encoding the

C-terminal translational fusion protein ICL-1::eGFP, generated by our TransgeneOmics facility

(Sarov et al., 2012). The construct was isolated and purified using a FosmidMAX DNA purification

kit (Epicentre, Madison, WI) and sequenced to confirm its identity. Microparticle bombardment was

performed as explained elsewhere (Sarov et al., 2012) . Transgenic worms showing the GFP marker

and rescue of Unc phenotype were screened for 2 generations to pick up an integrated line. This

strain was then outcrossed twice with N2 and finally crossed to daf-2 to obtain daf-2(e1370)III;Is[icl-

1::GFP+unc-119] (daf-2;icl-1::GFP).

Worms were maintained at 15˚C on nematode growth medium (NGM) agar plates seeded with

Escherichia coli NA22 (Brenner, 1974). Gravid adults on NGM agar plates were treated with alkaline

hypochlorite solution (i.e., bleached) to purify eggs. Dauer larvae of Daf-c strains were obtained by

growing these eggs in complete S medium (liquid culture) (Sulston and Brenner, 1974) at 25˚C for

5 days unless stated otherwise. To obtain dauer larvae of other strains, we first let the eggs grow

into gravid adults on sterol-depleted lophanol (4a-methyl-5a-cholestan-3b-ol)-substituted agarose

plates at 20˚C for 4 days (Matyash et al., 2004). Subsequently, these adults were bleached and their

eggs were grown in cholesterol-free lophanol-substitued liquid culture at 25˚C for 5 days. L3 larvae

were obtained by growing eggs at 15˚C in liquid culture for 3 days.

To radioactively label lipids and sugars in worms, we let the eggs grow on NGM agar plates sup-

plemented with bacteria mixed with 10 mCi 14C-labeled sodium acetate (CH3
14COONa, Hartmann

Analytic, Germany) for 3 days at 15˚C or 25˚C until they became L3 or dauer larvae, respectively.

Yeast strains and culture conditions
The prototrophic Sacharomyces cerevisiae CEN.PK strain background was used in all experiments

(van Dijken et al., 2000). Strains that have been generated and used in this study are Dicl1 (MAT a

Dicl1::NAT), Dmls1 (MAT a Dmls1::KanMX), Ddal7 (MAT a Ddal7::KanMX), Ddal7/Dmls1 (MAT a

Ddal7::KanMX Dmls1::Hyg), Dicl1/Dmls1/Ddal7 (MAT a Dicl1::NAT Dmls1::KanMX Ddal7::Hyg), Dtps1
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(MAT a Dtps1::Hyg), Dicl1/Dtps1 (MAT a Dicl1::NAT Dtps1:Hyg), Dhsp104 (MAT a Dhsp104::KanMX),

Dicl1/Dhsp104 (MAT a Dicl1::NAT Dhsp104::KanMX), Tps1-FLAG (MAT a Tps1-FLAG::NAT), Tps2-

FLAG (MAT a Tps2-FLAG::NAT), Dicl1/Tps1-FLAG (MAT a Dicl1::NAT Tps1-FLAG::Hyg), Dicl1/Tps2-

FLAG (MAT a Dicl1::NAT Tps2-FLAG::Hyg), Dmls1/Tps1-FLAG (MAT a Dmls1::KanMX Tps1-FLAG::

Hyg) and Dmls1/Tps2-FLAG (MAT a Dmls1::KanMX Tps2-FLAG::Hyg). Gene deletions were per-

formed using standard PCR-based strategies (Longtine et al., 1998).

Standard formulations for rich medium (YP: yeast extract, peptone) or synthetic minimal medium

(S: Yeast Nitrogen Base (YNB) and ammonium sulfate without amino acids) with the specified carbon

source were used. The carbon sources were 2% dextrose, 2% ethanol + 2% glycerol or 2% sodium

acetate. Cell growth in a specified medium was measured using a serial dilution assay on plates.

Briefly, cells were grown in YP with 2% glucose for 12 hr, after which they were harvested, washed

twice in water, and serial diluted in water (starting OD600 = 1.0), following which, 5 ml drops were

spotted onto agar plates containing YP or S medium with glucose, ethanol and glycerol, or acetate,

and cell growth was measured by imaging the plates. Cell growth rates in YPD medium were mea-

sured by monitoring absorbance (OD600) over time.

C. elegans desiccation assay
Worms were harvested from liquid cultures or plates (after radioactive labeling) in distilled water and

washed extensively to remove bacteria and debris. Preconditioning for subsequent biochemical anal-

ysis was done by first filtering dauer larvae on TETP membranes (Merck-Millipore, Germany) and

then placing them in a controlled humidity chamber equilibrated at 98% RH (Erkut et al., 2011).

After 4 days of incubation at 25˚C, these worms were collected in distilled water and frozen. L3 or

non-preconditioned dauer larvae were frozen right after they were harvested.

Desiccation survival assay was performed as described before (Erkut et al., 2013). Briefly, in

duplicate, 5 ml of worm slurry (approximately 1000 worms) in distilled water was dropped into the

middle of a 35 mm plastic dish and placed into a controlled humidity chamber equilibrated at 98%

RH. After 4 days of preconditioning at 25˚C, one replicate was transferred to another controlled

humidity chamber equilibrated at 60% RH and kept there for 1 day at 25˚C. Meanwhile, the other

replicate was left in the 98% RH chamber. Finally, worms were rehydrated with distilled water for 2–

3 hr at room temperature and transferred to NGM agar plates seeded with E. coli. They were let

recover at 15˚C overnight. Next day, alive and dead worms were counted to calculate the survival

rate. This experiment was carried out on 3 different days with 3 technical replicates on each day for

each treatment.

S. cerevisiae desiccation assay
Desiccation tolerance assays were performed as described earlier (Tapia and Koshland, 2014), with

slight modifications. Briefly, ~ 107 cells were collected from batch cultures (grown for 96 hr in YPD),

washed twice in dilute PBS, and brought to a final volume of 1 ml. Non-desiccated controls were

plated on YPD agar for colony counting. Two hundred microliter aliquots were transferred to a 96-

well tissue culture plate, centrifuged, and the excess water was removed. Cells were allowed to des-

iccate in a humid incubator at 27˚C. Long-term desiccation experiments were kept for indicated time

periods in a 96-well tissue culture plate at 27˚C. Samples were resuspended in diluted PBS to a final

volume of 200 ml, and plated for colony counting. The number of colony forming units per milliliter

(cfu/ml) for each plate was measured, using an average from three independent controls. The rela-

tive viability of each experimental sample (done in biological triplicate) was determined by dividing

the cfu/ml for that sample by the average cfu/ml of the control plates.

C. elegans heat-stress survival assay
Worms were collected from liquid cultures and incubated at elevated temperatures for 4, 8, 12 or

16 hr. After each time point, worms were allowed to cool down at room temperature and survival

rate was calculated after counting the survivors.

S. cerevisiae heat-stress survival assay
S. cerevisiae strains were grown to stationary phase (72 hr) in YPD medium, after which cells were

collected by centrifugation and washed twice with water. Subsequently, two different heat-stress
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survival assays were performed. In the first one, cells were resuspended at decreasing cell densities,

starting at an OD600 of 1.0 and then serially diluted (1:10) up to an OD600 of 0.001. These were sub-

jected to severe heat shock at 50˚C for 30 min. 5 ml from each of these samples were spotted onto

YPD plates. Cells were allowed to recover for ~30 hr before imaging the plates, and estimating sur-

vival. In the second assay, cells were resuspended at a single cell density (OD600 of 0.1), and sub-

jected to heat stress for 45, 60 and 75 min. 5 ml of each suspension was spotted onto YPD plates

and cells were allowed to recover for ~30 hr before imaging and estimating survival.

S. cerevisiae freeze-thaw assay
WT or GS-deficient S. cerevisiae strains were grown to stationary phase (72 hr) in YPD medium, after

which cells were collected by centrifugation and washed twice with water. Subsequently cells were

resuspended at at an OD600 of 0.1. These were subjected to rapid freezing, followed by thawing at

room temperature, for multiple cycles. 5 ml from each of these samples were spotted onto YPD

plates. Cells were allowed to recover for the indicated times before imaging the plates, and estimat-

ing survival.

Organic extraction
Worms were collected in 1 ml distilled water and homogenized by freezing in liquid nitrogen and

subsequent thawing in a sonication bath for 5 times. The debris was pelleted by centrifugation at

25,000 g for 1 min at 4˚C. A micro BCA assay kit (Thermo Fisher Scientific, Germany) was used to

determine total soluble protein amounts from the supernatant. Next, the pellet was resuspended

and the homogenate was extracted according to Bligh and Dyer’s method (Bligh and Dyer, 1959).

Briefly, homogenized sample in 1 ml water was mixed with 3.75 ml of chloroform–methanol (1:2, v/v)

in glass tubes for at least 20 min. Then 1.25 ml of chloroform and 1.25 ml of water were added

sequentially, with rigorous mixing after each addition. Phase separation was facilitated by centrifuga-

tion at 1,000 g for 15 min. Next, organic (lower) and aqueous (upper) phases were collected into

fresh glass tubes using sterilized glass Pasteur pipettes. Organic fractions from radioactively labeled

samples and all aqueous fractions were dried under vacuum with heating. Organic fractions from

non-labeled samples were dried under nitrogen gas flow. All organic and aqueous fractions were

dissolved in chloroform–methanol (2:1, v/v) and methanol–water (1:1, v/v), respectively. Non-labeled

samples were normalized according to total soluble protein amounts measured from homogenates.

For each mg of protein, organic and aqueous fractions were dissolved in 166 ml and 332 ml of the

corresponding solvent, respectively. Labeled organic samples were dissolved in 100 ml of the corre-

sponding solvent and total radioactivity in each sample was measured by a scintillation counter.

Trehalose measurement from worm extracts
After sample homogenization and protein measurement prior to organic extraction, trehalose mea-

surement was performed in some samples using a trehalose assay kit with a modified protocol (Meg-

azyme, Ireland). First, 40 ml of each homogenate supernatant was heated at 95˚C for 5 min to

inactivate endogenous enzymes. Next, reducing sugars in the homogenate were reduced to sugar

alcohols by adding 40 ml of freshly prepared alkaline borohydride (10 mg/ml sodium borohydride in

50 mM sodium hydroxide) into each tube and incubating at 40˚C for 30 min with shaking at

300 rpm. Then, the mixture was neutralized by adding 100 ml of 200 mM acetic acid. Subsequently,

the pH was adjusted by adding 40 ml of 2 M imidazole buffer (pH 7.0). 70 ml of the final mixture was

transferred to a plastic cuvette and the reaction mixture was added (70 ml of 2 M imidazole buffer,

35 ml of NADP+/ATP mix, 7 ml of hexokinase/glucose 6-phosphate dehydrogenase mix and 700 ml of

distilled water). The reaction was carried out at room temperature for 15 min. Then the basal absor-

bance at 340 nm was measured (A1). After that, 7 ml of trehalase was added and incubated for

15 min at room temperature before the final absorbance at 340 nm was measured (A2). Trehalose

concentration was calculated from the difference of absorbance values and normalized to the pro-

tein amounts measured from the same samples. This experiment was carried out on 3 different days

with 3 technical replicates on each day for each treatment. Median values of technical replicates

were used for calculations.
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Trehalose measurement from yeast samples
Trehalose and glycogen from yeast samples were quantified as described previously, with minor

modifications (Shi et al., 2010). Cell samples were collected and pelleted. Cell pellets were quickly

washed with 1 ml of ice-cold water and then resuspended in 0.25 ml of 0.25 M sodium carbonate

and stored at -80˚C until processed. For batch cultures, 20 OD600 total cells were collected. After

resuspension in water, 0.5 ml of cell suspension was transferred to two capped Eppendorf tubes

(one tube for glycogen assay and the other tube for trehalose assay). When sample collections were

complete, cell samples (in 0.25 M sodium carbonate) were boiled at 95–98˚C for 4 hr, and then

0.15 ml of 1 M acetic acid and 0.6 ml of 0.2 M sodium acetate were added into each sample. Each

sample was incubated overnight with 1 U/ml amyloglucosidase (Sigma-Aldrich, India) rotating at

57˚C for the glycogen assay, or 0.025 U/ml trehalase (Sigma-Aldrich, India) at 37˚C for the trehalose

assay. Samples were then assayed for glucose using a glucose assay kit (Sigma-Aldrich, India). Glu-

cose assays were done using a 96-well plate format. Samples were added into each well with appro-

priate dilution within the dynamic range of the assay (20–80 mg/ml glucose). The total volume of

sample (with or without dilution) in each well was 40 ml. The plate was pre-incubated at 37˚C for

5 min, and then 80 ml of the assay reagent from the kit was added into each well to start the colori-

metric reaction. After 30 min of incubation at 37˚C, 80 ml of 12 N sulfuric acid was added to stop the

reaction. Absorbance at 540 nm was determined to assess the quantity of glucose liberated from

either glycogen or trehalose.

TPS activity assay in C. elegans
TPS activity assay was based on Dmitryjuk et al. (2014). Worm homogenates were prepared in 1 ml

of 0.9% NaCl (w/v). Total soluble protein and the initial amount of trehalose were measured as

described above. Reaction was carried out with 100 ml of the lysate in 40 mM acid-ammonia buffer

(pH 4.2), 2 mM MgCl2, 0.2 mM UDP-glucose, 0.2 mM glucose 6-phosphate and 80 mM trehalase

inhibitor at 37˚C for 30 min in a total volume of 0.5 ml. Subsequently, the resulting trehalose 6-phos-

phate was dephosphorylated with 1 U of alkaline phosphatase in 100 mM phosphoric buffer (pH 8)

at 37˚C for 30 min. Reaction was stopped via heating the samples to 95˚C for 5 min. Next, the final

amount of trehalose was measured and the difference from initial level of trehalose was calculated.

This difference was then normalized to the total soluble protein amount. The unit enzyme activity is

defined as the normalized molar amount of trehalose 6-phosphate produced in 1 min.

Detection of Tps1 and Tps2 proteins in S. cerevisiae
A 3X-FLAG epitope tag was added to the carboxy termini of Tps1 and Tps2 at the endogenous

chromosomal locus in the indicated strains. Tps-FLAG containing wild type and GS-deficient strains

were grown to stationary phase (72 hrs) in YPD medium, cells were harvested by centrifugation, and

proteins were extracted by first precipitating with 10% trichloroacetic acid (TCA), followed by

removal of TCA, and solubilization of the protein extracts in SDS-glycerol sample buffer, normalizing

for total protein. Proteins were separated on an SDS-PAGE gel and detected with standard immuno-

blotting for the FLAG epitope, using a mouse anti-FLAG antibody, and HRP-conjugated rabbit anti-

mouse IgG secondary antibody.

Thin-layer chromatography
High-performance thin-layer chromatography (HPTLC) was used to separate and visualize molecules

of interest. The TLC system was developed using non-radioactive amino acid and sugar standards,

based on Tweeddale et al. (1998). Individual amino acid samples were first separated on 1 dimen-

sion for either mobile phases, visualized by ninhydrin staining, and their corresponding Rf values

were calculated. Then they were mixed and separated on 2 dimensions. Individual Rf values calcu-

lated from the 1D TLC runs coincided largely with each molecule in question also on 2D. Further-

more, the positions of glutamate and glutamine were confirmed in another set of experiments,

where glutamate- or glutamine-lacking mixtures of amino acids were separated on 2D. Localization

of sugars on the 2D TLC system was done similarly, only using Molisch staining as the visualization

method.

Before any analysis, sample normalization following organic extraction was confirmed by loading

5 ml of each organic fraction on an HPTLC plate (Merck, Germany), eluting with chloroform–
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methanol–water (45:18:3, v/v/v) and visualizing with copper acetate solution (3% copper acetate and

8% ortho-phosphoric acid in water) after baking at 200˚C. It was expected that the phospholipids

should have comparable levels in every sample.

Sugars were separated using chloroform–methanol–water (4:4:1, v/v/v) as the mobile phase and

visualized with Molisch’s reagent (3% 1-naphtol in sulfuric acid (96%)–water–ethanol (13:8:80, v/v/v))

after baking at 180˚C. For comparison of trehalose levels of dauer larvae before and after precondi-

tioning, 8 ml of aqueous fraction was used.

Triacylglycerol levels were compared by running 4 ml of the organic fraction with the solvent sys-

tem petroleum ether (b.p. 60–80˚C)–diethyl ether–glacial acetic acid (82:18:1, v/v/v) and visualizing

with copper acetate.

We used the 2-dimensional TLC approach to compare the metabolites in aqueous fractions of

radioactively labeled worm extracts. An amount of aqueous fraction equivalent to 2700 worms (L3 or

dauer larvae) was applied as a spot to an HPTLC plate and eluted on the first dimension with 1-prop-

anol–methanol–ammonia (32%)–water (28:8:7:7, v/v/v/v). Then, the plate was dried for 15 min and

eluted on the second dimension with 1-butanol–acetone–glacial acetic acid–water (35:35:7:23, v/v/v/

v). Finally, it was sprayed with EN3HANCE spray surface autoradiography enhancer (Perkin Elmer,

Waltham, MA) and exposed on an X-ray film, which was developed by standard methods.

Differences in the amounts of radioactively labeled trehalose were calculated via densitometry.

For this purpose, TLCs were exposed to X-ray films for a shorter period (2 hr), which was optimized

to prevent the saturation of spots. Subsequently, films were developed and scanned, after which tre-

halose spot intensities were calculated using Fiji (fiji.sc) software.

Mitochondrial staining and microscopy
daf-2:icl-1::GFP L3 and dauer larvae were grown in liquid culture for 3 days at 15 and 25˚C, respec-
tively. Subsequently, they were pelleted in a 15 ml tube and resuspended in 100 ml of the original

culture medium still containing bacteria. MitoTracker Red CMXRos (Thermo Fisher Scientific, Ger-

many) stock solution (1 mM in DMSO) was diluted into 10 mM in the worm-bacteria suspension. Our

previous experience shows that worms can tolerate up to 1% DMSO in the medium, therefore 1:100

dilution of the MitoTracker solution is the highest concentration that can be safely achieved. Worms

were incubated in this solution for 1.5 hr at room temperature in dark. Next, the excess dye was

washed off with M9 buffer and worms were resuspended again in 100 ml. They were incubated in M9

for 30 min so that they could defecate the excess dye in the gut. Finally, L3 and dauer larvae were

anesthetized in 20 mM and 50 mM sodium azide, respectively.

Meanwhile, agarose pads on microscope slides were prepared and 5 ml of worm suspension was

transferred on them. They were immediately covered with a coverslip and sealed with nail polish.

We used a Zeiss LSM 700 inverted laser scanning confocal microscope and a Zeiss LCI Plan-Neofluar

63�/1.3 Imm Corr DIC M27 objective to image mitochondria (Zeiss, Germany). Simultaneously, GFP

was excited at 488 nm and the emission below 550 nm was acquired by the first PMT while Mito-

Tracker Red CMXRos was excited at 555 nm and the emission above 560 nm was acquired by the

second PMT. Optical sections at 0.1�0.1�0.5 mm3 x-y-z resolution were collected in a 4D hyper-

stack. Final images were adjusted for intensity and merged in Fiji. No non-linear adjustments were

done.

Oxygen consumption assay
Oxygen consumption of worms was measured with a Seahorse XFe96 system (Seahorse Bioscience,

North Billerica, MA). L3 and dauer larvae of daf-2 and daf-2;icl-1 strains were grown in liquid culture

for 3 days. Then, they were collected and washed extensively to remove excess bacteria and debris.

Approximately 100 worms were pipetted into each well of a 96-well Seahorse XFe assay plate,

except for the 4 corner wells, which were used to estimate the background measurement. Initial oxy-

gen consumption rate (OCR) was measured until the readings stabilized. Then, sodium azide with

phenol red indicator was injected into half of the wells at a final concentration of 20 mM. The rest of

the wells were injected only phenol red indicator in water. OCR was measured once again until it sta-

bilized. Then 4 subsequent measurements were done in 6.5 min intervals. Finally, exact number of

worms in each well were counted and used for normalization. A small number of abnormal readings
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were also filtered out at this stage. On average, 7–8 wells (technical replicates) were used for each

condition.

Normalized OCR values were averaged for the last 4 measurements for each strain, stage and

injection. OCR after water injection was named as total OCR (tOCR) and OCR after azide injection

was named as non-mitochondrial OCR (nmOCR). The difference of tOCR and nmOCR was calculated

for each time point (measurement) and named as mitochondrial OCR (mOCR) or respiration rate.

Bioinformatics analysis
Biochemical pathway analysis was done by querying the KEGG database for C. elegans proteins

using NemaPath software (www.nematode.net) (Wylie et al., 2008). Data acquired from these

queries were cross referenced to our previously published microarray data (Erkut et al., 2013).

Sequences of worm proteins were obtained from WormBase (www.wormbase.org). ICL-1 sequences

were submitted to MitoProt (ihg.gsf.de/ihg/mitoprot.html) to predict the probability of mitochon-

drial import of ICL-1 (Claros and Vincens, 1996). Signal sequence for FAR-3 was predicted with Sig-

nalP 4.0 (www.cbs.dtu.dk/services/SignalP-4.0) (Petersen et al., 2011).

Statistical analysis
All statistical analyses were done in R environment (www.r-project.org). Trehalose and glycogen lev-

els, as well as OCRs were compared with analysis of variance (ANOVA) followed by Tukey’s honestly

significant differences (HSD) post-hoc test. Trehalose/glycogen amounts were log-transformed prior

to model fit, normality was confirmed with QQ-plots and Shapiro-Wilk test, homoscedasticity with

Levene’s test. Survival rates after desiccation and rehydration were compared with beta regression

as described before (Erkut et al., 2013), followed by Type II analysis of deviance for generalized lin-

ear models. Prior to beta regression, fit to beta distribution was confirmed with QQ-plots. Statistical

power was calculated via power analysis when possible. The maximum Type I error rate was set as a

= 0.05 for all tests. Data are presented as mean ± standard error for C. elegans trehalose levels and

survival rates, and mean ± 95% confidence limit for other measurements unless stated otherwise.
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