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The progression of most human cancers mainly involves the gradual accumulation of
the loss of differentiated phenotypes and the sequential acquisition of progenitor and
stem cell-like features. Glioblastoma multiforme (GBM) stem cells (GSCs), characterized
by self-renewal and therapeutic resistance, play vital roles in GBM. However, a
comprehensive understanding of GBM stemness remains elusive. Two stemness
indices, mRNAsi and EREG-mRNAsi, were employed to comprehensively analyze
GBM stemness. We observed that mRNAsi was significantly related to multi-omics
parameters (such as mutant status, sample type, transcriptomics, and molecular
subtype). Moreover, potential mechanisms and candidate compounds targeting the
GBM stemness signature were illuminated. By combining weighted gene co-expression
network analysis with differential analysis, we obtained 18 stemness-related genes, 10
of which were significantly related to survival. Moreover, we obtained a prediction model
from both two independent cancer databases that was not only an independent clinical
outcome predictor but could also accurately predict the clinical parameters of GBM.
Survival analysis and experimental data confirmed that the five hub genes (CHI3L2,
FSTL3, RPA3, RRM2, and YTHDF2) could be used as markers for poor prognosis of
GBM. Mechanistically, the effect of inhibiting the proliferation of GSCs was attributed to
the reduction of the ratio of CD133 and the suppression of the invasiveness of GSCs.
The results based on an in vivo xenograft model are consistent with the finding that
knockdown of the hub gene inhibits the growth of GSCs in vitro. Our approach could be
applied to facilitate the development of objective diagnostic and targeted treatment tools
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to quantify cancer stemness in clinical tumors, and perhaps lead considerable benefits
that could predict tumor prognosis, identify new stemness-related targets and targeted
therapies, or improve targeted therapy sensitivity. The five genes identified in this study
are expected to be the targets of GBM stem cell therapy.

Keywords: connectivity map, machine learning methods, glioblastoma, prognostic model, stemness, tumor
immune environment

INTRODUCTION

Glioblastoma multiforme (GBM) is the most commonly
diagnosed and devastating primary tumor in the central nervous
system in adults. Various therapies have been broadly used and
have significantly improved the survival of GBM patients, but
the median survival of GBM patients is less than 15 months
after a definite diagnosis (Ohgaki and Kleihues, 2005; Verhaak
et al., 2010). Therefore, it is necessary to make breakthroughs to
cure GBM radically.

Stemness, considered to be the capacity to self-renew and
differentiate from primordial cells, was initially attributed to the
ability of normal stem cells to induce all cell types in an adult
organism. GBM stem cells (GSCs), as a population of cancer
stem cells with the remarkable ability to promote tumor cell
invasion and growth, enhance the tolerance of GBM cells to
radiation and chemotherapy. Additionally, frequent aberrations
in the transcription and epigenetics of cancer cells often lead
to cancerous dedifferentiation and the acquisition of stem cell
characteristics by altering the core signaling pathways of normal
stem cells (Young, 2011; Bradner et al., 2017). GBM with
epigenetically distinct cancer stem cell-like cells (CSCs) often
possessed heterologous and endogenous characteristics (Staberg
et al., 2018). However, a comprehensive understanding of GBM
stemness remains elusive.

In this study, we aimed to perform an integrated analysis
of multi-omics data to determine the diagnosis and therapeutic
benefits of the stemness of GBM. Two independent stem
indices were utilized to comprehensively analyze the stemness
characteristics of GBM to determine its diagnosis and prognosis
value, which was determined by epigenetic data using a one-
class logistic regression (OCLR) machine learning algorithm.
One (mRNAsi) was reflective of gene expression, and the
other was the epigenetically regulated mRNAsi (EREG-mRNAsi),
which was generated using a set of epigenetic regulatory genes
associated with stemness.

The association was first examined between mRNAsi and
clinicopathological parameters and designated molecular
markers that might help guide the prognosis prediction of GBM
patients (n = 174). We obtained a preliminary understanding of
the interaction between stemness and the immune infiltration
profiled by the ESTIMATE algorithm (Newman et al., 2015).
Besides, we retrieved 55 potential compounds that target
the pathways associated with GBM stemness by using the
Connectivity Map (CMap) database (Subramanian et al., 2017).
Following, by combining weighted gene co-expression network
analysis (WGCNA) with differential analysis, we identified 18
stemness-related genes, 10 of which were significantly related to

survival. Moreover, we employed a machine learning approach
and obtained a prediction model from The Cancer Genome
Atlas (TCGA) database and validated in the Chinese Glioma
Genome Atlas (CGGA) database. Importantly, this model was
not only an independent clinical outcome predictor but could
also accurately predict the clinical parameters of GBM. Finally,
five stemness-related biomarkers (CHI3L2, FSTL3, RPA3,
RRM2, and YTHDF2) were identified by survival analysis and
retrospective clinical studies, and further in vivo experiments
elaborated their key roles in stem cell proliferation and invasion.

MATERIALS AND METHODS

Data Collection and Processing
The RNA-sequencing profile data with corresponding clinical
annotation and masked copy number segment of 169 GBM
samples (156 Primary and 13 Recurrent) and five healthy
samples were obtained from the TCGA database1. Two batches of
transcriptome data were downloaded from the CGGA database2.
The “SVA” package was used to integrate the microarray data
and decrease heterogeneity between the two batches (Leek et al.,
2012). The “normalizeBetweenArrays” function of the “limma”
package was used to normalize the transcriptome expression
profiles to remove the inter-batch effects. Finally, 388 GBM
samples were obtained from the CGGA database. The clinical
information corresponding to GBM samples from the TCGA and
CGGA datasets was summarized in Supplementary Table S1.
These data were updated as of September 26, 2019. Next, the
Ensemble ID was converted to the gene symbol matrix by the
convert script in Perl3.

We also downloaded the GBM (GSCs) microarray dataset
(GSE22866 and GSE124145) from the Gene Expression Omnibus
(GEO) database. After annotating the data, log2 transformation
and normalization of the expression values were performed
through the “limma” R package.

Evaluation of the Associations Between
the Stemness Index and Clinical
Outcomes in GBM
MRNAsi is an OCLR-based stemness index derived from
transcriptomic data. EREG-mRNAsi was derived from a new
set of signatures using the OCLR for each molecular feature.

1https://portal.gdc.cancer.gov
2www.cgga.org.cn
3http://www.perl.org/
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Both of these indicators were taken from supporting information
in published papers (Malta et al., 2018). The stemness index
(mRNAsi), defined as a single continuous covariate, were
classified into two subgroups by the median cutoff value. Kaplan-
Meier (K-M) analysis was then performed to compare the overall
survival (OS) between the two subgroups with the log-rank test.
The adjusted P-value for multiple testing was applied by the
Benjamini-Hochberg (BH) method to explore the association
between the index and age, sample type, the status of isocitrate
dehydrogenase (IDH), and cytosine-phosphate-guanine island
methylator phenotype (G-CIMP). Age (continuous variable) was
stratified by the median value.

Correlation Between GBM Stemness and
Immunity
ESTIMATE, as a new algorithm based on gene expression
signatures, was applied to assess the fraction of stromal cells and
the infiltration of immune cells in the tumor samples (Yoshihara
et al., 2013). ESTIMATE scores represent tumor purity. We
calculated the proportion of immune cells for each given GBM
sample using a P-value < 0.05 as the screening criterion. For
any of the selected GBM samples, we calculated the association
between mRNAsi and the relative proportion of immune and
stromal cells. The P-values of the relevance were calculated using
the Pearson test.

Single-Sample Gene-Set Enrichment
Analysis (ssGSEA)
Single-sample gene-set enrichment analysis (ssGSEA) was
employed to quantify the relative enrichment of each immune
cell fraction with the gene sets (Hanzelmann et al., 2013). The
ssGSEA score was normalized to a percentile distribution, where
0 was the minimum value of immune cell abundance and 1
was the maximum value. To discover the underlying mechanism
of different subgroups, typical biological processes, including
(1) Angiogenesis; (2) antigen processing machinery; (3) CD8
T-effector signature; (4) cell cycle; (5) DNA damage repair; (6)
DNA replication; (7) epithelial-mesenchymal transition (EMT)
markers including EMT1, EMT2, and EMT3; pan-fibroblast (8)
FGFR3-related genes; (9) Immune checkpoint; (10) Mismatch
repair; (11) Nucleotide excision repair; (12) TGF-β response
signature (Pan-F-TBRS); (13) WNT targets was quantified by
ssGSEA with a list of gene sets (Mariathasan et al., 2018). Nine
gene sets of oncogenic pathways were also introduced into our
analysis to explore the mechanism of regulation on different
subclasses (Sanchez-Vega et al., 2018).

Selection of Differentially Expressed
Genes (DEGs)
The “limma” package in R was used to investigate the
transcriptome data to identify differentially expressed genes
(DEGs) between the high and low subgroups (Ritchie et al.,
2015). The selection criteria were as follows: false discovery rate
(FDR) < 0.05 and | log2 fold change| > 2 (Cheng et al., 2019). The
expression value of the same-named gene was averaged, and a
gene with an average value of >0.2 was selected as a research gene.

Functional Enrichment Analysis
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were applied to annotated
the functions of the selected DEGs using the “clusterProfiler”
package in R (Wilkerson and Hayes, 2010). The terms of GO
and KEGG with q-value < 0.05 were filtered as significant
functions. The gene set enrichment analysis (GSEA) is a
computational methodology utilized to examine whether a set
of designated genes possess significant and consistent deviation
between various parameters. In this study, GSEA (default
parameters) was employed to uncover the hallmarks. | NES| > 1,
normalized P-value < 0.05 and FDR q-value < 0.25 were
considered as statistically significant described as previous study
(Subramanian et al., 2005).

WGCNA and Module Preservation
The R package called “WGCNA” was used to perform WGCNA
(Langfelder and Horvath, 2008). DEGs with no apparent fold
change may be significantly associated with co-expressed gene
modules in WGCNA. The genes in the same module indicate that
their functions and regulations are related. Genes with significant
differences were screened to provide heterogeneity and accuracy
assurance for the bioinformatics statistics. We constructed a
weighted network to calculate the adjacency capacities using
the soft thresholding power parameter. Next, a topological
overlap matrix (TOM) transformed from the adjacency matrix
was obtained. Consensus TOM was defined as the input for
hierarchical clustering, and modules were identified using the
Dynamic Tree Cut algorithm with minModuleSize = 50. Modules
with similar expression proles were merged with the merging
threshold of 0.25.

Confirmation of Significant Modules
To further explore the relationship between the two indices
and gene expression, we define the two indices as clinical
phenotypes. The overlaps of phenotypes and consensus modules
were calculated with the hypergeometric test, and the P-value was
assigned as module membership (MM). A color-coded table of
the P-values was created. Gene significance (GS) was defined as
the correlation between the expression and the phenotype. The
key genes of the most relevant modules were selected with the
threshold MM > 0.8 and GS > 0.5.

Hub Gene Identification and Further
Analysis
The intersection of DEGs based on EREG-mRNAsi grouping and
mRNAsi grouping and the key genes was screened out as hub
genes for subsequent analysis. The Venn diagram was drawn with
the website tool.

The Oncomine4 database was employed to detect
differences with the default retrieval threshold. An interaction
network was produced by the STRING5 database and was
reconstructed via Cytoscape software (Shannon et al., 2003;
Franceschini et al., 2013).

4http://www.oncomine.org
5https://www.string-db.org
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Confirmation and Validation of the
Prognostic Value of the Hub Genes
Univariate Cox was performed to detect the prognostic
value of the selected hub genes. Genes whose P-values
were less than 0.3 were selected to build a potential
predictive model through the LASSO-penalized Cox
regression algorithm.

Subsampling was applied from the training set in a 7:3 ratio
with 1,000 cross-validations (Tibshirani, 1997). Finally, seven
genes with their regression coefficients were obtained. The risk
score was calculated using the formula:

Risk score =
n∑

i=1

Coef× exp

where Coef is the coefficient, and exp is the expression
value. To explore whether the predictive capacity of the risk
model could independently predict other clinical parameters
of GBM (including age, sex, molecular subtype, and gene
mutation), we performed a multivariate Cox analysis of
the patients. Samples were dichotomized into low or high
expression groups based on the median risk score. The OS
of both groups was compared using the K-M method and
the log-rank test. Chi-square tests were used to measure the
distribution of gender, GBM subtype, IDH1 status, ATRX
status, G-CIMP status, age, and sample type between the
two risk groups. The area under the curve (AUC) of the
receiver operating characteristic (ROC) curve was used to
estimate the prediction accuracy of the model. All algorithms
and methods were equally applied during the verification
process in CGGA.

Identification of Potential Compounds
Connectivity Map (updated in September 2017)6, was employed
to search for compounds that might target GBM stemness-related
pathways with the default cutoff value (Subramanian et al., 2017).

Immunohistochemistry
Tissue microarray chips containing 85 GBM and 15 brain
tissue were obtained from Outdo Biotech (Shanghai, China).
Immunohistochemistry (IHC) staining was performed as
previously described (Cheng et al., 2019). Histochemistry Score
was calculated with the formula with the Quant Center Analysis
tool:

Histochemistry score =
n∑

i=1

PI× i

where PI is the percentage of cells in various intensity with
corresponding coefficients (i) (Azim et al., 2015).

Cell Culture and Transient Transfection
The GSC lines NCH64436 were purchased from Cell Line
Services (Eppelheim, Germany), and cell culture was
performed according to the instructions. NCH64436 cells

6https://clue.io/

were seeded in six-well plates and transfected with plasmid by
Lipofectamine 2000 (Invitrogen, United States) based on the
instructions. Target sequences for shRNAs were summarized in
Supplementary Table S2.

RNA Extraction, RT-PCR and qRT-PCR
Total RNA extracted from transfected cells was reverse
transcribed with RT reagent Kit gDNA Eraser (TaKaRa) and
detected by SYBR-Green (TaKaRa). The PCR primers were listed
in Supplementary Table S2.

Transwell Assay, MTT Assay, and Cell
Cycle Analysis
Transwell and MTT assay were applied based on the previous
method (Huang et al., 2019). CD133 Indirect Isolation kit
(Miltenyi Biotec) was used to evaluate the ratio of CD133+ cells
by flow cytometry. For TMZ treatment, GSCs were seeded at
4000 cells/well (96-well) treated with increasing concentrations
of TMZ (10–400 µm) for 48 h followed by MTT assays.

Sphere-Forming and Limiting Dilution
Assays
To investigate the self-renewal capacity of GSCs, GSC lines
NCH64436 were incubated with Accutase, dissociated
into single cells, and seeded in 96-well plates with
200 µL/well of stem cell-conditioned medium. The
in vitro limiting dilution assay was performed as described
previously. Briefly, NCH64436 cultured were collected,
dissociated into single cells, and seeded in 96-well plates
at a density of 5, 10, 20, 50, 100, 200, or 400 cells per
well and each well was then examined for formation of
tumorspheres after 9 days. Wells without tumorspheres were
counted for each group.

In vivo Functional Assay
The in vivo assay was performed according to the ethical
guidelines for laboratory animal use and approved by the Ethics
Committee of Harbin Medical University (SYDW-2019-8-2). For
subcutaneous tumor models, approximately 1 × 105 of GSCs in
0.2 mL of PBS were injected subcutaneously into the 4-week-old
female nude mice (n = 5 mice/group), respectively. Mice were
checked every 3 days. After 21 days, mice were sacrificed, tumors
were excised, weighed, and photographed.

Statistical Analysis
R software version 3.6.4 was used for all statistical analyses.
The strategies based on a machine learning approach were
implemented with the R package “gelnet” with default settings.
The ROC curve was drawn by OriginPro software (Ver.
9, OriginLab, Northampton, MA, United States). Correlation
analysis between the risk value and clinical parameters was
plotted by GraphPad Prism version 8.3 (GraphPad Software,
San Diego, CA, United States). P < 0.05 was considered
statistically significant.
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RESULTS

Stemness Index in GBM
To determine the correlation between the molecular/clinical
characteristics and the stemness of GBM samples, we performed
a differential analysis. MRNAsi, as an indicator to describe the
degree of differentiation of GSCs, was applied to this study (Malta
et al., 2018). Normal samples had significantly higher mRNAsi
values than GBM samples (Figure 1A). For recurrent tumors
and primary tumors, mRNAsi showed a higher trend in primary
tumors (Figure 1B). Similarly, mRNAsi was significantly related
to IDH1 status and G-CIMP status (Figures 1C,D). We also
found that samples from patients older than 50 years (median
value) of age also showed a significant decrease in mRNAsi
value (Figure 1E). To further explore the impact of the index
on survival, we performed K-M survival analysis and observed
that patients with higher mRNAsi scores had longer OS times
than those with lower mRNAsi scores (P < 0.05) (Figure 1F).
The above results indicate that there is a significant correlation

between mRNAsi and the clinical molecular parameters of
GBM, and we speculate that the stemness is valuable for the
subsequent analysis.

Association of the Stemness With the
Immune Microenvironment of GBM
Considering that the powerful correlation between
clinical/molecular characteristics and mRNAsi, we measured the
relationship between mRNAsi and immune microenvironment.
We found that mRNAsi was significantly negatively correlated
with tumor purity, the presence of stromal cells and immune
cells (Figures 2A–C). Considering that GSCs capable of up-
regulating the expression of PD-L1 and promoting the immune
escape of GBM cells, we also analyzed them and found that they
have a significant negative correlation (Figure 2D; Hsu et al.,
2018). In addition, we found differences in immune signaling
based on the stratification strategy of stemness. We found that
immune-related signaling pathways were highly enriched in the
low mRNAsi subgroup, while DNA-related pathways were highly

FIGURE 1 | Clinical and molecular features associated with the mRNA expression-based stemness index (mRNAsi) in glioblastoma (GBM). (A) Boxplots of mRNAsi
in individual samples stratified by sample type. (B) Boxplots of mRNAsi in individual samples stratified by primary and recurrent status. (C) Boxplots of mRNAsi in
individual samples of patients with GBM stratified by isocitrate dehydrogenase 1 (IDH1) status. (D) Boxplots of mRNAsi in individual samples of patients with GBM
stratified by cytosine-phosphate-guanine island methylator phenotype (G-CIMP) status. (E) Boxplots of mRNAsi in individual samples stratified by age.
(F) Kaplan-Meier (K-M) curves showing the OS of GBM patients with low and high mRNAsi based on the median cutoff point.
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FIGURE 2 | Associations of the stemness index with the immune microenvironment in GBM. (A–D) Correlation between mRNAsi and ESTIMATE score (A), stromal
score (B), immune score (C), the relative expression of PD-L1 (D). (E–F) Differences in immune-related cellular pathways (E) and nine oncogenic pathways (F)
between low and high mRNAsi groups in the TCGA-GBM cohort. The upper and lower ends of the boxes represented an interquartile range of values. The lines in
the boxes represented the median value, and the dots showed outliers. The asterisks represented the statistical P-value *P < 0.05; **P < 0.01; ***P < 0.001, ns, no
significant.

enriched in the high mRNAsi subgroup (Figure 2E). These
results are consistent with previous results that immunity and
stemness were negatively correlated. Moreover, we also found
significant differences in nine canonical oncogenic pathways
between the two subgroups (Figure 2F). We thus speculate
that as immune cell infiltration or PD-L1 pathway gradually
decreases with stemness, GBM is less sensitive to immune
checkpoint blocking therapy, making further immunotherapy
less effective. Our findings were consistent with previous reports
that the central nervous system is an independent immune
system and that immunotherapy faces various challenges that
need to be resolved urgently (Jackson et al., 2019). Given the
significant correlation between the stemness index and GBM
tumor immune microenvironment and clinical parameters,
the application of mRNAsi for subsequent network analysis is
remarkably convincing.

Determination of Potential Mechanisms
and Compounds Related to Stemness
To uncover the relevance of the gene expression patterns of
GBM with mRNAsi, the samples with GBM were divided into
two subgroups according to the median value of mRNAsi.
The DEGs were determined by applying the “lmfit” function

in R (Ritchie et al., 2015). The volcano plot showed distinct
gene expression patterns of patients who belong to high vs.
low mRNAsi groups (Figure 3A). For comparison based on
mRNAsi, 963 DEGs were down-regulated and 1702 DEGs were
up-regulated in the low mRNAsi subgroup (| log2 fold change|
> 2, FDR < 0.05). We also tested the up-regulated DEGs in
the low mRNAsi subgroup, and we uncovered that out of 1702
DEGs, 181 genes were significantly related to poor prognosis
(P < 0.05, representative figures were shown in Supplementary
Figure S1). These findings suggest that the two subgroups are a
robust classification.

To outline the intrinsic mechanism of the stemness degree
affecting the malignant process of GBM, we performed
functional annotation of the designated DEGs. Top GO
terms were identified, included neutrophil activation,
neutrophil degranulation, RNA splicing, and mitochondrial
gene expression (Figure 3B). Also, top KEGG terms mainly
included cell cycle, spliceosome, DNA replication, and oxidative
phosphorylation (Figure 3C). All these findings uncovered
the malignant development-related pathways and processes of
stemness in GBM.

To determine the potential compounds that target the
pathways associated with GBM stemness, the DEGs based on the
mRNAsi grouping were submitted to the CMap database. The

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 October 2020 | Volume 8 | Article 558961

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-558961 October 13, 2020 Time: 17:28 # 7

Du et al. Network Analysis of Glioblastoma Stemness

FIGURE 3 | Determination of potential mechanisms related to stemness. (A) Volcano plot with high and low mRNAsi grouping difference analysis. (B,C) Functional
annotation of the upregulated DEGs in the low mRNAsi subgroup of GO analysis (B) and KEGG pathway analysis (C). (D) Histogram showing the number of
compounds in the top 10 MoA, sorted by descending number of compounds with a shared MoA. The above compounds have an enrichment score ≤–95 and might
be capable of targeting the GBM stemness signature. (E–H) GSEA revealed that genes with higher expression in the low mRNAsi subgroup were enriched for
hallmarks of GBM.

top 55 compounds were summarized in Supplementary Table S3
(Figure 3D). In total, 132 mechanisms were revealed through
the CMap mode of action (MoA) analysis. Ten compounds
(NCH-51, apicidin, trichostatin-a, belinostat, ISOX, vorinostat,

entinostat, pyroxamide, valproic acid, and panobinostat)
shared the MoA of HDAC inhibitors, and six compounds
(belinostat, vorinostat, entinostat, panobinostat, pyroxamide,
and pyroxamide) shared the MoA of cell cycle inhibitors. We
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also found that SU-11652 and ENMD-2076 shared the MoA of
VEGFR inhibitors. Recently, various pharmacological studies
have shown that compounds that can act on multiple genes or
mechanisms should be valued. In this study, the mechanism
of action of the different compounds we retrieved was similar,
suggesting that specific treatments can produce considerable
efficacy against the undifferentiated phenotype of GBM.

Gene set enrichment analysis was also employed to explore
the hallmarks in the malignant process of GBM. Four hallmark
gene sets were enriched in low mRNAsi subgroup, including
epithelial-mesenchymal transition (NES = 2.22, normalized
P-value = 0.00, q-value = 0.00), hypoxia (NES = 2.10, normalized
P-value = 0.00, q-value = 0.00), angiogenesis (NES = 2.18,
normalized P-value = 0.00, q-value = 0.00), and IL6-JAK-STAT3
signaling (NES = 2.19, normalized P-value = 0.00, q-value = 0.00)
(Figures 3E–H). These findings indicate that stemness is involved
in the malignant process of GBM.

Screening of DEGs
Considering the significant difference in mRNAsi values between
normal and tumor tissues, we first screened the DEGs of the
tumor and normal tissues through the “limma” package in
R (Ritchie et al., 2015). Through this analysis, we obtained
12180 DEGs, of which 7753 were downregulated and 4427 were
upregulated (Figures 4A,B). After excluding outlier samples
(Supplementary Figure S2A), 5484 DEGs with the cutoff value
FDR < 0.05 and | log2 fold change| > 2 were placed in a
module. To more accurately investigate the genes associated
with GBM stemness and determine gene modules with similar
expression patterns, we presented a gene scale-free co-expression
network via the WGCNA algorithm (Langfelder and Horvath,
2008). The scale-free network is characterized by the existence
of a few hub nodes, whose connectivity degree was significantly
higher than that of other nodes in this network. To establish the
adjacency matrix, we set the soft threshold from 1 to 20 and
calculated the optimal beta value with the “pickSoftThreshold”
function (Beckerman et al., 2017). Therefore, we selected β = 4
(scale-free R2 = 0.902) to ensure a scale-free topology and
identified 10 modules for subsequent analysis (Figure 4C and
Supplementary Figure S2B).

Because of the uniformity of the algorithm for the stemness
indices for 33 cancer types and the existence of intra-tumor
heterogeneity, it is impossible for mRNAsi to accurately reflect
stemness for every cancer type, such as glioma. EREG-mRNAsi,
based on RNA expression and epigenetic inheritance, elucidated
the differences between epigenetic traits and mRNAsi, although
the correlation with clinical traits was not significant. EREG-
mRNAsi also reflected, to some extent, the degree of de-
differentiation of cancer cells. The application of EREG-mRNAsi
could compensate for the above shortcomings, making our study
more comprehensive and accurate. The EREG-mRNAsi was
considered to be complementary to mRNAsi (Malta et al., 2018).
To make our analysis more comprehensive, EREG-mRNAsi
derived from the new signature was introduced into the network
analysis. The heatmap presented the relationship between the
modules and stemness indices with the corresponding P-values
(Figure 4D). Notably, the correlation of the yellow module

and mRNAsi possessed a maximum value of 0.69, followed
by 0.54 for the magenta module and mRNAsi, 0.52 for the
red module and mRNAsi, and 0.48 for the brown module
and EREG-mRNAsi (Figures 4E–H). Finally, we selected the
yellow module and the genes in this module for subsequent
analysis. Thirty-nine key genes were screened out with the
cutoff value MM > 0.8 and GS > 0.5. To elucidate the
function of the key genes, GO and KEGG analyses were
performed and showed that the dominant functions of this
module were nuclear division, organelle fission, and chromosome
segregation, which were mainly involved in the cell cycle pathway
(Supplementary Figure S3).

Based on the strong correlation between the two stemness
indices in the network analysis, we divided the GBM sample
into two groups according to the median value of the indices.
Differential analyses were performed to compare the low and
high stemness indices groups. For the mRNAsi grouping,
2665 DEGs were obtained with the criteria FDR < 0.05
and | log2 fold change| > 2 (Figure 3A). For the EREG-
mRNAsi grouping, 1333 DEGs were obtained with the same
criteria, of which 1019 DEGs were downregulated and 314
DEGs were upregulated (Figure 4I). As shown in the Venn
diagram, 18 hub genes were obtained among the DEGs
based on mRNAsi grouping, the DEGs based on EREG-
mRNAsi grouping, and the key genes in the yellow module
(Figure 4J). The intersection of these three genes allows
not only a more comprehensive analysis of stemness but
also a more precise and accurate identification of the genes
associated with stemness.

Analysis and Validation of Hub Gene
Expression
To further validate the hub genes, we explored the GEO database
and analyzed their expression profiles between tumor and normal
samples in the GSE22866 dataset. We found that the hub genes,
except GRHPR and SMARCB1, were significantly upregulated in
GBM patients (Figure 5A). The above findings suggested that the
hub genes were closely correlated with the occurrence of GBM.
To better understand the interactions among the hub genes,
we also analyzed the correlations and interactions among them.
AURKA seems to be the hub node, and its interactions or co-
expression with RRM2, CCNA2, TPX2, RPA3, and NUF2 were
supported both by experimental evidence and by text mining
in the STRING database (Figure 5B; Franceschini et al., 2013).
For the correlation networks of these genes, CCNA2 also had
a significant correlation with MUF2, DBF4, ECT2, TPX2, and
AURKA (P < 0.05) (Figure 5C). In the copy number variation
(CNV) differential analysis between normal and GBM, we found
that there were significant differences in the 12 hub genes, which
were CDCA8, KIF2C, NUF2, ECT2, LMNB1, KIFC1, NONO,
RBMX, CDCA5, TMEM97, TOP2A, and AURKA (Figure 5D).
Among the 18 hub genes, the expression value (normalized)
of 17 genes (except LMNB1) was found to be significantly
related to the status of CNV (Supplementary Figure S4A).
It is worth noting that the amplification of all genes was
significantly correlated with high mRNA expression values.
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FIGURE 4 | The identification of differentially expressed genes (DEGs) through differential analysis and WGCNA. (A) Volcano plot of DEGs (169 GBM samples and
five normal samples); red indicates downregulated genes, and blue indicates upregulated genes. (B) Heatmap of the expression value of the top 400 median
absolute deviations of the differential genes between different sample types. (C) Identification of a co-expression module in GBM. The branches of the cluster
dendrogram correspond to the 10 different gene modules. Each leaf on the cluster dendrogram corresponds to a gene. (D) Correlation between the gene module
and clinical traits, including mRNAsi and EREG-mRNAsi. The correlation coefficient in each cell represents the correlation between the gene module and the clinical
traits, which decreased in color from red to blue. The corresponding P-value is also annotated. (E–H) Scatter plot of module eigengenes in the yellow (E), brown (F),
red (G), and magenta (H) modules. (I) Volcano plot of DEGs based on EREG-mRNAsi grouping; red indicates downregulated genes, and blue indicates upregulated
genes. (J) A Venn diagram showing the overlapping genes among the key genes in the yellow module, DEGs based on mRNAsi grouping and DEGs based on
EREG-mRNAsi grouping.
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FIGURE 5 | Further validation and analysis of hub genes. (A) The 17 hub genes were verified in the GEO database. In GSE22866, the gene expression value of hub
genes was higher in GBM (40 samples) than that in normal (five samples). Notably, RRF1 was not found in the GSE22866. (B) The protein-protein interactions
between the hub genes. The size of the node indicates the number of interacting proteins with the designated protein. (C) Spearman correlation analysis of the 18
hub genes. (D) Circle plot of differential CNV of hub genes. The black dot in the outer ring indicates amplification, while the red dot in the inner ring indicates deletion.
(E) Among the 18 hub genes, 10 genes were significantly different between the radiotherapy and control groups. (F) Among the 18 hub genes, 14 genes were
significantly different between the chemotherapy and control groups. (G) The mRNA expression patterns of the hub genes in overall cancers. The mRNA expression
difference between tumors and normal tissues was analyzed in the Oncomine database. The number in the colored cell represents the number of analyses meeting
these thresholds. The color depth was determined by the gene rank. The red cells indicate that the mRNA levels of the target genes are higher in tumor tissues than
in normal tissues, while the blue cells indicate that the mRNA levels of the target genes are lower in tumor tissues than in normal tissues. ***P < 0.001, **P < 0.01,
*P < 0.05, ns, no significance.
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These multi-omics results indicate that the 18 hub genes may
promote the generation and development of GBM through
multiple pathways.

Although GBM resistance is mainly due to the existence
of GSCs, the traditional DNA repair system (such as O6-
methylguanine-DNA methyltransferase, mismatch repair, and
base excision repair) is also the cause of treatment resistance
(Jiapaer et al., 2018). Among the 18 hub genes, 10 genes were
significantly different between the radiotherapy and control
groups, and 14 genes were significantly different between the
chemotherapy and control groups (Figures 5E,F). Of the 10
genes with significant differences shown in Figure 5E, one
gene was significantly down-regulated and nine genes were
significantly up-regulated in the radiotherapy group. Of the
14 genes with significant differences shown in Figure 5F,
three genes were significantly down-regulated and 11 genes
were significantly up-regulated in the chemotherapy group.
We predict that these genes may be valuable therapeutic
targets for suppressing the stemness characteristics of GBM.
Also, through disease summary analysis using the Oncomine
database, we found that these genes were not only upregulated
in GBM but also in most other cancers (Figure 5G). These
findings established a novel approach for stemness-related genes
recognition and illuminating insights into the vital roles of GSC-
related genes in GBM.

Prognostic Value of the 18 Hub Genes
and the Construction of a Predictive
Model
We next sought to investigate the prognostic role of the hub
genes related to the stemness indices in GBM. We performed
univariate analyses for OS by using the hub genes from the
GBM cohort. Considering the limited number of genes, nine
genes were selected with a cutoff value of P < 0.3. To promote
the use of the hub genes, clinical predictive models were
constructed by the LASSO algorithm based on the optimal
lambda value (Figures 6A,B). As shown in Figure 6C, the
predictive model performed reasonably well in distinguishing
good and poor clinical outcomes in patients with GBM based
on median risk score. We observed that the high- and low-
risk subgroups possessed significant differences in ATRX status
(P < 0.05), IDH1 status (P < 0.01), G-CIMP status (P < 0.01),
and molecular subtype (P < 0.05) (Figure 6D). We observe
that patients with G-CIMP, ATRX, and IDH mutations have
relatively low risk scores, which is also in line with the
consensus of scholars. We also explored the correlation between
the risk scores and corresponding clinical parameters. We
observed that the risk scores were significantly different between
patients classified by ATRX status, G-CIMP status, molecular
subtype, and IDH1 status (Figures 6E–H). Moreover, we found
a significant negative correlation between mRNAsi and risk
scores, which is consistent with the opposite survival trend
for both (Supplementary Figure S4B). To further measure
the performance of the prognostic model, ROC curves were
calculated. The ROC curves showed that the predictive model
could accurately predict the 3-year survival rates (AUC = 0.871),

IDH status (AUC = 0.857), G-CIMP status (AUC = 0.879), and
ATRX status (AUC = 0.778) (Figures 6I–L). For each subtype
of GBM patients, the statistically significant OS difference
between patients with high and low-risk scores was restricted
to mesenchymal and proneural GBM patients (Figures 6M–O).
These results confirmed that the risk scores derived from the
predictive model could accurately predict GBM outcomes and
clinical parameters, especially for G-CIMP status.

By univariate Cox analysis, age and risk scores were risk
factors with hazard ratios (HRs) > 1, while mRNAsi and IDH
status were protective factors with HRs < 1. A similar trend of
risk scores was also observed when including these factors in the
multivariate Cox proportional hazards regression (Figures 6P,Q).
These results indicated that the risk scores could predict the
prognosis of GBM patients independently.

Verification of Prognostic Model
Capabilities
To further determine whether these findings from the TCGA
database were also applicable to other GBM cohorts, we
downloaded and analyzed the gene expression data of 388 GBM
patients from the CGGA database. 14 genes were selected for
subsequent analysis by univariate analyses (P < 0.3). Different
from the above predictive model, the optimal value for this
lambda was 3 (Partial Likelihood Deviance takes the minimum
value), which means that three of the 14 hub genes are selected
as candidate genes for the subsequent model construction.
Next, the same LASSO algorithm based on the optimal lambda
value was applied, and significant differences in OS were
observed between patients stratified by the median risk score
(Supplementary Figures S5A–C).

The heatmap showed the expression of the three selected genes
in high- and low-risk patients in the CGGA dataset. We observed
significant differences between the high- and low-risk groups
with respect to IDH status (P < 0.001) and 1p/19q codeletion
status (P < 0.001) (Supplementary Figure S5D). Of course, we
also measured the relationship between risk scores and clinical
traits. We observed that the risk scores were significantly different
between patients stratified by IDH status and 1p/19q codeletion
status (Supplementary Figures S5E,H). We also observed that
patients with 1p/19q codeletion and IDH mutations possessed
lower risk scores, which is also a testament to the fact that
patients with 1p/19q codeletion or IDH mutations have a better
prognosis. The ROC curve also showed high performance in
predicting the 1p/19q codeletion status and 3-year survival rate
(Supplementary Figures S5F,G). These results indicate that the
risk scores could accurately predict the outcomes of patients
with GBM and their clinical features, especially the 1p/19q
codeletion status. Besides, by univariate and multivariate Cox
analyses, sample type and risk scores were selected as risk factors
with HRs > 1 (P < 0.05), which indicates that the risk scores
could independently predict the prognosis of GBM patients
(Supplementary Figures S5I,J). Based on the good performance
in the construction and verification process, our prediction model
is a promising biomarker that can be used to evaluate the
prognosis and molecular parameters of GBM.
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FIGURE 6 | Construction and analysis of the prognostic model based on hub genes from the TCGA dataset. (A) Ten-time cross-validation for tuning parameter
selection in the LASSO model. (B) LASSO coefficient profiles of the eight prognostic genes. (C) K-M curves for patients in the TCGA dataset assigned to high- and
low-risk groups based on the risk score. (D) The heatmap shows the expression levels of the three hub genes in the low- and high-risk GBM groups. The distribution
of clinicopathological features was compared between the low- and high-risk groups. (E–H) Distribution of risk scores in the TCGA dataset stratified by ATRX status
(E), molecular subtype (F), G-CIMP status (G), and IDH status (H). (I–L) ROC curves showed the predictive efficiency of the predictive model for the 3-year survival
rate (I), IDH1-mutant status (J), G-CIMP status (K), and ATRX-mutant status (L). (M–O) K-M curves showing the OS of each subtype of GBM patients with high or
low-risk scores based on the median cutoff point. (P,Q) Univariate (P) and multivariate (Q) Cox regression analyses of the association between clinicopathological
factors (including the risk scores) and OS of patients in the TCGA datasets. **P < 0.01, *P < 0.01.
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Validation of the Hub Genes in Clinical
Samples
To explore the potential role of the individual hub gene in OS,
we generated the K-M survival curve from the TCGA database.
5 of the 18 hub genes showed significant predictions of poor
OS (P < 0.05, Figures 7A–E). Subsequently, we performed
clinical retrospective studies on the expression of these five
proteins. As shown in Figures 7F,G, the expression levels of five
proteins in GBM tissues were significantly higher than those in
normal brain tissues. To explore the expression levels of five
hub genes in GBM and GSCs, we searched the GEO database
(GSE124145) and found that these hub genes were significantly
overexpressed in GSCs (Figure 7H). In addition, we found the
same significant trend of elevated expression on NCH64436
(Figure 7I). The above results indicated that these hub proteins
encoded by the hub genes may play a feasible oncogenic role in
the stemness of GBM.

Knockdown of the Hub Proteins
To further explore the potential role of these hub proteins
in GBM stem cells, we performed MTT, transwell, and flow
cytometric assay. Human GSCs (NCH64436) were transiently
transfected with shRNAs, and the efficiency of transfection was
confirmed by qRT-PCR (Figure 8A). It is well known that
GSC is extremely resistant to TMZ. Excitingly, the combination
of shRNAs and TMZ works synergistically (Figure 8B and
Supplementary Figure S6A). These results confirmed that the
migration ability of GSC was significantly reduced after the hub
gene was knocked down. As a key molecule to maintain the
stemness of tumor cells, CD133 is a common surface marker in
stem cells or progenitor cells, especially in the nervous system
(Wilson et al., 2004; Rusu et al., 2019). We examined the ratio of
CD133 in stem cells with different shRNAs by flow cytometry. As
shown in Figures 8C,D, the ratio of CD133+ cells with hub genes
knocked-down was significantly reduced. These results suggested
that the hub gene could serve as a key molecule in regulating
GSCs expression of CD133.

Next, we conducted a limiting dilution assay to analyze
tumorsphere formation at a continuous cell concentration of
400 to 5 cells/well in the GSC cell line. Consistently, all
the isolated GSC showed the self-renewal capacity to develop
tumorspheres. However, GSC in which the hub genes were
knocked down generated a small number of tumorspheres
(Figure 8E). Moreover, the number of cells required to generate
at least 1 tumorsphere/well was determined to be 127.90 in
control, and >400 in hub genes knocked down (Figure 8F and
Supplementary Figures S6B,C).

MTT was applied to test the viability of GSCs. It is worth
noting that YTHDF2, as a reader of RNA m6A methylation, has
been validated to be related to TMZ resistance in GSCs (Du et al.,
2020). We found that TMZ and shYTHDF2 could synergistically
inhibit the viability of GSCs (Figure 8H). Besides, the IC50
of TMZ-treated GSCs was 810.7 µM, while the IC50 of GSCs
with the hub gene knocked down was significantly decreased.
Among them, the IC50 of shYTHDF2 was the smallest, which
was 121.7 µM (Figure 8G). We also found that two other

sets of shRNAs showed the same MTT trend, eliminating the
possibility of an off-target effect induced by gene knockdown
(Supplementary Figures S6D,E).

To study the capacity of hub genes to inhibit tumor initiation
in vivo, we established a xenograft model using GSCs. We
found that knockdown of the hub gene significantly inhibited
tumor growth. Tumor weight was significantly reduced in the
knockdown group compared to the control group (Figure 8I,
Supplementary Figure S6F, and Supplementary Table S4).
These results indicated that knockdown of the hub genes reduced
the proliferation and migration of GSCs.

DISCUSSION

Using a large cohort of GBM transcriptome data based on
the combination of clinical information and gene expression
profiles, we conducted an integrated analysis of GBM stemness
and determined their prognostic and diagnostic values. We
searched the TCGA data for mRNA expression and clinical
parameters. By using two different molecular metrics of stemness
derived from a machine learning algorithm, we identified
the epigenomic and transcriptomic stemness characteristics
of GBM based on clinical/molecular features. By using the
ESTIMATE and ssGSEA algorithm, we obtained insight into
the association of the stemness of GBM and the immune
microenvironment. Moreover, these analyses enabled us to
identify potential operational targets (or their MoAs) to pave
the way for differentiation therapy for tumors and metastases.
By combining WGCNA with differential analysis, we identified
18 stemness-related hub genes, 10 of which were significantly
related to survival. Moreover, most hub genes have significant
changes (up-regulate or down-regulate) after chemotherapy or
radiotherapy. Besides, we derived a prognostic model from 18
stemness-related genes that effectively stratified the OS of patients
with GBM into high- and low-risk subgroups. Notably, the
performance of this prognostic model was also recognized in
the validation set (CGGA, an independent glioma database).
Ultimately, survival analysis and in vitro experiments confirmed
five potential molecular markers that could be considered as
potential targets for inhibiting the proliferation of GSCs. The
results based on an in vivo xenograft model are consistent with
the finding that knockdown of the hub gene inhibits the growth
of GSCs in vitro. Our approach could be applied to facilitate
the development of objective diagnostic and targeted treatment
tools to quantify cancer stemness in clinical tumors, and perhaps
lead considerable benefits that predict tumor prognosis, identify
new stemness-related targets and targeted therapies, or improve
targeted therapy sensitivity.

At present, surgical resection, radiotherapy, chemotherapy,
and other treatment methods have been quite advanced,
which have significantly improved the survival of GBM
patients. However, due to the presence of peritumoral edema
caused by large-scale invasiveness of tumors, recurrence of
GBM is inevitable. Survivors hence have to suffer severe
neurological side effects, including recurrence of malignant
tumors and psychological fear of death (Athanassiou et al., 2005;
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FIGURE 7 | Validation of the DEGs in clinical samples. (A–E) Kaplan-Meier survival curves for patients of GBM with high and low gene expression in the TCGA
dataset. (F) The protein expression of CHI3L2, FSTL3, RPA3, RRM2, and YTHDF2 in clinical human GBM tissue and normal tissue was detected by IHC. Whole
tissue photos are shown (100× and 400×). (G) Protein expression scores in GBM tissues and normal brain tissues. ***P < 0.001. (H) The five hub genes were
verified in the GEO database. In GSE124145, the gene expression value of hub genes was higher in glioblastoma stem cells (GSCs) (three samples) than that in GBM
(three samples). (I) Relative expression of these five hub genes in GSCs and GBM cells. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, ns, no significance.
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FIGURE 8 | Knockdown of the hub proteins. (A) The expression level of the hub genes in glioblastoma stem cells transfected with the corresponding shRNA.
(B) Cells transfected with the corresponding shRNA that had passed through the membrane were counted. (C) Representative figures of the proportion of flow
cytometric analysis of CD133+ cells. (D) Quantification of the proportion of CD133+ cells from different shRNA-treated stem cell lines. (E) Evaluation of the number
of spheres from 1000 cells. The number of primary spheres formed on day 9 is shown. (F) Tumor sphere formation was measured through a limiting dilution assay
(n = 48 wells/condition, P < 0.05). (G) The survival percentage was determined by the MTT assay at 490 nm. NCH64436 cells stably expressing CTRL or shRNA
were exposed to TMZ over the range of 10–400 µM for 48 h followed by cell viability analysis. (H) MTT assays of the effects of TMZ on NCH64436 cells at different
time points. NCH64436 cells with control or shYTHDF2 were treated with 200 µM of TMZ for the indicated time, cell viability was analyzed by MTT assays. (I) The
weights of control (n = 5) and each knockdown (n = 5) tumors. ** P < 0.01, ***P < 0.001, ****P < 0.0001. All data are represented by mean ± SEM.

Monteiro et al., 2017; Lu et al., 2018). The lack of effective
treatments for GBM may be due to the invasiveness of the
tumors and the therapeutic resistance of GSCs (Singh et al.,
2004; Bao et al., 2006; Cui et al., 2017). In the past few
years, TCGA has clarified the status of nearly 12,000 patients
of 33 cancer types by generating comprehensive data, such

as expression profiles, transcriptomes, proteomics, as well as
clinicopathological parameters. Such cancer stemness indices
associated with cancer dedifferentiation have been completely
identified by artificial intelligence and deep machine learning due
to the existence of these resources (Malta et al., 2018). Therefore,
it is necessary to make breakthroughs in terms of GSCs in GBM.
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Among the GBM genetic aberrations, the IDH1/2 mutation
(Yan et al., 2009; Turcan et al., 2012) have shown reliable
prognostic and/or predictive value compared to their
counterparts. The exploration of the GBM with G-CIMP
was another milestone during the process of exploring
epigenetics (Noushmehr et al., 2010). Patients harboring
G-CIMP (G-CIMP+) tumors that are strictly related to the
IDH1/2 mutation have shown a significantly delayed mortality
that was not observed in their counterparts (Brennan et al.,
2013). MRNAsi was highest in normal samples, decreased in
primary tumors, and lowest in recurrent, which is consistent
with the conception that oncogenic dedifferentiation is generally
involved in tumorigenesis and development. In fact, most of
the mRNAsi of 33 cancers in TCGA are negatively correlated
with survival. The positive trend of correlation in GBM mRNAsi
may be partly explained by the dominant genomic alteration
associated with the GBM tumor type. Roughly 80% of GBM
tumors carry an IDH1/2 mutation and, as demonstrated by
our group and others, confer a G-CIMP (Turcan et al., 2012).
The relationship between EMT and stemness has always been
a hot topic. A set of studies showed that EMT was necessarily
related to stemness (Fabregat et al., 2016). Interestingly, positive
associations were observed between EMT critical proteins
and stemness. This is because most of the TCGA data come
from primary tumors in the pre-EMT status. These tumors are
basically epithelial cells despite the degree of dedifferentiation.
However, EMT is closely related to tumor recurrence and
metastasis. Mesenchymal characteristics could be acquired by
accumulating additional mutations or epigenetic changes in
the tumor. These cells with mesenchymal characteristics can
be spread to other organs through blood, lymph, and internal
transmission pathways to regain the epithelial phenotype, as well
as form metastatic or recurrent tumors. PD-L1 on cancer cells
can prevent the activation and recruitment of immune cells in
lymph nodes by binding to the PD1 receptor on T cells, thus
helping cancer cells escape the surveillance of the immune system
(Chen and Mellman, 2013). The negative correlation between
PD-L1 expression and stemness indicates that GBM is not
susceptible to treatment with targeted immune therapies. Also,
mRNAsi was significantly associated with all clinical features,
including OS. From these results, one may conclude that GSCs
are related to tumorigenesis, tumor recurrence, tumor prognosis,
and molecular characteristics. Further analysis of the stemness
indices may update our understanding of the value of GSCs.

Tumors grow in complex, diverse, and complete ecosystems
of cancer stem cells, relatively differentiated cancer cells, tumor-
associated stromal cells, infiltrating immune cells, and other
cell types. This ecosystem, defined as a “hotbed” of tumor
formation, is frequently characterized by hypoxia and abnormal
levels of inflammatory factors, various cytokines, and immune
components (Lyssiotis and Kimmelman, 2017). We found that
mRNAsi had a negative association with the immune/stromal
scores, suggesting that stem cells have the propensity to
promote the loss of immune cells. A growing number of
studies have shown that the inoculation of embryonic stem
cells or induced pluripotent stem cells can increase the specific
immune response to cancer cells, thereby emphasizing the

common features between cancer cells and stem cells during
the immune response (Kooreman et al., 2018). The progression
of cancer is inversely related to the host’s immunocompetence,
and there is evidence that CSCs play a modulatory role in
the immune system (Kawasaki and Farrar, 2008; Schatton and
Frank, 2009). GSCs reside in an environment that protects
them from immune system attacks. Residential zones could
attract immunosuppressive cells such as M2 macrophages and
regulatory T cells. We speculate that the stemness index may help
predict the efficacy of stem cell-associated immunotherapy and
help determine which patients will respond to such treatments.

Glioblastoma multiforme stem cells are the major mechanism
of GBM resistance to radiotherapy and chemotherapy, so finding
genes related to stemness is an important step to solve the
resistance problem. 18 hub genes were identified and validated.
However, not all, but most hub genes have significantly different
expression levels after chemoradiotherapy. Traditional DNA
repair systems also contribute to chemotherapy resistance. The
yellow module, which was positively correlated with mRNAsi,
was related to the development of stem cell differentiation
and dedifferentiation characteristics. The functional annotation
of this module was primarily associated with stem cell self-
renewal and proliferation. Through Oncomine analysis, all hub
genes were highly expressed in different cancers. Besides, the
overexpression of some hub genes was related to the level
of stemness, and their continuous expression changes might
promote tumor progression and post-treatment progression.
Most of these genes have been reported in GBM to be related
to the characteristics of GSCs. Aurora kinase A (AURKA), as
an ATM kinase, was reported to cause radio-resistance through
self-activation (De Bacco et al., 2016). Xenopus kinesin-like
protein 2 (TPX2) was reported to promote tumor invasion and
proliferation (Chockalingam and Ghosh, 2013). Notably, through
protein interaction and co-expression networks, we speculate that
AURKA, CCNA2, and TPX2 are ideal drug targets in GBM,
which provide potential evidence for stem cell treatment in GBM.
First, these two targets were significantly overexpressed in GBM.
Second, they were screened out from the most significant module
and formed a network with closely connected interactions.
Finally, their correlation was quite strong (P < 0.05).

Connectivity Map can identify biomarkers for predicting
specific drug reactions, mechanisms of treatment, and ways to
overcome resistance (Petrich et al., 2012; Leshchenko et al.,
2014; Xiong et al., 2019). We queried CMap using the DEGs
of the mRNAsi grouping. CMap analysis accurately identified
numerous compounds that have been shown to have an effect
on CSCs of other tumor types with specificity (Subramanian
et al., 2017; Brum et al., 2018; Malta et al., 2018; Lian H.
et al., 2019). HDAC inhibitors have been reported to be potent
differentiation agents in GSCs, reducing GBM growth mainly by
inducing cell necrosis and growth arrest (Tung et al., 2018). Also,
a cell cycle inhibitor (Tachon et al., 2018), a dopamine receptor
antagonist (Dolma et al., 2016), an adrenergic receptor antagonist
(He et al., 2017), a VEGFR inhibitor (Kalpathy-Cramer et al.,
2017), a PPAR receptor agonist (Im, 2016; Gupta et al., 2018), a
PI3K inhibitor (Zhao et al., 2017), mTOR inhibitors (Friedman
et al., 2013), a lipoxygenase inhibitor (Zappavigna et al., 2016),
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and an HMGCR inhibitor (Hamm et al., 2014) have been
shown to exhibit anticancer effects on GBM cells, some of
which have been shown to target GSCs. Our findings are
expected to facilitate the development of antitumor strategies that
specifically target GSCs and pave the way for the treatment of
cancer resistance.

Cancer stem cell models derived from 16 acute myeloid
leukemia (AML) samples demonstrated an extraordinary ability
to predict the clinical outcome of AML (Eppert et al., 2011).
Similarly, in breast cancer, colon cancer, gastric cancer, and
non-small cell lung cancer, the stem cell gene profile model
holds promise in redefining clinical outcome stratification
and identifying reduced risk (Giampieri et al., 2013; Miao
et al., 2017; Codony-Servat et al., 2019; Neckmann et al.,
2019). Moreover, three miRNAs (miR-23a, miR-9-3p, and miR-
27a) derived from the analysis of GSCs by gene expression
profiling, grouped mesenchymal and proneural GBM patients
into two different categories with significant survival differences
(Marziali et al., 2017). These studies reveal that cancer stem
cell markers showed relatively high performance in predicting
clinical outcomes for a variety of tumors, including GBM.
In this current study, we established and validated an 18-
mRNA-based prognostic model related to the stemness. To
the best of our knowledge, this prognostic model has not
been reported for GBM and may potentially provide guidance
for developing novel clinical management strategies. One of
the significant advantages of the predictive model is that
it does not require the identification of somatic mutations
and molecular subtypes in patients, which may make the
detection based on mRNA expression profiles more routine.
Additionally, concerning single-cell transcriptome sequencing in
GBM patients, the model could indicate patterns of molecular
heterogeneity within the tumor and identify the degree of
oncogenic dedifferentiation.

The intra-tumor heterogeneity of GBM suggests that GSCs
existing in the tumor microenvironment are effective in
stimulating residual tumor progression or recurrence (Wilson
et al., 2004). Our survival analysis and in vitro study showed
that CHI3L2, FSTL3, RPA3, RRM2, and YTHDF2 were beneficial
to the proliferation, invasion, and chemoresistance of GSCs.
Chitinase 3-like-2 (CHI3L2, also known as CHI3l3), a famous
biomarker for selective activation of macrophages and microglia,
has been reported to activate epidermal growth factor receptor
(EGFR), which determines the fate of neural stem cells
transformed into oligodendrocyte lines via Chi3l3-EGFR-Pyk2
signaling axis (Starossom et al., 2019). This is consistent with
our finding that CHI3L2 regulates the expression of the stemness
marker CD133 in GSC. We further confirmed the importance
of knocking down CHI3L2 and chemotherapy resistance could
synergistically inhibit the proliferation of GSC, which paved
the way for the next stem cell-targeted therapy strategy. FSTL3
has been reported to promote the transformation of pluripotent
stem cells to endothelial, cardiogenic (Genovese et al., 2009;
Kelaini et al., 2018). FSTL-3 has also been reported to be
independently associated with malignant progression of breast
cancer and tumor size (Panagiotou et al., 2019). However, its
role in tumor stem cells remains unclear. As far as we know,

this is the first study on the role of FSTL3 in tumor stem cells.
We predict that FSTL3 may have similar functions in other
tumors because of its independent prognostic role in tumors.
RPA3, a member of the replication protein family, plays an
important role in DNA repair, recombination, replication, and
cell cycle regulation. RPA3 is associated with the occurrence
and poor prognosis of liver cancer, as well as the aging of
hematopoietic stem cells (Xiao et al., 2018; Lian X. et al.,
2019; Zhang and Yu, 2020). RRM2 has been reported to be
associated with the occurrence and poor survival of prostate
cancer. The main effect mechanism is the overexpression of DNA
damage repair genes, which is related to stem cell differentiation
(Mazzu et al., 2019; Wei et al., 2020). These findings are
consistent with our findings, demonstrating that RRM2 may
control the stemness of cancer cells by repairing DNA. Unlike
the above four genes, YTHDF2 has been determined to be
unnecessary for normal functions in a variety of stem cells.
However, it can function as a cancer-driving gene to prevent
stem cell differentiation and gain self-renewal (Paris et al., 2019).
The regulatory effect of YTHDF2 on stem cells on cancer
has been confirmed in many cancers, such as acute leukemia
and osteosarcoma. However, its effect on GSCs has not been
confirmed. Our knockdown of YTHDF2 is to a certain extent
consistent with the predecessors’ views, and also confirmed the
important role of YTHDF2 on GSC stemness. The molecular
and functional characterization of these identified genes may be
useful for the development of novel cancer-targeted drugs and the
recognition of GSCs.

There are still other restrictions in our analysis. The
employment of DEGs in WGCNA may artificially exclude
other potential stemness-related genes. Besides, the five normal
samples provided by TCGA are a little unbalanced compared to
169 tumor samples. The knockout animal model should also be
applied to further explore the effect of hub genes targeting the
stemness of GSCs.

CONCLUSION

In summary, our study provided a stemness-related prognosis
and diagnostic value of GBM by systematically analyzing the
stemness characteristics. Our analysis of the interaction between
immune cells and GBM stemness might be helpful in predicting
the effectiveness of immunotherapy against GSCs and might
to determine patients who are sensitive to such therapies.
The mRNAsi-based prognostic model might contribute to
the individualized prediction of GBM prognosis and serve
as a possible biomarker reflecting GBM patients’ response to
chemoradiotherapy. The stemness-related targets we identified
provide guidance for a synergistic therapeutic strategy for glioma.
Our study also provided strategies for the comprehensive analysis
of cancer genomics based on machine learning methods for the
systematic identification of specific stem cell-related targets and
specific targeted drugs based on GBM stemness. However, the
conclusions are derived from retrospective data, hence, future
investigations are expected to focus on functionally interpreting
and validating our findings.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 17 October 2020 | Volume 8 | Article 558961

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-558961 October 13, 2020 Time: 17:28 # 18

Du et al. Network Analysis of Glioblastoma Stemness

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the
article/Supplementary Material.

ETHICS STATEMENT

The animal study was reviewed and approved by Ethics
Committee of Harbin Medical University (SYDW-2019-8-2).
Written informed consent was obtained from the owners for the
participation of their animals in this study.

AUTHOR CONTRIBUTIONS

SH, JD, RX, and LC conceived and designed the study and drafted
the manuscript. JD and KH provided analytical technical support.
XY, YL, HJ, SMi, YB, PZ, and SMa participated in the production
of charts and pictures. All authors have read and approved the
final manuscript.

FUNDING

This work was funded by the National Natural Science
Foundation of China (No. 61575058) and the Graduate
Innovation Fund of Harbin Medical University (YJSSJCX2019-
09HYD).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions from the
TCGA, CGGA, GTEx, TCPA, and GEO network.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2020.
558961/full#supplementary-material

REFERENCES
Athanassiou, H., Synodinou, M., Maragoudakis, E., Paraskevaidis, M., Verigos,

C., Misailidou, D., et al. (2005). Randomized phase II study of temozolomide
and radiotherapy compared with radiotherapy alone in newly diagnosed
glioblastoma multiforme. J. Clin. Oncol. 23, 2372–2377. doi: 10.1200/JCO.2005.
00.331

Azim, H. A. Jr., Peccatori, F. A., Brohee, S., Branstetter, D., Loi, S., Viale, G., et al.
(2015). RANK-ligand (RANKL) expression in young breast cancer patients and
during pregnancy. Breast Cancer Res. 17:24. doi: 10.1186/s13058-015-0538-537

Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006).
Glioma stem cells promote radioresistance by preferential activation of the
DNA damage response. Nature 444, 756–760. doi: 10.1038/nature05236

Beckerman, P., Qiu, C., Park, J., Ledo, N., Ko, Y. A., Park, A. D., et al. (2017).
Human kidney tubule-specific gene expression based dissection of chronic
kidney disease traits. EBioMedicine 24, 267–276. doi: 10.1016/j.ebiom.2017.
09.014

Bradner, J. E., Hnisz, D., and Young, R. A. (2017). Transcriptional addiction in
cancer. Cell 168, 629–643. doi: 10.1016/j.cell.2016.12.013

Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H.,
Salama, S. R., et al. (2013). The somatic genomic landscape of glioblastoma. Cell
155, 462–477. doi: 10.1016/j.cell.2013.09.034

Brum, A. M., van de Peppel, J., Nguyen, L., Aliev, A., Schreuders-Koedam, M.,
Gajadien, T., et al. (2018). Using the Connectivity Map to discover compounds
influencing human osteoblast differentiation. J Cell Physiol 233, 4895–4906.
doi: 10.1002/jcp.26298

Chen, D. S., and Mellman, I. (2013). Oncology meets immunology: the cancer-
immunity cycle. Immunity 39, 1–10. doi: 10.1016/j.immuni.2013.07.012

Cheng, Y., Wang, K., Geng, L., Sun, J., Xu, W., Liu, D., et al. (2019). Identification
of candidate diagnostic and prognostic biomarkers for pancreatic carcinoma.
EBioMedicine 40, 382–393. doi: 10.1016/j.ebiom.2019.01.003

Chockalingam, S., and Ghosh, S. S. (2013). Amelioration of cancer stem
cells in macrophage colony stimulating factor-expressing U87MG-human
glioblastoma upon 5-fluorouracil therapy. PLoS One 8:e83877. doi: 10.1371/
journal.pone.0083877

Codony-Servat, J., Codony-Servat, C., Cardona, A. F., Gimenez-Capitan, A.,
Drozdowskyj, A., Berenguer, J., et al. (2019). Cancer Stem Cell Biomarkers
in EGFR-mutation-positive non-small-cell lung cancer. Clin. Lung Cancer 20,
167–177. doi: 10.1016/j.cllc.2019.02.005

Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., et al. (2017). m(6)A RNA Methylation
regulates the self-renewal and Tumorigenesis of Glioblastoma stem cells. Cell
Rep 18, 2622–2634. doi: 10.1016/j.celrep.2017.02.059

De Bacco, F., D’Ambrosio, A., Casanova, E., Orzan, F., Neggia, R., Albano, R.,
et al. (2016). MET inhibition overcomes radiation resistance of glioblastoma
stem-like cells. EMBOMol. Med. 8, 550–568. doi: 10.15252/emmm.201505890

Dolma, S., Selvadurai, H. J., Lan, X., Lee, L., Kushida, M., Voisin, V., et al. (2016).
Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and
survival of glioblastoma stem cells. Cancer Cell 29, 859–873. doi: 10.1016/j.ccell.
2016.05.002

Du, J., Hou, K., Mi, S., Ji, H., Ma, S., Ba, Y., et al. (2020). Malignant Evaluation
and clinical prognostic values of m6A RNA Methylation Regulators in
Glioblastoma. Front. Oncol. 10:208. doi: 10.3389/fonc.2020.00208

Eppert, K., Takenaka, K., Lechman, E. R., Waldron, L., Nilsson, B., van Galen, P.,
et al. (2011). Stem cell gene expression programs influence clinical outcome in
human leukemia. Nat. Med. 17, 1086–1093. doi: 10.1038/nm.2415

Fabregat, I., Malfettone, A., and Soukupova, J. (2016). New insights into the
crossroads between EMT and stemness in the context of cancer. J. Clin. Med.
5:37. doi: 10.3390/jcm5030037

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth,
A., et al. (2013). STRING v9.1: protein-protein interaction networks, with
increased coverage and integration. Nucleic Acids Res. 41, D808–D815. doi:
10.1093/nar/gks1094

Friedman, M. D., Jeevan, D. S., Tobias, M., Murali, R., and Jhanwar-Uniyal, M.
(2013). Targeting cancer stem cells in glioblastoma multiforme using mTOR
inhibitors and the differentiating agent all-trans retinoic acid. Oncol. Rep. 30,
1645–1650. doi: 10.3892/or.2013.2625

Genovese, J. A., Spadaccio, C., Rivello, H. G., Toyoda, Y., and Patel, A. N. (2009).
Electrostimulated bone marrow human mesenchymal stem cells produce
follistatin. Cytotherapy 11, 448–456. doi: 10.1080/14653240902960445

Giampieri, R., Scartozzi, M., Loretelli, C., Piva, F., Mandolesi, A., Lezoche, G., et al.
(2013). Cancer stem cell gene profile as predictor of relapse in high risk stage
II and stage III, radically resected colon cancer patients. PLoS One 8:e72843.
doi: 10.1371/journal.pone.0072843

Gupta, G., Singhvi, G., Chellappan, D. K., Sharma, S., Mishra, A., Dahiya, R., et al.
(2018). Peroxisome proliferator-activated receptor gamma: promising target
in glioblastoma. Panminerva Med. 60, 109–116. doi: 10.23736/S0031-0808.18.
03462-3466

Hamm, R., Zeino, M., Frewert, S., and Efferth, T. (2014). Up-regulation of
cholesterol associated genes as novel resistance mechanism in glioblastoma
cells in response to archazolid B. Toxicol. Appl. Pharmacol. 281, 78–86. doi:
10.1016/j.taap.2014.08.033

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinformatics 14:17. doi:
10.1186/1471-2105-14-17

Frontiers in Cell and Developmental Biology | www.frontiersin.org 18 October 2020 | Volume 8 | Article 558961

https://www.frontiersin.org/articles/10.3389/fcell.2020.558961/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2020.558961/full#supplementary-material
https://doi.org/10.1200/JCO.2005.00.331
https://doi.org/10.1200/JCO.2005.00.331
https://doi.org/10.1186/s13058-015-0538-537
https://doi.org/10.1038/nature05236
https://doi.org/10.1016/j.ebiom.2017.09.014
https://doi.org/10.1016/j.ebiom.2017.09.014
https://doi.org/10.1016/j.cell.2016.12.013
https://doi.org/10.1016/j.cell.2013.09.034
https://doi.org/10.1002/jcp.26298
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1016/j.ebiom.2019.01.003
https://doi.org/10.1371/journal.pone.0083877
https://doi.org/10.1371/journal.pone.0083877
https://doi.org/10.1016/j.cllc.2019.02.005
https://doi.org/10.1016/j.celrep.2017.02.059
https://doi.org/10.15252/emmm.201505890
https://doi.org/10.1016/j.ccell.2016.05.002
https://doi.org/10.1016/j.ccell.2016.05.002
https://doi.org/10.3389/fonc.2020.00208
https://doi.org/10.1038/nm.2415
https://doi.org/10.3390/jcm5030037
https://doi.org/10.1093/nar/gks1094
https://doi.org/10.1093/nar/gks1094
https://doi.org/10.3892/or.2013.2625
https://doi.org/10.1080/14653240902960445
https://doi.org/10.1371/journal.pone.0072843
https://doi.org/10.23736/S0031-0808.18.03462-3466
https://doi.org/10.23736/S0031-0808.18.03462-3466
https://doi.org/10.1016/j.taap.2014.08.033
https://doi.org/10.1016/j.taap.2014.08.033
https://doi.org/10.1186/1471-2105-14-17
https://doi.org/10.1186/1471-2105-14-17
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-558961 October 13, 2020 Time: 17:28 # 19

Du et al. Network Analysis of Glioblastoma Stemness

He, J. J., Zhang, W. H., Liu, S. L., Chen, Y. F., Liao, C. X., Shen, Q. Q., et al. (2017).
Activation of beta-adrenergic receptor promotes cellular proliferation in human
glioblastoma. Oncol. Lett. 14, 3846–3852. doi: 10.3892/ol.2017.6653

Hsu, J. M., Xia, W., Hsu, Y. H., Chan, L. C., Yu, W. H., Cha, J. H., et al. (2018).
STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune
evasion. Nat. Commun. 9:1908. doi: 10.1038/s41467-018-04313-4316

Huang, W., Zhong, Z., Luo, C., Xiao, Y., Li, L., Zhang, X., et al. (2019). The
miR-26a/AP-2alpha/Nanog signaling axis mediates stem cell self-renewal and
temozolomide resistance in glioma. Theranostics 9, 5497–5516. doi: 10.7150/
thno.33800

Im, C. N. (2016). Targeting glioblastoma stem cells (GSCs) with peroxisome
proliferator-activated receptor gamma (PPARgamma) ligands. IUBMB Life 68,
173–177. doi: 10.1002/iub.1475

Jackson, C. M., Choi, J., and Lim, M. (2019). Mechanisms of immunotherapy
resistance: lessons from glioblastoma. Nat. Immunol. 20, 1100–1109. doi: 10.
1038/s41590-019-0433-y

Jiapaer, S., Furuta, T., Tanaka, S., Kitabayashi, T., and Nakada, M. (2018). Potential
Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol
Med. Chir. 58, 405–421. doi: 10.2176/nmc.ra.2018-2141

Kalpathy-Cramer, J., Chandra, V., Da, X., Ou, Y., Emblem, K. E., Muzikansky, A.,
et al. (2017). Phase II study of tivozanib, an oral VEGFR inhibitor, in patients
with recurrent glioblastoma. J. Neurooncol. 131, 603–610. doi: 10.1007/s11060-
016-2332-2335

Kawasaki, B. T., and Farrar, W. L. (2008). Cancer stem cells, CD200 and
immunoevasion. Trends Immunol. 29, 464–468. doi: 10.1016/j.it.2008.07.005

Kelaini, S., Vila-Gonzalez, M., Caines, R., Campbell, D., Eleftheriadou, M., Tsifaki,
M., et al. (2018). Follistatin-Like 3 enhances the function of endothelial
cells derived from pluripotent stem cells by facilitating beta-Catenin Nuclear
Translocation Through Inhibition of Glycogen Synthase Kinase-3beta activity.
Stem Cells 36, 1033–1044. doi: 10.1002/stem.2820

Kooreman, N. G., Kim, Y., de Almeida, P. E., Termglinchan, V., Diecke, S.,
Shao, N. Y., et al. (2018). Autologous iPSC-Based Vaccines Elicit Anti-tumor
Responses In Vivo. Cell Stem Cell 22, 501-513 e507. doi: 10.1016/j.stem.2018.
01.016

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-
2105-9-559

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012).
The sva package for removing batch effects and other unwanted variation
in high-throughput experiments. Bioinformatics 28, 882–883. doi: 10.1093/
bioinformatics/bts034

Leshchenko, V. V., Kuo, P. Y., Jiang, Z., Thirukonda, V. K., and Parekh, S. (2014).
Integrative genomic analysis of temozolomide resistance in diffuse large B-cell
lymphoma. Clin. Cancer Res. 20, 382–392. doi: 10.1158/1078-0432.CCR-13-
0669

Lian, H., Han, Y. P., Zhang, Y. C., Zhao, Y., Yan, S., Li, Q. F., et al. (2019). Integrative
analysis of gene expression and DNA methylation through one-class logistic
regression machine learning identifies stemness features in medulloblastoma.
Mol. Oncol. 13, 2227–2245. doi: 10.1002/1878-0261.12557

Lian, X., Dong, Y., Zhao, M., Liang, Y., Jiang, W., Li, W., et al. (2019). RNA-
Seq analysis of differentially expressed genes relevant to mismatch repair in
aging hematopoietic stem-progenitor cells. J. Cell Biochem. 120, 11401–11408.
doi: 10.1002/jcb.28417

Lu, V. M., Jue, T. R., McDonald, K. L., and Rovin, R. A. (2018). The survival effect
of repeat surgery at glioblastoma recurrence and its trend: a systematic review
and meta-analysis. World Neurosurg. 115, 453-459 e453. doi: 10.1016/j.wneu.
2018.04.016

Lyssiotis, C. A., and Kimmelman, A. C. (2017). Metabolic interactions in the tumor
microenvironment. Trends Cell Biol. 27, 863–875. doi: 10.1016/j.tcb.2017.
06.003

Malta, T. M., Sokolov, A., Gentles, A. J., Burzykowski, T., Poisson, L., Weinstein,
J. N., et al. (2018). Machine learning identifies stemness features associated with
oncogenic dedifferentiation. Cell 173, 338-354 e315. doi: 10.1016/j.cell.2018.
03.034

Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang,
Y., et al. (2018). TGFbeta attenuates tumour response to PD-L1 blockade
by contributing to exclusion of T cells. Nature 554, 544–548. doi: 10.1038/
nature25501

Marziali, G., Buccarelli, M., Giuliani, A., Ilari, R., Grande, S., Palma, A., et al. (2017).
A three-microRNA signature identifies two subtypes of glioblastoma patients
with different clinical outcomes. Mol. Oncol. 11, 1115–1129. doi: 10.1002/1878-
0261.12047

Mazzu, Y. Z., Armenia, J., Chakraborty, G., Yoshikawa, Y., Coggins, S. A.,
Nandakumar, S., et al. (2019). A Novel Mechanism Driving Poor-Prognosis
Prostate Cancer: overexpression of the DNA Repair Gene, Ribonucleotide
Reductase Small Subunit M2 (RRM2). Clin. Cancer Res. 25, 4480–4492. doi:
10.1158/1078-0432.CCR-18-4046

Miao, Z. F., Xu, H., Xu, H. M., Wang, Z. N., Zhao, T. T., Song, Y. X., et al. (2017).
DLL4 overexpression increases gastric cancer stem/progenitor cell self-renewal
ability and correlates with poor clinical outcome via Notch-1 signaling pathway
activation. Cancer Med. 6, 245–257. doi: 10.1002/cam4.962

Monteiro, A. R., Hill, R., Pilkington, G. J., and Madureira, P. A. (2017). The
Role of Hypoxia in Glioblastoma Invasion. Cells 6:45. doi: 10.3390/cells60
40045

Neckmann, U., Wolowczyk, C., Hall, M., Almaas, E., Ren, J., Zhao, S., et al.
(2019). GREM1 is associated with metastasis and predicts poor prognosis in
ER-negative breast cancer patients. Cell Commun. Signal. 17:140. doi: 10.1186/
s12964-019-0467-467

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods 12, 453–457. doi: 10.1038/nmeth.3337

Noushmehr, H., Weisenberger, D. J., Diefes, K., Phillips, H. S., Pujara, K., Berman,
B. P., et al. (2010). Identification of a CpG island methylator phenotype that
defines a distinct subgroup of glioma. Cancer Cell 17, 510–522. doi: 10.1016/j.
ccr.2010.03.017

Ohgaki, H., and Kleihues, P. (2005). Epidemiology and etiology of gliomas. Acta
Neuropathol. 109, 93–108. doi: 10.1007/s00401-005-0991-y

Panagiotou, G., Papakonstantinou, E., Vagionas, A., Polyzos, S. A., and Mantzoros,
C. S. (2019). Serum Levels of Activins, follistatins, and growth factors in
neoplasms of the breast: a case-control study. J. Clin. Endocrinol. Metab. 104,
349–358. doi: 10.1210/jc.2018-1581

Paris, J., Morgan, M., Campos, J., Spencer, G. J., Shmakova, A., Ivanova, I., et al.
(2019). Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises
Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell 25, 137-148 e136.
doi: 10.1016/j.stem.2019.03.021

Petrich, A. M., Leshchenko, V., Kuo, P. Y., Xia, B., Thirukonda, V. K., Ulahannan,
N., et al. (2012). Akt inhibitors MK-2206 and nelfinavir overcome mTOR
inhibitor resistance in diffuse large B-cell lymphoma. Clin. Cancer Res. 18,
2534–2544. doi: 10.1158/1078-0432.CCR-11-1407

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Rusu, P., Shao, C., Neuerburg, A., Acikgöz, A. A., Wu, Y., Zou, P., et al.
(2019). GPD1 Specifically Marks Dormant Glioma Stem Cells with a Distinct
Metabolic Profile. Cell Stem Cell 25, 241-257.e248. doi: 10.1016/j.stem.2019.
06.004

Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., et al.
(2018). Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173,
321-337 e310. doi: 10.1016/j.cell.2018.03.035

Schatton, T., and Frank, M. H. (2009). Antitumor immunity and cancer stem cells.
Ann. N. Y. Acad. Sci. 1176, 154–169. doi: 10.1111/j.1749-6632.2009.04568.x

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
et al. (2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/
gr.1239303

Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004).
Identification of human brain tumour initiating cells. Nature 432, 396–401.
doi: 10.1038/nature03128

Staberg, M., Rasmussen, R. D., Michaelsen, S. R., Pedersen, H., Jensen, K. E.,
Villingshoj, M., et al. (2018). Targeting glioma stem-like cell survival and
chemoresistance through inhibition of lysine-specific histone demethylase
KDM2B. Mol. Oncol. 12, 406–420. doi: 10.1002/1878-0261.12174

Starossom, S. C., Campo Garcia, J., Woelfle, T., Romero-Suarez, S., Olah,
M., Watanabe, F., et al. (2019). Chi3l3 induces oligodendrogenesis in an
experimental model of autoimmune neuroinflammation. Nat. Commun. 10,
217. doi: 10.1038/s41467-018-08140-8147

Frontiers in Cell and Developmental Biology | www.frontiersin.org 19 October 2020 | Volume 8 | Article 558961

https://doi.org/10.3892/ol.2017.6653
https://doi.org/10.1038/s41467-018-04313-4316
https://doi.org/10.7150/thno.33800
https://doi.org/10.7150/thno.33800
https://doi.org/10.1002/iub.1475
https://doi.org/10.1038/s41590-019-0433-y
https://doi.org/10.1038/s41590-019-0433-y
https://doi.org/10.2176/nmc.ra.2018-2141
https://doi.org/10.1007/s11060-016-2332-2335
https://doi.org/10.1007/s11060-016-2332-2335
https://doi.org/10.1016/j.it.2008.07.005
https://doi.org/10.1002/stem.2820
https://doi.org/10.1016/j.stem.2018.01.016
https://doi.org/10.1016/j.stem.2018.01.016
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1158/1078-0432.CCR-13-0669
https://doi.org/10.1158/1078-0432.CCR-13-0669
https://doi.org/10.1002/1878-0261.12557
https://doi.org/10.1002/jcb.28417
https://doi.org/10.1016/j.wneu.2018.04.016
https://doi.org/10.1016/j.wneu.2018.04.016
https://doi.org/10.1016/j.tcb.2017.06.003
https://doi.org/10.1016/j.tcb.2017.06.003
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/nature25501
https://doi.org/10.1002/1878-0261.12047
https://doi.org/10.1002/1878-0261.12047
https://doi.org/10.1158/1078-0432.CCR-18-4046
https://doi.org/10.1158/1078-0432.CCR-18-4046
https://doi.org/10.1002/cam4.962
https://doi.org/10.3390/cells6040045
https://doi.org/10.3390/cells6040045
https://doi.org/10.1186/s12964-019-0467-467
https://doi.org/10.1186/s12964-019-0467-467
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.ccr.2010.03.017
https://doi.org/10.1016/j.ccr.2010.03.017
https://doi.org/10.1007/s00401-005-0991-y
https://doi.org/10.1210/jc.2018-1581
https://doi.org/10.1016/j.stem.2019.03.021
https://doi.org/10.1158/1078-0432.CCR-11-1407
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.stem.2019.06.004
https://doi.org/10.1016/j.stem.2019.06.004
https://doi.org/10.1016/j.cell.2018.03.035
https://doi.org/10.1111/j.1749-6632.2009.04568.x
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1038/nature03128
https://doi.org/10.1002/1878-0261.12174
https://doi.org/10.1038/s41467-018-08140-8147
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-558961 October 13, 2020 Time: 17:28 # 20

Du et al. Network Analysis of Glioblastoma Stemness

Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X.,
et al. (2017). A Next Generation Connectivity Map: L1000 Platform and the
First 1,000,000 Profiles. Cell 171, 1437-1452.e17. doi: 10.1016/j.cell.2017.10.049

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Tachon, G., Cortes, U., Guichet, P. O., Rivet, P., Balbous, A., Masliantsev, K., et al.
(2018). Cell cycle changes after glioblastoma stem cell irradiation: the major role
of RAD51. Int. J. Mol. Sci. 19:18. doi: 10.3390/ijms19103018

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model.
Stat. Med. 16, 385–395. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-
sim380<3.0.co;2-3

Tung, B., Ma, D., Wang, S., Oyinlade, O., Laterra, J., Ying, M., et al. (2018).
Kruppel-like factor 9 and histone deacetylase inhibitors synergistically induce
cell death in glioblastoma stem-like cells. BMC Cancer 18:1025. doi: 10.1186/
s12885-018-4874-4878

Turcan, S., Rohle, D., Goenka, A., Walsh, L. A., Fang, F., Yilmaz, E., et al. (2012).
IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype.
Nature 483, 479–483. doi: 10.1038/nature10866

Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D.,
et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes
of glioblastoma characterized by abnormalities in PDGFRA. IDH1, EGFR, and
NF1. Cancer Cell 17, 98–110. doi: 10.1016/j.ccr.2009.12.020

Wei, J., Yin, Y., Deng, Q., Zhou, J., Wang, Y., Yin, G., et al. (2020). Integrative
analysis of MicroRNA and gene interactions for revealing candidate signatures
in prostate cancer. Front. Genet. 11:176. doi: 10.3389/fgene.2020.00176

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: a class discovery
tool with confidence assessments and item tracking. Bioinformatics 26, 1572–
1573. doi: 10.1093/bioinformatics/btq170

Wilson, R. J., Thomas, C. D., Fox, R., Roy, D. B., and Kunin, W. E. (2004).
Spatial patterns in species distributions reveal biodiversity change. Nature 432,
393–396. doi: 10.1038/nature03031

Xiao, W., Zheng, J., Zhou, B., and Pan, L. (2018). Replication Protein A 3
is associated with hepatocellular carcinoma tumorigenesis and poor patient
survival. Dig. Dis. 36, 26–32. doi: 10.1159/000478977

Xiong, D. D., Xu, W. Q., He, R. Q., Dang, Y. W., Chen, G., and Luo, D. Z.
(2019). In silico analysis identified miRNAbased therapeutic agents against
glioblastoma multiforme.Oncol. Rep. 41, 2194–2208. doi: 10.3892/or.2019.7022

Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., et al.
(2009). IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773.
doi: 10.1056/NEJMoa0808710

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat. Commun. 4:2612. doi: 10.1038/
ncomms3612

Young, R. A. (2011). Control of the embryonic stem cell state. Cell 144, 940–954.
doi: 10.1016/j.cell.2011.01.032

Zappavigna, S., Scuotto, M., Cossu, A. M., Ingrosso, D., De Rosa, M., Schiraldi,
C., et al. (2016). The 1,4 benzoquinone-featured 5-lipoxygenase inhibitor
RF-Id induces apoptotic death through downregulation of IAPs in human
glioblastoma cells. J. Exp. Clin. Cancer Res. 35:167. doi: 10.1186/s13046-016-
0440-x

Zhang, Y., and Yu, C. (2020). Distinct expression and prognostic values of the
replication protein A family in gastric cancer. Oncol. Lett. 19, 1831–1841. doi:
10.3892/ol.2020.11253

Zhao, H. F., Wang, J., Shao, W., Wu, C. P., Chen, Z. P., To, S. T., et al. (2017). Recent
advances in the use of PI3K inhibitors for glioblastoma multiforme: current
preclinical and clinical development. Mol. Cancer 16:100. doi: 10.1186/s12943-
017-0670-673

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Du, Yan, Mi, Li, Ji, Hou, Ma, Ba, Zhou, Chen, Xie and Hu.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 20 October 2020 | Volume 8 | Article 558961

https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.3390/ijms19103018
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380<3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380<3.0.co;2-3
https://doi.org/10.1186/s12885-018-4874-4878
https://doi.org/10.1186/s12885-018-4874-4878
https://doi.org/10.1038/nature10866
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.3389/fgene.2020.00176
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1038/nature03031
https://doi.org/10.1159/000478977
https://doi.org/10.3892/or.2019.7022
https://doi.org/10.1056/NEJMoa0808710
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.cell.2011.01.032
https://doi.org/10.1186/s13046-016-0440-x
https://doi.org/10.1186/s13046-016-0440-x
https://doi.org/10.3892/ol.2020.11253
https://doi.org/10.3892/ol.2020.11253
https://doi.org/10.1186/s12943-017-0670-673
https://doi.org/10.1186/s12943-017-0670-673
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Identification of Prognostic Model and Biomarkers for Cancer Stem Cell Characteristics in Glioblastoma by Network Analysis of Multi-Omics Data and Stemness Indices
	Introduction
	Materials and Methods
	Data Collection and Processing
	Evaluation of the Associations Between the Stemness Index and Clinical Outcomes in GBM
	Correlation Between GBM Stemness and Immunity
	Single-Sample Gene-Set Enrichment Analysis (ssGSEA)
	Selection of Differentially Expressed Genes (DEGs)
	Functional Enrichment Analysis
	WGCNA and Module Preservation
	Confirmation of Significant Modules
	Hub Gene Identification and Further Analysis
	Confirmation and Validation of the Prognostic Value of the Hub Genes
	Identification of Potential Compounds
	Immunohistochemistry
	Cell Culture and Transient Transfection
	RNA Extraction, RT-PCR and qRT-PCR
	Transwell Assay, MTT Assay, and Cell Cycle Analysis
	Sphere-Forming and Limiting Dilution Assays
	In vivo Functional Assay
	Statistical Analysis

	Results
	Stemness Index in GBM
	Association of the Stemness With the Immune Microenvironment of GBM
	Determination of Potential Mechanisms and Compounds Related to Stemness
	Screening of DEGs
	Analysis and Validation of Hub Gene Expression
	Prognostic Value of the 18 Hub Genes and the Construction of a Predictive Model
	Verification of Prognostic Model Capabilities
	Validation of the Hub Genes in Clinical Samples
	Knockdown of the Hub Proteins

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


