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Abstract: The objective of this study was to evaluate the effect of titanium immobilized 

with a cationic antimicrobial peptide (JH8194) derived from histatin on the biofilm 

formation of Porphyromonas gingivalis and differentiation of osteoblastic cells (MC3T3-

E1). The titanium specimens (Ti) were immobilized with JH8194, according to the method 

previously described. The colonization of P. gingivalis on JH8194-Ti was significantly 

lower than that on control- and blocking-Ti. JH8194-Ti enhanced the mRNA expressions 

of Runx2 and OPN, and ALPase activity in the MC3T3-E1, as compared with those of 

control- and blocking-Ti. These results, taken together, suggested the possibility that 

JH8194-Ti may be a potential aid to shorten the period of acquiring osseointegration. 
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1. Introduction 

Dental implant treatment has been developed and established all over the world, since the principles 

were proposed by a Swedish group and it has been reported that the rate of success of dental implant 

treatments in controlled patients is very high, over 90% [1,2]. However, reports on failures of implants 

resulting from excess load and periimplantitis, have been increasing in number [3,4]. Esposito et al. 

reviewed the causes of early implant failures, based on the histological, clinical and radiographic 

findings. It was concluded that three major etiologies may be implicated in the failure process: 

impaired healing ability of the host bone site, disruption of a week bone-to-implant interface after 

abutment connection, and infection with complicated surgery [5,6]. These suggested that requirements 

for increased success of dental implants might be the development of materials to enhance 

osseointegration and to protect against early bacterial infection, as well as the establishment of easier 

surgical procedures.  

Titanium is the main material for dental implants, since titanium possesses excellent physical 

properties, and is suitable for acquiring osseointegration easily. The titanium surface is formed with a 

dioxide film, which increases calcium deposition and is readily reactive towards an osseous protein. 

Therefore, some changes occur to the titanium surface properties, and technological manipulations to 

achieve a shortening of the period of osseointegration acquisition and maintenance of strong 

osseointegration are widely done [7]. Taking advantage of this characteristic of the titanium surface, 

we previously attempted its modification. Concretely, in order to control osteoclast differentiation 

around dental implants, we produced titanium specimens immobilized with osteoprotegerin (OPG), 

which was a decoy receptor for one of the osteoclast-inducing factors; receptor activator of NF-B 

ligand (RANKL), using our immobilization-method [8]. This titanium blocked osteoclast 

differentiation, indicating the function of OPG remained after the immobilization process, which 

indicated that the immobilization strategy should be available for other proteins and synthesized 

peptides [8]. 

Recently, we have demonstrated that the cationic synthetic peptide; JH8194, that is a histatin 

analog, has powerful anti-candicidal activity [9]. Furthermore, it was reported that histatin 5 

synergistically increased the proliferation of chondrocytes under the epidermal growth factor [10]. The 

peptides derived from histatin and lactoferricin exerted cytotoxic effects on MC3T3 at high 

concentration (400 g/mL) [11]. These reports suggested that antimicrobial peptides or synthetic 

peptides derived form histain or lactoferricin would have biological function on mammalian cells, 

including osteoblast and chondrocyte cells. Additionally, the inhibitory activity of histatin against 

hemaagglutinating activities of P. gingivalis, which was the pathogenic bacteria isolated from 

periodontitis and periimplantitis, was shown [12]. Based on these findings, we reached at the 

hypothesis that the antimicrobial peptide JH8194 we produced could have physiological functions on 

osteoblast cells, besides the inhibitory ability against P. gingivalis. The synthesized peptides 

immobilized on the titanium possessing the functions of both shortening the period for 

osseointegration and killing the bacteria would help to raise the ratio of success for dental implants. 

Therefore, the purposes of this study were: i) to confirm the anti-bactericidal function of the 

titanium surface on which JH8194 was immobilized, according to the immobilization method 
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described previously [8], and ii) to investigate the effects of Ti surface on which JH8194 was 

immobilized on the proliferation and differentiation of an osteoblastic cell line, MC3T3-E1. 

2. Results and Discussion 

2.1. P. gingivalis Biofilm Formation on the Titanium Surface Immobilized with JH8194 

Eighty percent of P. gingivalis viability was lost when P. gingivalis was grown on JH8194-Ti 

surface for four days, as compared with that grown on control-Ti. This inhibition was significant 

(ANOVA, p < 0.05). On the other hand, blocking-Ti, which contained no JH8194, did not affect on the 

colonization of P. gingivalis over the same period (Figure 1). 

Figure 1. The effects of JH8194-Ti on Porphyromonas gingivalis were examined by ATP 

assay. P. gingivalis was grown on control-Ti, blocking-Ti or JH8194-Ti for four days. The 

assays were carried out on two independent occasions. Data represent the means ± SD of 

triplicate experiments. * p < 0.05. 

 

2.2. Effects of Soluble JH8194 on the Proliferation of MC3T3-E1 Cells 

The result of MTS assay showed that soluble JH8194 at the concentration range between 0.5 and  

50 µM had no effect on the proliferation of the MC3T3-E1 cell, when the cells were exposed to 

soluble JH8194 for four days until the assay (ANOVA, p > 0.05) (Figure 2), whereas soluble JH8194 
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(100 M) significantly inhibited the proliferation of the MC3T3-E1 cells, as compared with that of 

soluble JH8194-free control cell (ANOVA, p < 0.01) (Figure 2). 

Figure 2. The effects of soluble JH8194 on the proliferation of MC3T3-E1 cells were 

investigated by MTS assay. The cells were cultured in the presence or absence of soluble 

JH8194 for four days. Soluble JH8194 was added to each well just once until the following 

assay. The MTS assay was done to examine the effects of soluble JH8194 on MC3T3-E1 

proliferation. Independent experiments were repeated three times. Data represent the 

means +/- S.D of quadruplicate experiments. 

 

2.3. Effects of the Soluble JH8194 on the Levels of mRNAs for Runx2 and OPN in MC3T3-E1 Cells 

To examine the effects of soluble JH8194 on the osteoblast differentiation, osteoblast-specific 

transcriptional gene markers; Runx2 and OPN in MC3T3-E1 cells exposed to soluble JH8194 were 

analyzed by RT-PCR. The results showed that soluble JH8194 enhanced the levels of mRNAs for 

Runx2 and OPN in MC3T3-E1, in a dose-dependent fashion, when the cells, for the first time, started 

to be impacted to JH8194 just after confluence (Figure 3). Soluble JH8194 at concentrations of 1, 5, 10 

and 20 M had no effect on the level of mRNA for -actin, which was amplified as an internal control 

(Figure 3). On the other hand, in case of the addition of soluble JH8194 to the cells on day-0, no bands 

on the agarose gels corresponding to the amplified products of Runx2 and OPN except -actin in 

MC3T3-E1 was detected by the RT-PCR method, under the same conditions of RT-PCR as the result 

of Figure 3 (data not shown). 
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Figure 3. The effects of soluble JH8194 on the osteoblastic gene expressions were 

analyzed by RT-PCR. In the culture system, the cells were inoculated (day-0) and then 

reached at confluence in three days (day-3). By the two different types of duration of 

soluble JH8194, the alteration of the osteoblast-differentiation markers in MC3T3-E1 

loaded with soluble JH8194 was analyzed. Concretely, the first pattern of soluble JH8194-

duration was that soluble JH8194 was added to the cells on day-0 just after inoculation of 

the cells, followed by that the cells were successively cultured for seven days. The other 

one was that the exposure of soluble JH8194 to the cells, for the first time, started, when 

the cells became confluent (day-3). The cells were cultured, totally during seven days 

including the period until confluence. The addition of soluble JH8194 was done once until 

RNA isolation in both patterns in JH8194-duration. Total RNA was extracted from each 

cell to analyze the expression levels of Runx2 and OPN mRNA. Data are representative of 

three experiments. 

 

2.4. Effects of the Immobilized-JH8194 on the Titanium Surface on the Levels of mRNAs for Runx2 and 

OPN in MC3T3-E1 Cells  

Figure 4. The effects of JH8194-Ti on the osteoblastic differentiation markers were 

analyzed by RT-PCR. The RNA was extracted from the cells cultured on control-Ti, 

blocking-Ti and JH8194-Ti for seven days after the cells were seeded. No supplement of 

soluble JH8194 was added to each well until RNA isolation. Data are representative of 

three experiments. 
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Next, to investigate the effects of JH8194-Ti on the osteoblast differentiation, MC3T3-E1 cells 

were grown for seven days on JH8194-Ti, JH8194-free blocking-Ti or control-Ti, which were 

prepared by the method as described in the Materials and Methods. The RT-PCR results revealed that 

the levels of mRNAs for Runx2 and OPN in MC3T3-E1 cultured on 20 M JH8194-Ti were 

increased, as compared with those in the cells cultured on control-Ti, blocking-Ti and 1, 5 and 20M 

JH8194-Ti (Figure 4). JH8194-Ti of 5 M slightly enhanced the mRNA expression of Runx2 (Figure 

4). All titanium had no remarkable effect on the mRNA expressions of -actin (Figure 4). 

2.5. Effects of the Immobilized-JH8194 on the Titanium Surface on the Activity of ALPase in  

MC3T3-E1 Cells  

Finally, ALPase activity was analyzed. The ALPase activity per the protein in MC3T3-E1 cells 

cultured on 20 M JH8194-Ti for 7, 14 and 21 days was greater than those in the cells on control-Ti 

and blocking-Ti (Figure 5), but, there was no significance between the samples (ANOVA, p > 0.05). 

Figure 5. The effects of JH8194-Ti on ALPase activity. ALPase activity and total protein 

in the solved supernatant with 0.2% TritonX-100 in saline of each cell grown on control-

Ti, blocking-Ti and JH8194-Ti during 7, 14 and 21 days were measured in accordance with 

the method described in Materials and Methods. ALPase activity per one mg protein 

(units) was calculated. Data represent the means ± SD of triplicate experiments. Three 

independent experiments were carried out. (ANOVA, p >0.05) 
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2.6. Discussion  

Histatin 5 is the most potent member of the family and renders most pathogenic Candida species 

non-viable in vitro at physiological concentration [13]. It was reported that histatin 5 interacted with 

bacterial cells of P. gingivalis [12], which is often detected in the tissue and titanium surface around 

failed dental implants [4]. Collectively, these findings suggested that JH8194, which was derived from 

histatin, similarly would bind to the P. gingivalis cell wall and kill it, as well as killing Candida 

albicans [9]. In the present study, the result of biofilm assay using P. gingivalis proved that JH8194 

immobilized on the titanium surface by our method inhibited the formation of P. gingivalis biofilm, as 
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we predicted (Figure 1). Bone morphogenic proteins (BMPs) are generally known to increase bone 

formation, and BMPs released from atelopeptide type I collagen (carrier) stimulated a bone response in 

peri-implants [14]. However, BMP immobilized on titanium did not increase peri-implant bone 

formation [15]. These reports suggest that the conformation and/or activity of the proteins after the 

immobilization process to titanium surface are very important for the function of the immobilized 

protein. In the case of immobilization of synthetic peptides on a titanium surface, the function of the 

peptides may be attributed to stability of the conformation and/or activity of the synthetic peptides. It 

is generally accepted that numerous antimicrobial peptides have an alpha-helical structure, and the 

majority are cationic and amphipathic [9]. Our previous report indicated that candicidal activity of 

JH8194 was due to its alpha-helical propensity [9]. The inhibitory action of immobilized-JH8194 on 

the titanium surface against P. gingivalis may similarly involve the alpha-helical structure of JH8194, 

which remained on the titanium surface after the immobilization of the present study. 

To verify the hypothesis of whether a newly antimicrobial peptide we produced, JH8194, could 

have some effects on the osteoblast cells or not, MC3T3-E1 cells were cultured in the presence or 

absence of soluble JH8194. This cell line is a normal mouse osteoblast-like cell, which is not derived 

from tumors like the osteogenic sarcoma. It expresses ALPase and forms calcification under usual 

culture conditions [16]. Therefore, this was useful for the present in vitro experiments. 

The results of the MTS assay in Figure 2 suggested that the high concentration of soluble JH8194 

had a cytotoxic effect on MC3T3-E1 cells. This was consistent with the finding of the cytotoxicity of 

the peptide derived from histatin and lactoferricin on MC3T3 [11]. Murakami et al. reported the 

synergistic increase of the chondrocyte-proliferation by histatin 5, under the stimulation of epidermal 

growth factor [10]. Although the proliferation of MC3T3-E1 was not affected by soluble JH8194 

stimulation at the low concentrations (Figure 2), there still remained the possibility that JH8194 could 

increase the osteoblast-proliferation in cooperation with other cytokines, since JH8194 was derived 

from histatin. Taking into consideration the findings of the proliferation assay, we used four 

concentrations of soluble JH8194, i.e., 1, 5, 10 and 20 M, in order to examine the molecular 

responses of MC3T3-E1 against soluble JH8194. 

As the results of Figure 3 show, soluble JH8194 surprisingly enhanced mRNA expressions of initial 

osteoclast differentiation markers; Runx2 [17] and OPN [16] expressed by MC3T3-E1 cells, in a dose-

dependent manner. However, no similar enhancement of the genes was observed, when the exposure 

of soluble JH8194 started at the inoculation (data not shown). The function of soluble JH8194 on the 

osteoblast differentiation may be dependent on the conditions of the cells, although the mechanisms of 

the action by soluble JH8194 on the osteoblast cells were unclear. The extracellular matrix and its 

derivative including collagen [18,19], fibronectin [20], vitronectin [20] and RGD peptide [21] 

enhanced the cell attachment on and spreading to the titanium surface, which could consequently lead 

to the cell proliferation and differentiation. Different from the extracellular matrix, soluble JH8194 

may bind to the cell surface and directly induce osteoblast differentiation through the signal 

transduction, which might be likely to the function of growth factors such as BMP [14]. 

We previously reported that OPG immobilized on the titanium surface by the same immobilization-

method used in the present study was slowly released from the titanium surface [8], which would 

support a possibility that immobilized-JH8194 was a slow carrier for JH8194. Therefore, we attempted 

to examine the effect of immobilized-JH8194 on the osteoblast differentiation. To our surprise, 20 M 
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JH8194-Ti surface accelerated the initial differentiation (Figure 4), as soluble JH8194 did. Similarly, 

there were increases of ALPase activity, which is a maturation-stage marker during osteoblastogenesis 

[22], by immobilized-JH8194, but those were not significant (Figure 5). At least, the data in the 

present study support to prove the hypothesis that JH8194-immobilizad on titanium specimens could 

enhance the initial differentiation of osteoblast cells, consequently resulting in slight increase of 

ALPase activity. It was speculated that the functional JH8194 might remain on the titanium surface 

without degradation, or that immobilized-JH8194 could be slowly released from the surface of 

titanium. Thus, JH8194-titanium produced by the present method may be used as a carrier for a slow 

delivery of JH8194, which was a new factor for inducing the initial osteoblast differentiation. Further 

research may include studies in animals to validate the findings. On the other hand, it was difficult to 

examine whether mechanical forces simulating insertion of dental implants cause abrasion of JH8194 

binding to titanium surface or not, since the proper in vitro methodology was not still established. 

However, the surgical procedure was reported in order to avoid abrasion of the material coating on the 

titanium surface during insertion [15]. In addition, JH8194 was immobilized through covalently 

bonding to the titanium surface, hence the risk of drop out of the peptides by abrasion seems to be 

minimal. Further study, such as an in vivo assay should clarify the issue. 

Taken together, the results in the present study suggest that JH8194, an antimicrobial peptide 

derived from histatin we produced, can be immobilized on a titanium surface by our immobilization 

method and that it retained its antimicrobial activity after the immobilization process. Moreover, it was 

suggested that JH8194-immobilized on titanium specimens initially enhanced not proliferation but 

differentiation of the osteoblast cells. Although further studies are required to understand the two 

mechanisms of JH8194 in inhibiting P. gingivalis biofilm formation and inducing the osteoblast 

differentiation, JH8194 is a candidate for surface substrates in dental implants in order to enhance the 

acquisition of osseointegration and decrease infection, leading to an increased ratio of treatment 

success. In the next step, in vivo experiments using dog mandibles and titanium screw fixtures which 

surfaces are entirely or partly immobilized with JH8194 will help to prove that JH8194 remaining on 

the surface of the fixture inserted according to the surgical procedure for avoiding friction [15] can 

protect infection and simultaneously accelerate bone formation around dental implants.  

3. Experimental Section 

3.1. Purity of a Synthetic Peptide; JH8194 

The peptide JH8194 was synthesized at Greiner Bio-One Co., Ltd. (Tokyo, Japan) [9]. 

3.2. Immobilization of the Synthetic Cationic Peptide; JH8194, on Titanium Surfaces 

Pure wrought titanium (cp-titan) disks (JIS, Japan Industrial Specification H 4600, 99.9 mass% 

titanium, diameter 15 mm; Kobelco, Kobe, Japan) were purchased and used in the experiments. 

Preparation and immobilization of JH8194 on the titanium surface was carried out in accordance with 

the previous studies [8,23–26]. In brief, titanium specimens were immersed in 5%  

-aminopropyltriethoxysilane in acetone for 15 min at room temperature and washed with acetone. 

Subsequently, specimens were treated with 5% glyoxylic acid monohydrate for 2 hours, and then 
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washed with ultra-pure water. Then the surfaces of the specimens were treated with 0.4% sodium 

borohydride (NaBH4) for 24 hours, to reduce the imine to amine groups. After this series of  

pre-treatment, the titanium was washed with ultra-pure water and autoclaved. Then, the carboxyl 

groups on the surfaces of specimens were activated with N-hydroxysuccinimide (NHS)/N-ethyl-N’-(3-

dimethylaminopropyl)-carbodiimide (EDC) (BiaCore AB, Uppsala, Sweden), and treated with  

1, 5, 10 and 20 M JH8194 in sodium bicarbonate buffer (pH 8.0) for 30 min at 37 °C, to immobilize 

JH8194 on the surface. After washing with phosphate-buffered saline (PBS) to remove any excess 

JH8194, the activated carboxyl groups were blocked by a 5-min treatment with 1 M ethanolamine-HCl 

(BiaCore AB) (JH8194-Ti). Blocking-Ti was prepared by treatment of titanium specimens with 1 M 

ethanolamine-HCl immediately after the carboxyl groups were activated by NHS/EDC treatment 

(blocking-Ti). Untreated-titanium specimens were also used as control specimens (control-Ti). The 

diameter of the cylindrical-shaped titanium disc fit within the well of a standard 24-well tissue culture 

plate [27]. 

3.3. Microorganism and Growth Conditions 

P. gingivalis isolated from the oral cavity of a patient was used in this assay. A loopful of the 

microbial was inoculated in Brain Heart Infusion broth (BHI, Difco, Detroit, USA) containing  

5.0 g/mL hemin and 1.0 g/mL menadione, and grown anaerobically at 37 °C. After seven days 

culture, the microbial was harvested in the late exponential growth phase, washed twice with PBS and 

resuspended to a final concentration of 108 cfu/mL by a spectrophotometeric method. 

3.4. Biofilm Assay 

The colonization assay was conducted as follows. After preparation for Ti plates (control-Ti, 

blocking-Ti and JH8194-Ti), 50 L of microbial suspension (1 × 108 cfu/mL) was inoculated into each 

titanium specimen to promote microbial adherence and colonization at 37 °C for two hours. 

Subsequently, 2.0 mL of BHI supplemented with hemin and menadione was carefully dispensed into 

each well, and incubated for four days at 37 °C in an anaerobic condition. Afterwards each specimen 

was washed carefully by rising three times with PBS to remove loosely adherent organisms, then  

1.0 mL of PBS was added and biofilms diffused by pipetting. The resultant biofilm suspension was 

then inoculated into a cuvette and subjected to optical density (OD)-measurements to quantify the 

microbial growth in each well. 

3.5. Culture of MC3T3-E1 

The MC3T3-E1 cell line was purchased from the European Collection of Cell Cultures (ECACC, 

Wiltshire, UK). MC3T3-E1 cells were cultured in α-MEM supplemented with an antibiotic mixture 

(Invitrogen, Carlsbad, CA, USA), 10% fetal bovine serum (FBS) (Biological Industries, Haemek, 

Israel) and 50 g/mL L-ascorbic acid (Sigma, St. Louis, MO, USA). MC3T3-E1 cells were maintained 

for each experiment at 37 °C under 5% CO2/95% humidified air. During culture, the medium was 

refreshed at three-day interval. 
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3.6. MTS Assay 

MC3T3-E1 cells were seeded onto 96-well plate (Becton Dickinson, Franklin Lakes, NJ, USA) at a 

density of 1.0  104 cells/well and cultured for four days in the presence of soluble JH8194 at the range 

of 0 to 100 M. Suspended cells were removed by gentle rinsing with PBS and the number of adherent 

cells remaining in each well was then quantified using a coupled enzymatic assay, which resulted in 

the conversion of a tetrazolium salt into a red formazan product (MTS assay, CellTiter 96 Aqueous 

Non-Radioactive Cell Proliferation Assay, Promega, Madison, WI, USA) [28]. Recording of the 

absorbance at 490 nm in the MTS assay was carried out using a microplate reader (Bio-Rad, Hercules, 

CA, USA). 

3.7. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) Analysis 

MC3T3-E1 cells were seeded onto 24-well plates (Becton Dickinson) or the surface of titanium 

specimens placed on the bottom of the same plates, at a density of 5.0  104 cells/well or titanium 

specimen, and maintained for seven days. Total RNA was extracted using TRIzol reagent (Invitrogen), 

and first-strand cDNA was synthesized from total RNA (100 ng) using ReverTra Ace reverse 

transcriptase (Toyobo). The cDNA was then amplified by BIOTAQ DNA polymerase (Bioline, 

Randolph, MA, USA). For each gene, a cycle curve experiment was performed, and the optimal 

number of PCR cycles was selected according to the results. Osteoblastic gene expressions for Runx2 

and OPN were analyzed by RT-PCR. The gene encoding -actin was used as internal control. The 

sequences of forward and reverse primers for OPN were 5’-ACACTTTCACTCCAATCGTC-3’ and  

5’-TGCCCTTTCCGTTGTTGTCC-3’. The sequences of other primers used in these analyses were 

previously described [17]. 

3.8. Measurement of Alkaline Phosphatase Activity  

To determine the effect of titanium immobilized with JH8194 on alkaline phosphatase (ALPase) 

activity was analyzed using ALPase activity kit (p-Nitrophenyl Phosphate Liquid Substrate System, 

Sigma). Cells were seeded and the medium was replaced at three-day intervals until analysis. ALPase 

activity was measured in each cell layer after 7, 14 and 21 days in culture. Cell layers were gently 

rinsed three times with PBS. Each cell layer supplemented with 0.2% TritonX-100 in saline was 

homogenized three times (10 seconds/time) on ice, using the micro-homogenizer (ULTRA-

TURRAX®, As One, Osaka, Japan), and the homogenates were then centrifuged for 5 min at  

13,000  g in order to eliminate the dissolved fractions such as the cell debris, prior to collection of the 

supernatant containing the alkaline phosphatase. The isolated samples of supernatants and the standard 

enzyme of calf alkaline phosphatase were incubated with the substrate for 30 min at 37 °C, in 

accordance with the indicated procedures. The optical density was measured at 405 nm in the 

microplate reader (Model 550, Bio-Rad Laboratories, Tokyo).  

Estimation of protein content was carried out using a Coomassie Plus Assay Kit (Thermo Fisher 

SCIENTIFIC, Yokohama). The optical density was measured at 595 nm in the microplate reader 

(Model 680, Bio-Rad), according to the procedure. Collectively, the enzyme activity was expressed as 

units per milligram of total proteins, based on the data by ALPase activity and Coomassie Plus Assay kits.  
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3.9. Data Analysis 

Differences among average values of groups were subjected to a one-way analysis-of-variance 

(ANOVA) and Tukey’s multiple range test. 

4. Conclusions  

This study suggested that a new antimicrobial peptide JH8194-immobilized titanium may be a new 

strategy to protect early infection in replacement surgery of implant fixtures and to shorten the period 

of acquisition of osseointegration. 
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