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We performed a dosimetric comparison of sequential IMRT (sIMRT) and simul-
taneously integrated boost (SIB) IMRT to boost PET-avid lymph nodes while 
concurrently treating pelvic targets to determine the potential of SIB IMRT to 
reduce overall treatment duration in locally advanced cervical cancer. Ten patients 
receiving definitive radiation therapy were identified retrospectively. RTOG 
consensus guidelines were followed to delineate the clinical target volume and 
organs at risk (OAR), which were then expanded per IMRT consortium guidelines 
to yield the planning target volume (PTV). Dosimetric parameters for PTVs and 
OAR including conformity (CI95%) were collected and compared using Wilcoxon 
signed-rank tests with Bonferroni correction. The median PTV volume was 1843 cc 
(1088–2225 cc) and the median boost volume was 43 cc (15–129 cc). Comparable 
target volume coverage was achieved with sIMRT and SIB plans, while hot spots 
were significantly reduced using SIB. SIB plans improved sparing for all OAR, 
though only rectum and small bowel doses were statistically significant. Comparing 
sIMRT and SIB plans averaged over all patients, rectal doses were V45: 70.8% vs. 
64.5% (p = 0.002) and 0.1 cc: 50.7 Gy vs. 48.7 Gy (p = 0.006). For small bowel, 
sIMRT and SIB IMRT plans yielded V45: 13.4% vs. 11.4% (p = 0.006) and 1 cc: 
54.4 Gy vs. 52.6 Gy (p = 0.006), respectively. Doses to femoral heads and blad-
der trended towards significance in favor of SIB plans. The mean treatment time 
was 25 versus 29 days for SIB and sIMRT plans, respectively. When compared to 
sIMRT, SIB for treatment of nodal targets provides a significant, but small, dose 
reduction (3.8%–4.4%) to OAR, which leads to comparable biological dose despite 
higher fractional doses. Furthermore, SIB IMRT reduces overall treatment time and 
simplifies the planning process, and should be considered for targeting PET-positive 
nodal disease in patients with locally advanced cervical cancer.
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I.	 INTRODUCTION

Cervical cancer is the third most common gynecologic cancer, with over 11,000 new diagnoses 
leading to over 3,900 deaths annually in the United States.(1) For locally advanced disease, 
concomitant cisplatin-based chemoradiation is considered the standard of care for definitive 
treatment of intact cervical cancer. However, severe acute and late gastrointestinal and genito-
urinary toxicities are a significant concern.(2,3) Intensity-modulated radiation therapy (IMRT) 
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for locally advanced cervical cancer has emerged as an advantageous technique for external 
beam radiation therapy. IMRT delivers radiation while minimizing doses to nearby organs at 
risk (OAR), such as the small bowel, bladder, rectum, and bone marrow.(4–7) 

NCCN guidelines recommend treatment of intact cervical cancer with external beam radio-
therapy (EBRT) to 45 Gy in conventional fractionation (1.8–2 Gy), with a brachytherapy boost 
to the cervix and uterus prescribed such that accumulated dose from EBRT and brachytherapy to 
point A reaches ≥ 80 Gy.(8) According to NCCN, EBRT doses of 10–15 Gy may be considered 
for adenopathy. Thus, patients with lymph node involvement often receive additional external 
beam boost doses to the nodal volumes.(9) This sequential external beam boost(10,11) would 
extend the total treatment time, particularly if delivered prior to brachytherapy, and could also 
have potential dosimetric disadvantages with respect to dose to surrounding normal structures 
due to the additional boost dose. In contrast, simultaneously integrated boost (SIB) IMRT 
schemes deliver the initial and boost doses together in a smaller number of fractions, resulting 
in a shorter overall treatment time. Many retrospective studies, including one from our own 
institution,(12) have shown that extended treatment time decreases pelvic disease control in this 
patient population.(13–15) 

A study comparing sequential IMRT (sIMRT) and SIB IMRT treatment plans in various 
cancers revealed a marked increase in sparing of critical structures and increased conformity 
to target volumes.(16) This suggests that SIB IMRT may deliver smaller doses to nontarget tis-
sues, thus reducing toxicity to organs at risk during pelvic irradiation. A previous dosimetric 
comparison of sequential versus SIB IMRT plans in locally advanced vulvar carcinoma patients 
indicate that higher doses may be delivered to target volumes using SIB IMRT plans with no 
significant increase in radiation to surrounding organs.(17) Thus, we performed a paired dosi-
metric comparison of sIMRT and SIB IMRT to treat the pelvic targets while either sequentially 
or simultaneously boosting PET avid lymph nodes in locally advanced cervical cancer.(11,18) 
Our goal was to assess dose to target volumes and organs at risk to determine the potential of 
SIB IMRT to reduce overall treatment duration.

 
II.	 MATERIALS AND METHODS

A. 	 Patient identification
Data from all patients with intact cervical cancer and PET-avid lymph nodes treated from 
2009–2014 were retrospectively collected under institutional review board approval. All 
eligible 10 patients underwent CT simulation, which encompassed volumes from the sixth 
thoracic vertebral body to 5 cm below the femoral heads using CT slices of 3 mm thickness. 
Patients were simulated using contrast, as shown in Table 1, and treated in the supine position 
with customized alpha cradles. Patients (n = 4) treated more recently were simulated under 
empty and full bladder conditions to delineate a PTV that covered the uterus while accounting 
for organ motion. For patients (n = 6) treated with a sequential boost, a second simulation was 
performed 7–10 days prior to boost irradiation.

The Radiation Therapy Oncology Group (RTOG) consensus guidelines were followed 
for delineation of the clinical target volume (CTV) and organs at risk. The OAR contoured 
included the rectum, small bowel, bladder, femoral heads, and bone marrow. The target volumes 
included the gross tumor, cervix, uterus, parametria, upper portion of the vagina, and regional 
lymph nodes. For this study, boost volumes consisting of the PET-avid regional lymph nodes, 
were contoured on the original pretreatment CT scan for SIB plans. Expansion of the nodal 
CTV by a 7 mm margin and expansion of the cervical CTV by a 15 mm margin, per IMRT 
consortium guidelines, yielded the PTV.(19,20) All contours were approved by a gynecologic 
radiation oncologist.
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B. 	 Treatment planning
Pinnacle (Version 9.0-9.2; Philips Medical System, Milpitas, CA) was used to generate all 
treatment plans. Inverse-planned IMRT calculations used seven to nine static fields with  
photon beams of 6 MV. A heterogeneity correction was applied for dose calculations and  
contrast in bladder, rectum, and small bowel was overridden to a density of 1.0 for all patients. 
All patients received a dose of 45 Gy in 25 fractions of 1.8 Gy to the pelvic PTV. Boost  
doses were limited by doses to OAR and ranged from 5.4–10.8 Gy (median = 9.5 Gy),  
but remained the same for both sIMRT and SIB plans generated for each patient to enable 
paired comparisons. For example, an sIMRT plan generated to treat the pelvic PTV to 45 Gy 
with a nodal boost to 10 Gy in a total of 30 fractions was compared to an SIB plan treating the 
targets to the same doses in 25 fractions (i.e., 1.8 Gy per fraction to the pelvic PTV and 2.2 Gy 
per fraction to the boost PTV). Plans were optimized to achieve at least 95% coverage of the 
PTV with 95% of the prescribed dose while minimizing the volume that received more than 
110% of the prescribed dose and maximally sparing the OAR, including small bowel, bladder, 
rectum, and bone marrow. 

Table 1.  Patient and treatment characteristics.

		  Patients 
	 Characteristic	  (N = 10)

	 Median Age	 49
	 Range	 29–65

	 Stage
	 IB	 2
	 IIA	 1
	 IIB	 4
	 IIIB	 3

	 Nodal Boost Location
	 Pelvic only	 7
	 Para-aortic only	 2
	 Pelvic & Para-aortic	 1

	 Target Doses and Volumes
	 Pelvic Dose	 45 Gy

	 Median Boost Dose	 9.5 Gy
	 Range	 5.4–10.8 Gy

	 Median PTV Volume 	 909 cc
	 Range	 1088–2351 cc 

	 Median Boost Volume 	 43 cc
	 Range	 15–135 cc

	 Concurrent Chemotherapy
	 Cisplatin	 10

	 Immobilization
	Upper and lower alpha-cradles	 10

	 Image Guidance
	 kV	 10
	 CBCT	 4

	 Simulation Contrast
	 Intravenous (IV)	 6
	 Oral	 10
	 Rectal	 10
	 Bladder	 10
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Composite doses for sIMRT and SIB plans were consistently assessed on the initial plan-
ning CT scan despite the fact that patients treated with a sequential boost received a second 
simulation CT scan. To accomplish this, the boost PTV was delineated on the sequential CT 
scan and its treatment beams were rigidly registered (Pinnacle 9.0–9.2) to the initial CT scan 
to enable dose summation for sIMRT plans. SIB plans were developed using only the initial 
CT scans. For all other patients who had one CT simulation scan, sIMRT and SIB plans were 
developed and calculated on this initial CT scan. Following EBRT completion, patients received 
brachytherapy with either LDR to 30 Gy in a single insertion or using HDR in five insertions 
per ABS guidelines.(13,21)

C. 	 Data analysis
Dosimetric parameters were collected for the PTVs and OAR for metrics defined in the 
INTERTECC protocol.(22) The conformity ratio (CI95%), defined as the ratio of the 95% dose 
volume to the PTV volume, was also collected for the pelvic and boost PTVs. For each patient, 
matched pairs of treatment plans (i.e., sIMRT and SIB) were compared using a paired non-
parametric test. Wilcoxon signed-rank tests (JMP-version 9; Cary, NC) at the 5% significance 
level were used for all statistical comparisons. Bonferroni correction was used to account for 
multiple comparisons; the p-value of 0.05 was divided by the number of comparisons made 
for each single organ, as calculated in Table 2.

The biological dose equivalent to 2 Gy fractions (EQD2) was also calculated for maximum 
dose points for OAR, using the equation:(23)

		  (1) 
	

EQD2 = D ×
d + α/β
2 + α/β[ ]

where D is the total physical dose, d is the physical dose per fraction, and α /β = 3 as recom-
mended by the ABS.(13) Wilcoxon signed-rank tests at the 5% significant level were used to 
compare EQD2 among paired plans as described previously.
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Table 2.  Physical doses to target volumes and OAR for both sIMRT and SIB plans.

		  Sequential IMRT	 SIB IMRT
		  (mean)	 (mean)	 p-value

	 Pelvic PTV			   p < 0.05/5 = 0.01
	 V90%	 99.9%	 99.9%	 0.102
	 V95%	 99.7%	 99.4%	 0.014
	 V110%	 20.2%	 7.5%	 0.001a

	 V115%	 9.3%	 5.4%	 0.002a

	 CI95%	 0.996	 0.988	 0.115

	 Boost PTV			   p < 0.05/5 = 0.01
	 V90%	 100%	 100%	 0.500
	 V95%	 99.6%	 100%	 0.625
	 V110%	 0.0%	 0.0%	 1.000
	 V115%	 0.0%	 0.0%	 1.000
	 CI95%	 0.996	 1.000	 0.264

	 Rectum			   p < 0.05/6 = 0.008
	 Mean	 44.0 Gy	 43.0 Gy	 0.020
	 2 cc	 49.7 Gy	 47.3 Gy	 0.006a

	 1 cc	 50.0 Gy	 47.6 Gy	 0.006a

	 0.1 cc	 50.7 Gy	 48.7 Gy	 0.002a

	 V30	 94.5%	 94.8%	 0.770
	 V45	 70.8%	 64.5%	 0.002a

	 Bladder			   p < 0.05/6 = 0.008
	 Mean	 43.2 Gy	 42.4 Gy	 0.065
	 2 cc	 49.2 Gy	 48.0 Gy	 0.020
	 1 cc	 49.5 Gy	 48.2 Gy	 0.016
	 0.1 cc	 50.1 Gy	 48.6 Gy	 0.014
	 V30	 95.3%	 95.2%	 0.695
	 V45	 58.4%	 53.7%	 0.027

	 Small Bowel			   p < 0.05/7 = 0.007
	 Mean	 25.4 Gy	 25.1 Gy	 0.375
	 250 cc	 37.1 Gy	 36.3 Gy	 0.193
	 2 cc	 53.3 Gy	 51.2 Gy	 0.010
	 1 cc	 53.7 Gy	 51.6 Gy	 0.006a

	 0.1 cc	 54.4 Gy	 52.6 Gy	 0.010
	 V30	 32.6%	 31.4%	 0.625
	 V45	 13.4%	 11.4%	 0.006a

	 Bone Marrow			   p < 0.05/6 = 0.017
	 Mean	 28.6 Gy	 27.9 Gy	 0.084
	 V10	 91.6%	 91.2%	 0.981
	 V20	 78.9%	 78.0%	 0.625

	Femoral Heads			   p < 0.05/6 = 0.017
	 Mean	 16.4 Gy	 15.6 Gy	 0.285
	 0.1 cc	 44.6 Gy	 46.1 Gy	 0.006a

	 V30	 11.6%	 11.7%	 1.000

a	 Dosimetric parameters were significantly different between plans.
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III.	 RESULTS 

Dosimetric parameters collected for each volume are listed in Table 2. There was no signifi-
cant change in nodal boost volume between the initial and boost simulation scans (p = 0.137). 
Comparable pelvic target volume coverage (V90% and V95%) was achieved with sequential 
boost and SIB plans, while hot spots (V110% and V115%) were significantly reduced using 
SIB. Coverage of boost target volumes was similar in both treatment groups, with little dose 
heterogeneity (Fig. 1).

Sparing of surrounding organs at risk was improved using SIB plans, though only differences 
in rectum and small bowel doses were statistically significant. The parameters measuring high 
doses were most reduced between sequential and SIB groups, especially V45, and maximum 
doses to 2 cc, 1 cc, and 0.1 cc (see dose-volume histograms in  Fig. A1 in Appendix A). Statistical 
improvements in physical dose indicated that SIB matched or surpassed the dose metric from 
the sIMRT plan for each of the 10 patients studied, as shown in the plots on the left-hand side 
of Fig. 2. Significant reductions in physical doses to 2 cc, 1 cc, and 0.1 cc of the rectum and 
small bowel ranged between 3.9%–4.8% when averaged among all patients. 

The doses to the bladder trended towards significance in favor of SIB plans, again illustrat-
ing the largest difference at the highest doses (Fig. 2). Dose to bone marrow was comparable 
between plans, with a slight improvement in sparing from the SIB plans. There was a statisti-
cally significant increase in the 0.1 cc dose to femoral heads in SIB versus sequential IMRT. 
However, mean doses and V30 parameters for femoral head volumes showed no difference 
between treatment schemes. 

Maximum doses to small volumes of the OAR recalculated to equivalent 2 Gy fractions 
are listed in Table 3. Although physical doses to 2 cc, 1 cc, and 0.1 cc of certain OAR were 
significantly reduced by SIB (Table 2), there were no statistically significant differences in 
EQD2, with the exception of dose to 0.1 cc of the femoral heads (Table 3). Figure 2 depicts 
EQD2 (right-hand side) for each of the 10 patients next to the physical dose plots (left-hand 
side) for 1 cc to the rectum, small bowel, and bladder. These plots demonstrate that, even 
though physical doses were significantly reduced by SIB for the rectum and small bowel (first 
and second rows), EQD2 is comparable for both plan types. The median treatment time was 
25 versus 30 days for SIB and sIMRT plans, respectively.

 

Fig. 1.  Dose distribution in axial and two coronal views obtained by sIMRT and SIB IMRT plans. SIB provides equally 
conformal (CI95%) and more homogenous doses (see V95%, V110%) to target volumes (colorwash) while sparing OAR 
(see yellow arrow).
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Fig. 2.  Scatter plots of physical dose and EQD2 to 1 cc of the rectum ((a), (b)), small bowel ((c), (d)), and bladder ((e), 
(f)) for each patient’s sIMRT (blue markers) and SIB plan (red markers). For each patient, SIB significantly reduced 1 cc 
physical dose to the rectum and small bowel but not the bladder. For all OAR, EQD2 was comparable for both sIMRT 
and SIB plans despite the larger fractional dose delivered by SIB to nodal targets. 

Dose EQD2
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IV.	 DISCUSSION

Previous studies have illustrated the improved conformity and homogeneity during delivery of 
radiation therapy using SIB IMRT over sequential IMRT in a variety of anatomic sites.(16,17) 
While some authors have investigated the use of SIB for replacing the brachytherapy boost 
of gross disease,(23) there is no thorough dosimetric analysis of these parameters for boosting 
nodal targets in locally advanced cervical cancer. This study compares the treatment plans 
generated using sequential and SIB IMRT in patients with varying nodal boost locations. We 
found that SIB IMRT, when compared to sequential IMRT, provides comparable target cover-
age while reducing the volumes of doses higher than the prescription to the PTV. Our study 
also demonstrated improved OAR sparing, particularly for high doses to small volumes of the 
rectum and small bowel. 

A similar comparison of these treatment schemes in vulvar carcinoma patients yielded 
comparable sparing of nearby structures, with differences in favor of SIB IMRT for the small 
bowel.(17) Our results are consistent with these previous findings, but show greater sparing of 
organs-at-risk, including those partially embedded within the target volumes. A recent study 
from Bern Hospital showed SIB to PET-avid lymph nodes resulted in comparable two-year, 
disease-free survival and acute toxicities to previously published studies involving sequential 
IMRT for cervical cancer patients.(24) However, the authors note a concern with risk of acute 
bowel injury and lack of supporting data for doses exceeding 50 Gy, particularly with SIB to 
para-aortic regions. In contrast, Vargo et al.(11) reported on a retrospective series of patients 
treated with extended field IMRT with concomitant nodal boost to a median dose of 55 Gy 
delivered in 25 fractions, and found the regimen was well tolerated and provided adequate 
nodal control. Verma et al.(25) focused on duodenal data from patients treated with extended 
field SIB IMRT, which demonstrated that the rate of duodenal injury is associated with V55 and 
significantly increases as V55 exceeds 15 cm3. Alternatively, Poorvu et al.(10) did not find any 
correlation between duodenal or other gastrointestinal toxicities and dose when nodal boosts of 
up to 65 Gy were delivered. We found the small bowel doses to 2 cc and 0.1 cc were actually 
lower in the SIB plans for almost all patients, including those with para-aortic boost volumes. 
However, we acknowledge that proximity or overlap of the boost volume to surrounding normal 
tissue is an important factor to consider when choosing a treatment plan, as SIB IMRT would 

Table 3.  Biologically equivalent doses in 2 Gy fractions (EQD2) for maximum point doses to OAR (α/β = 3) for 
both sIMRT and SIB plans.

		  Sequential IMRT	 SIB IMRT
		  (mean)	 (mean)	 p-value

	 Rectum
	 2 cc	 46.7 Gy	 46.2 Gy	 0.51
	 1 cc	 47.1 Gy	 46.7 Gy	 0.51
	 0.1 cc	 48.0 Gy	 48.1 Gy	 0.58

	 Bladder
	 2 cc	 46.1 Gy	 47.3 Gy	 0.09
	 1 cc	 46.5 Gy	 47.5 Gy	 0.11
	 0.1 cc	 47.3 Gy	 48.1 Gy	 0.28

	 Small Bowel
	 2 cc	 51.4 Gy	 51.7 Gy	 0.80
	 1 cc	 51.9 Gy	 52.3 Gy	 0.65
	 0.1 cc	 52.9 Gy	 53.8 Gy	 0.39

Femoral Heads
	 0.1 cc	 40.5 Gy	 44.8 Gy	 0.005a

a	 Dosimetric parameters were significantly different between plans.
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subject a larger volume of the organ at risk to higher doses of radiation. Additional clinical 
experience is needed to prospectively assess the translational value of this data and potential 
risk of bowel injury with a higher radiobiological dose delivered with SIB.

Organ motion and CTV regression during treatment are also important factors to consider 
when prescribing higher doses to a boost volume. Herrera et al.(26) used weekly on-board mega-
voltage CT to track target volume motion and regression during six weeks of treatment. The 
pelvic CTV volume decreased over six weeks for all patients, but did not result in underdos-
ing except in the two patients whose uteri became retroverted during the course of treatment. 
Bladder and rectum volumetric change and movement between fractions were also shown to 
significantly contribute to CTV underdosage. Planned and delivered doses to OAR at the end of 
treatment were not statistically different when considering the entire cohort. These findings are 
particularly important for patients in which the boost PTV volume is adjacent to or involves an 
OAR. The investigators of this study did not study motion of the nodal CTV, however, because 
they acknowledged that little motion is expected for nodal volumes that track bony anatomy.  

SIB delivers a lower dose to surrounding OAR, especially rectum and small bowel, despite 
boosting a similar nodal volume. We found that dose differences between sequential and SIB 
IMRT schemes occurred consistently at the highest dose values. This implies that SIB allows 
for improved control of hot spots and redistribution of higher doses away from organs at risk. 
It is difficult to control the overlap of hot spots when creating a sequential boost treatment plan 
after the initial treatment.(16) Thus, the improved benefit provided by SIB to OAR likely lies in 
the nature of its prospective and inclusive planning. 

Wilcoxon signed-rank tests were used to provide a nonparametric comparison of the data 
pairs, which are not assumed to be normally distributed. We used a Bonferroni correction to a 
significance level of p < 0.01 to provide the most conservative approach, given the small sample 
size. However, this reduces the power of our analysis to detect true differences between SIB and 
sequential IMRT plans, in particular with regard to the bladder DVHs. Using a less conserva-
tive level of significance of p < 0.05, the differences in doses to various bladder parameters 
are also statistically significant. 

There are some limitations to our findings. The small sample size and treatment character-
istic variations among patients may affect generalizability. All patients with locally advanced 
cervical cancer and PET-avid lymph involvement treated at our institution from 2009–2014, 
for a total of 10, were included in this study. Although there was considerable variability in the 
nodal target location of the patients and in the treatment planning techniques (i.e., four patients 
were treated with SIB), we found that sample size did not greatly diminish the power of our 
study to detect significant differences between the two treatment modalities due to the power 
of the paired statistical test. In other words, each patient’s sIMRT plan was compared to its 
corresponding SIB plan, thereby controlling for variations in nodal target characteristics. All 
SIB plans were developed on the initial CT scan to control for the patients treated with SIB. 
The inherent differences in dose distributions from treatment plans created by two different 
users may also affect results. We attempted to standardize this aspect with the usage of com-
mon OAR dose restrictions and thorough review by a single radiation oncologist to ensure 
clinically acceptable treatment plans. There were only two planners and 40% of the patients 
were treated with SIB, thus the proportion of sIMRT to SIB plans developed by each planner 
was comparable (6:4 vs. 4:6). With the retrospective design, the second planner consistently 
developed plans with a priori information and attempted to outperform the first planner regard-
less of whether planning sIMRT or SIB. Despite this effort, the dosimetric metrics for sIMRT 
plans were consistently inferior for each of the 10 patients, as shown in Fig. 2. In fact, for all 
the dosimetric parameters in Table 2 which were significantly improved by SIB planning, SIB 
outperformed sIMRT in 90%–100% of cases that were distributed among patients.  

Delivering dose to OAR at a higher fractional dose could potentially increase toxicity. 
Thus, we calculated biological doses equivalent to 2 Gy fractions for doses to small volumes  
(i.e., 2 cc, 1 cc, 0.1 cc) of OAR for each sIMRT and SIB plan for all patients (Table 3). Our 
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results demonstrate that the small dosimetric advantage afforded by SIB leads to equivalent 
EQD2 doses for rectum, small bowel, and bladder. This implies that toxicities to these OAR are 
expected to be comparable. In fact, this has already been verified in a clinical study by Vargo et 
al.(11) which also demonstrated adequate control of nodal disease and comparable toxicities to 
OAR when treated to 55 Gy in 25 fractions. In the case of the femoral heads, EQD2 to 0.1 cc 
was significantly worse in our SIB plans. This may be due to the fact that the femoral heads are 
located out of the primary radiation field and it is difficult to control out-of-field point doses. 
Furthermore, this parameter was not explicitly included in the planning constraints. 

SIB affords several workflow and clinical advantages. Our study demonstrates that doses of 
up to 10 Gy to nodal targets can be safely incorporated into IMRT plans treating pelvic PTVs 
to 45 Gy without increasing the biological dose to OAR. Not only could this streamline the 
planning process, allowing hot spots to be reduced as shown in our study, but this could reduce 
the overall treatment duration by 5 fractions. The reduction in treatment time is of particular 
clinical significance as previous work from our institution(12) and others(13–15) has demonstrated 
that protracted treatment duration compromises local control in this patient population. Because 
nodal targets are not expected to be greatly affected by organ motion(26) and because modest 
doses are indicated for nodal targets by NCCN guidelines, this is an ideal scenario in which to 
harness the power of SIB planning. To our knowledge, this is the first study to demonstrate the 
advantages of SIB over sIMRT for boosting PET-avid nodal targets in locally advanced cervi-
cal cancer in a systematic manner. In fact, our results which demonstrate that SIB is expected 
to produce comparable toxicity and adequate nodal control, have been verified in a single-
institutional clinical trial using SIB to boost nodal targets to 55 Gy while delivering 45 Gy to 
the pelvic PTV in 25 fractions.(11) When coupled with the clinical data that SIB treatment of 
nodal targets is well tolerated, our study indicates that SIB planning warrants clinical adoption 
for the treatment of nodal targets in cervical cancer.   

 
V.	 CONCLUSIONS

Our study demonstrated a significant dosimetric advantage of SIB IMRT when compared to 
sIMRT for the external beam irradiation of cervical cancer targets, which reduced high doses 
to both OAR and PTVs. Although the magnitude of dose reductions to small volumes of the 
rectum and small bowel were small (3.8%–4.3%), this resulted in comparable biological doses 
despite the higher fractional dose to nodal targets. Given the dosimetric parity to surrounding 
organs at risk and decreased overall treatment time by 5 fractions, in addition to the decreased 
time needed for calculation and implementation of multiple treatment plans, SIB IMRT merits 
clinical adoption for treatment of locally advanced cervical cancer.
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APPENDICES

Appendix A:  DVH Plots

Fig. A1.  Individual dose-volume histogram (DVH) plots of physical dose to rectum, small bowel, and bladder for each 
patient’s sIMRT (blue lines) and SIB plan (red lines). SIB plans provide more OAR sparing over sIMRT at the highest doses.

Rectum
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Small Bowel

Fig. A1 (continued). Individual dose-volume histogram (DVH) plots of physical dose to rectum, small bowel, and bladder 
for each patient’s sIMRT (blue lines) and SIB plan (red lines). SIB plans provide more OAR sparing over sIMRT at the 
highest doses.
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Fig. A1 (continued). Individual dose-volume histogram (DVH) plots of physical dose to rectum, small bowel, and bladder 
for each patient’s sIMRT (blue lines) and SIB plan (red lines). SIB plans provide more OAR sparing over sIMRT at the 
highest doses.

Bladder


