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Abstract: Parkinson’s Disease (PD) is a neurodegenerative disease, leading to motor and non-
motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor
defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals
impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central
nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional
communication between the gut and the brain. The bioaccumulation of metals promotes stress
mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut–brain link.
To better understand the differing molecular mechanisms underlying PD, integrative modeling
approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By
exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to
PD onset, the modification of the host-associated microbiome to mitigate neurological stress may
be a future treatment option against neurodegeneration through bioremediation. The progressive
movement towards a systems toxicology framework for precision medicine can uncover molecular
mechanisms underlying PD onset such as metal regulation and microbial community interactions
by developing predictive models to better understand PD etiology to identify options for novel
treatments and beyond. Several methodologies recently addressed the complexity of this interaction
from different perspectives; however, to date, a comprehensive review of these approaches is still
lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by
reviewing recently published papers to address the surrounding questions regarding the underlying
molecular mechanisms between metals, microbiota, and the gut–brain-axis, as well as the regulation
of this system to prevent neurodegeneration.

Keywords: heavy metals; neurotoxicity; Parkinson’s disease; ROS; human microbiome; systems
toxicology

1. Introduction
1.1. What Is Parkinson’s Disease?

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and
affects nearly 1% of the population above 60 years of age [1]. PD is characterized by motor
and non-motor symptoms, characterized by striatal dopamine depletion and alterations
in neurochemicals [2]. Although motor impairment is critical to disease development,
non-motor symptoms become evident prior to the emergence of motor dysfunction [3].
PD non-motor symptoms are related to gastrointestinal (GI) dysfunction, followed by
motor dysfunction, such as excessive salivation, dysphagia, nausea, and constipation in
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approximately 30–80% of patients [4,5]. The direct cause of PD onset is unknown and is
loosely related to genetic background (5% to 10%); environmental factors in idiopathic PD
are postulated to trigger pathogenesis [6–8].

1.2. Gut–Brain Axis: Braak’s Hypothesis

The GI microbiome is a dynamic ecosystem comprising microbial communities im-
pacted by individual diet, host-derived metabolites, and environmental exposures. More
so, the human microbiome is essential in bidirectional gut–brain communication; brain
and intestinal development, function, and homeostasis are likely mediated by the gut
microbiome [9–13]. Braak and colleagues developed a hypothetical framework to explain
the influence of environmental factors on PD development [14]. For example, invasive
microbiota from the gut during dysbiosis may induce a pro-inflammatory environment,
thereby promoting PD onset [15,16]. Pathological microbial agents retrogradely promote
α-synuclein formation and spread into the brainstem, locus coeruleus complex, substantia
nigra, and the cerebral cortex [17,18]. However, some studies suggest that the presence
of α-synuclein within the enteric nerves of the gut tissues should not be used to infer PD
pathology [19]. Overall, in PD patients, microbiota–gut–brain axis communication is likely
impaired, whereas GI dysfunction symptoms are observed in over 80% of PD subjects [5,20].
However, general research is necessary to elucidate communication mechanisms between
gut microbiota in relation to the gut–brain axis [12].

With regard to recent observations, there are wider theories to inform our understand-
ing of the role of the intestinal environment as a significant influencer in the gut–brain axis
theory. Presently, it is well-described that irritable bowel disease (IBD) and other inflam-
matory diseases of the GI are closely associated with PD risk [21–24]. For example, within
a Danish IBD cohort (n = 76,477), patients had an 22% increased risk for PD; from a USA
IBD cohort (n = 144,018) an increased risk of 28%; patients within a Swedish population-
based study (n = 39,000) had an incidence rate of 30%; and a Taiwanese nationwide cohort
study (n = 8375) suggested that patients with IBD had a 43% increased incidence of PD
onset [21–24]. However, treatment with anti-tumor necrosis factor therapies (anti-TNF)
was demonstrated to substantially mitigate the incidence of PD by reducing systemic in-
flammation, which drives the tandem pathogenesis of IBD and PD, demonstrating a causal
link of the gut–brain axis [22]. Specifically, anti-TNF was shown to reduce the incidence of
PD by 78%, as compared to individuals who do not take the therapy [22].

Microbiota are also essential for provoking PD or preventing the further progression of
disease. For example, in a pilot study to investigate pathogenic growth in relation to PD, it
was found that patients with PD had a 10-times-increased relative risk of being colonized by
Heliobacter pylori [25]. In a subsequent study investigating the role of eradicating H. pylori
from PD patients, with a positive C-urea breath test used to identify H. pylori, it was
found that eliminating this pathogenic bacterium improved host response to levodopa
(L-DOPA) and numerous patients’ symptoms (motor movement, non-motor functions,
and overall quality of life) that are associated with PD onset [26]. In contrast, evidence
exists describing some beneficial bacteria in patients with PD. Comparing metagenomic
shotgun sequencing of the gut microbiome between 76 PD patients and 78 healthy controls,
the authors identified Akkermansia muciniphila as enriched in PD patients after controlling
for medication that was provided to intervene against PD [27]. Generally, this microbe is
known to confer several benefits to humans such as inciting longer gastrointestinal passage
times [28,29], improving the GI barrier functioning [30], and improving anti-inflammatory
status [31].

To date, there are a lack of studies investigating the link between metal-induced ox-
idative stress upon the gut microbiota and neurodegeneration, independently and as a
system [16]. Heavy metals promote oxidative stress, thereby altering gut barrier perme-
ability and, subsequently, inflammation, leading to amplified heavy metal absorption and
traffic into the brain [32]. The gut microbiota also affects intestinal metal absorption by
modulating the barrier function and bioremediation of heavy metals in the gut [33,34].
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Therefore, interventions to mitigate dietary toxic metals likely reduce the inflammatory
burden on beneficial gut microbiota and potentially PD onset. For example, numerous
probiotic strains from the genera Lactobacillus and Bifidobacterium have known bioremedia-
tion effects on heavy metals [35,36]. To better decipher the systems-based link between the
metal–microbiome–gut–brain axis, it is important to interpret how microbial dysbiosis, in
relation to oxidative stress from metals, leads to a pro-inflammatory environment and how
the gut microbiome influences the remediation of xenobiotic metals [37]. Therefore, this
review will summarize the current understanding of the metal–microbiome–gut–brain axis
and propose future perspectives to mitigate heavy metal toxicity through gut-associated
microbiome chelation, specifically, the process in which microbiota remove toxic metals
from the body by producing molecules, which reduce toxicity and oxidative stress prior to
neurodegenerative disorders [38]. Overall, the presented cumulative review is an attempted
combination of recent evidence from the two fields of PD and the metal microbiome to
identify both overlaps and gaps; our aim is to provide suggestions through the lens of
systems toxicology to merge both fields.

1.3. Neurotoxicity and Parkinson’s Disease

Biological organisms require 13 metals, 9 of which are essential trace metals for creating
organic building blocks and regulating homeostatic processes such as catalyzing enzymes
for basic metabolic or biochemical processes. Approximately one-third of biological proteins
and 40% of enzymes rely on metal ions to function [39]. The brain generally contains the
greatest concentrations of metals in the human body, including Fe, Cu, Zn, and Mn [40].
For example, both Zn and Mn are found in the midbrain and are essential for neuronal
excitement, synaptic transmission, the creation of new myelin, and regulation of oxidative
stress [41,42]. Conversely, when these metals are above normal homeostatic balance, they
are associated with PD [43]. Specifically, increased occupational exposure to Fe or Mg
was found to double the risk of developing PD [44]. Improper metal binding associated
with oxidative stress leads to protein misfolding and aggregation [45]. Metals with a
high affinity to sulfhydryl groups, alter dopamine neurotransmission, reduce expression
of D2 dopamine receptor sites, and impair proteins essential for maintaining cellular
homeostasis [46]. Protein misfolding is the hallmark of numerous neurodegenerative
diseases such as Alzheimer’s Disease, Lewy Body Dementia, Huntington’s Disease, and
prion diseases, and is similarly underlined with metal stress [47]. The association between
metal exposure, the accumulation of misfolded proteins (especially α-synuclein) found in
Lewy bodies and PD is not well understood at the mechanistic level and is likely associated
with an increase in ROS [45]. Regardless, the potential to control metal exposure and
maintain cellular homeostasis in PD may prevent improper neuroprotein folding prior
to apoptosis. There is a need to review the literature surrounding the topic of metabolic
outcomes directed by heavy metals exposure and oxidative stress prior to neuropathology.

1.3.1. Manganese (Mn)

Mn is a trace metal found throughout various tissues and is essential for enzy-
matic processes, the biosynthesis of amino acids, protein formation, and carbohydrate
metabolism [47,48]. Environmental exposure to Mn primarily occurs by ingesting leafy
vegetables, grains, and nuts which enter the circulatory system through passive diffu-
sion [49]. Chronic exposure to Mn is positively correlated with the hallmark characteristics
of PD pathology, such as dopaminergic nerve deterioration and impairment of the basal
ganglia, which includes the globus pallidus, substantia nigra, subthalamic nucleus and
striatum [50]. Different valence states or species of Mn (Mn2+ or Mn3+) play significant
roles in Mn neurotoxicity, in which Mn3+ is more toxic than Mn2+ [51]. Typically, Mn is
found in portal circulation, 80% of Mn2+ is found to be associated with α-macroglobulin
or albumin. Toxic Mn3+ species account for 1% of the total Mn found in the body; Mn3+

associates with transferrin endosomes during tissue circulation and Mn2+ diffuses through
tissues, including the kidneys, bones, liver, and the brain [52].
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Within the brain, Mn3+ accumulates and enters neurons by binding to transferrin
endosomes and localizes within brain tissue [48,53]. Specifically, Divalent Metal Transporter
1 (DMT1) is highly expressed in brain tissue, especially in dopamine-rich areas of the basal
ganglia and cortex, which explains Mn association with the brain [54,55]. Mn exposure
affects the transcription and translation of α-synuclein and through the activation of
MAPK, thus beginning the apoptosis cascade signaling, and results in dopaminergic neuron
apoptosis [56,57]. Mn stress leads to the dysregulation of key homeostatic functions, which
are essential for degrading proteins (such as autophagy, proteasomes, and endosomal
trafficking) [58]. Chronic metabolic dysequilibrium linked to Mn initiates conformational
changes leading to the aggregation of α-synuclein, which can become harmful to neuronal
cells [59]. This suggests that Mn and other metal ions incite the production of ROS,
leading to conformation changes and the aggregation of α-synuclein [53,58]. However,
recent observations of human α-synuclein have identified a neuroprotective role in the
mitigation of dopaminergic degeneration linked to acute Mn exposures [60]. Conversely,
neuroprotective effects are lessened when neurons are chronically exposed to Mn, leading
to accelerated oxidation and misfolding of α-synuclein [60].

Interestingly, Mn-induced Parkinsonism is not correlated with a significant loss of
dopaminergic neurons in non-human primates [61,62]. This highlights that Mn exposure
can be regulated at the environmental level to prevent PD outcomes. While occupational
exposure to Mn was significantly mitigated through public health interventions and regula-
tions, there is still a great need for the differentiation between chronic Mn neurotoxicity and
PD symptoms [63]. Mn neurotoxicity is regularly confused with idiopathic PD symptoms;
while both differ in several ways, they also share several similarities. Generally, the distri-
bution of Mn within the brain elicits symptoms that are similar to PD; however, clinical
observations of these findings are not as common as a PD diagnosis [63]. For example,
Mn impacts the neurons of both the globus pallidus striatum and substantia nigra pars
reticulata, but accumulates in a lesser proportion in the substantia nigra pars compacta [64].
This occurs through the induction of alterations in energy deficits, protein aggregation,
ubiquitin-proteasome system dysfunction, and altered mitochondria function, all of which
are closely related to oxidative stress [45]. Thus, the neurotoxic effects on the globus pal-
lidus, the substantia nigra pars reticulata, and the striatum, which impact the dopaminergic
neurons, are typical hallmarks of PD [65,66]. The dysregulation of dopamine transmission
from the substantia nigra to the striatum, a region associated with motor symptoms in Mn
neurotoxicity, is known to prevent dopamine release, thereby leading to elicit behavioral
responses that are similar to both PD and Mn neurotoxicity [64,66]. Additionally, Mn
toxicity impairs cells that normally produce the neurotransmitter γ-aminobutyric acid
(GABA); this dysfunction is associated with numerous psychiatric disorders such as major
depressive disorder, bipolar disorder, and schizophrenia [67,68]. Therefore, there is a need
to understand Mn exposure in relation to PD onset in terms of molecular mechanisms. For
example, recently, a transcriptomic study investigated expression signatures of human
neuroblastoma cells treated with high and low doses of Mn [69,70], revealing perturbed
processes involved with nervous system development (axon and cerebral cortex formation).
This was manifested as disturbances in the mitochondria cell cycle, ROS production, and
chronic inflammatory signaling, which leads to neural cell apoptosis [70].

1.3.2. (Methyl) Mercury (MeHg; Hg)

Hg is a metal that shifts between organic and inorganic phases, thereby inducing
differing modes of toxicity. Hg not only bio-accumulates within plants and animals in
ecosystems, but is also transported over long distances as a gas following combustion. Hg
vapor is stable in a gaseous state and accounts for 90% of Hg within the environment [71].
Inorganic Hg is not physiologically necessary in humans and is toxic in low concentrations.
Hg becomes fat-soluble within the tissues of animals after methylation by microbes to
become methylmercury (MeHg); this organic state is readily consumed and bioaccumulates
from the bottom of food chains. For example, contaminated fish with a high biomass of
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fatty acids rapidly accumulate MeHg within tissues, as compared to other fish within
the same environment. Furthermore, Hg was found to accumulate within the nervous
tissue of deceased individuals with neurodegenerative diseases in comparison to healthy
controls [72]. Individuals poisoned by chronic MeHg suffer from numerous symptoms
linked to central nervous systems (CNS) impairment, such as visual impairments, lethargy,
tremors, lack of coordination, and inability to recall memories [73].

Hg differs from other metals with regard to cellular transport; it does not require
human macrophages or other immuno-transport mechanisms, rather MeHg is readily able
to penetrate the blood–brain barrier (BBB) [74]. Specifically, Hg binds to sulfhydryl groups
with a high affinity in comparison to other metals in the human body. When MeHg binds to
cysteine groups through molecular mimicry, it is transported through the BBB and directly
interacts with glial and neuronal cells [74]. From there, Hg is uptaken through the nerve
endings and accumulates in the CNS ganglia where it cannot be detoxified, leading to
systemic effects upon the substantia nigra dopaminergic neurons through disruption of
tubulin molecules [75–78]. Dopaminergic neurons consist of axons that are composed
of tubulin molecules; however, in the presence of inorganic Hg, this metal binds to the
14-sulfhydryl groups found within the tubulin of the dopaminergic neurons. Through this
mechanism, Hg interacts with α-tubulin and β-tubulin, inhibiting the tubulin structural
formation of neurons, thus preventing tubulin from binding to Guanosine-5′-triphosphate
(GTP) and halting motor neural functions by blocking neurotransmission [79]. Hg further
promotes the formation of amyloid-β proteins, the predecessors for amyloid plaques
and neurofibrils in the brain; both are associated with the onset of Alzheimer’s Disease
and PD [80,81]. Through these pathomechanisms, MeHg exposure leads to apoptosis
and neurotoxicity through dysfunctional cell narrowing, chromatin condensation, the
modification of cytochrome C flux, and well-described oxidative stress insults to the
mitochondria [82].

1.3.3. Iron (Fe)

Fe is a common dietary metal that is essential in humans, assisting in oxygen transport
and mitochondrial respiration [83]. Conversely, the over- or underabundance of free Fe in
humans is associated with several neurological pathophysiologies [84]. Low Fe, anemia,
or low hemoglobin levels throughout the human course of life were correlated with an
increased risk of developing PD [85]. Irregular Fe metabolism in humans leads to a lack or
excess of Fe in the brain, causing deleterious effects in the PNS or CNS [86]. Incidentally,
the argument that Fe accumulation precedes PD and other neurodegenerative diseases is
discussed in detail elsewhere [83,87,88].

Dysfunctional Fe metabolism regulates the uptake, sequestration, accumulation, re-
lease, and movement of Fe into the substantia nigra pars compacta; these specific patho-
physiological mechanisms of Fe metabolism are associated with PD [89]. Specifically, PD
patient ferritin, transferrin, and total serum Fe is lower than in healthy controls, illustrating
that Fe metabolism and transport is adverse in PD patients [90]. In healthy patients, Fe
provides pigmentation and other essential neurophysiological roles; in PD patients, Fe is
routinely released from neuromelanin [91]. Approximately 20% of Fe in the substantia
nigra is bound to neuromelanin. Impaired Fe metabolism is assessed by the loss of neu-
romelanin in dopaminergic neurons of PD patients, as observed by magnetic resonance
imaging [92,93]. Overall, adverse Fe metabolism highlights the role of metal exposure and
dysregulation in individuals, especially in the case of neurodegeneration and idiopathic
PD [94].

Fe accumulates within the gray matter of both the basal ganglia and midbrain; this
is positively associated with PD onset [95]. Neuronal Fe accumulates in the substantia
nigra pars compacta of PD patients, but not in other regions of the brain in postmortem
PD patients [96]. High quantities of Fe and a lack of Cu in the substantia nigra pars
compacta are typical features of PD onset [31]. When tracking PD patients over 3 years, a
longitudinal clinical study identified that Fe increases in the substantia nigra pars compacta
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and simultaneously decreases in the white matter [97]. A down regulation of DMT1
perturbs Fe metabolism in the brain; this pathology is typically observed in PD brains
postmortem. Irregularities in the regulation of this gene lead to chronic ferritin release and
neurotoxicity [98].

2. Microbiome–Gut–Brain Communication in Health and Disease

The GI tract is a highly interactive surface area between host and environment, as a
barrier it is pivotal in regulating immune homeostasis [99]. Six major host cell types com-
prise the GI barrier: enterocytes, entero-endocrine cells, goblet cells, paneth cells, microfold
cells, and stem cells, which form a monolayer barrier that restricts microbial transport and
metal ion movement by the expression of transporters [100,101]. Approximately 80% of
GI barrier cells are enterocytes; thus, epithelial cells are intermediates between host and
luminal interactions in the maintenance of homeostatic functions [100,102,103]. The GI
has three major roles as a semipermeable barrier: selective absorption of nutrients, regula-
tion of environmental antigens, and the transport of microorganisms [101,104]. First, the
mechanical barrier consists of intestinal epithelial cells and capillary endothelial cells con-
nected with tight or adherens junctions and cadherin proteins, which regulate nutrients [99].
Second, the GI barrier is an immune barrier for controlling environmental antigens. The
third, which is extensively covered in this review, is the biological barrier colonized by gut
microbiota. However, recent studies highlight that heavy metal exposure alters both the
native gut microbiota and intestinal physiology [105–107]. Specifically, additional damage
due to heavy metals disruption of the gut epithelium leads to a heightened inflammatory
response, thus disrupting GI tight junctions and promoting systemic inflammation by
inciting changes in microbial abundance and microbial-mediated metabolic changes [108].

The gut–brain axis concept is a fundamental factor for interpreting bidirectional com-
munication and the mechanisms that modulate gut–brain homeostasis, especially during
oxidative stress [12]. The central nervous system (CNS), autonomic nervous system (ANS)
and enteric nervous system (ENS) influence GI smooth muscle mobility, mucus secretion,
and blood flux, thereby modifying intestinal microbiota abundance and, in turn, brain
homeostasis and function [12,109]. Microbiome–gut–brain communication is carried out
through pathways involving nervous, endocrine, and immune signaling mechanisms [109].
The GI tract is controlled by both intrinsic and extrinsic innervation, in which intrinsic
innervation is regulated by the ENS. The ENS is innervated with extrinsic ANS (parasym-
pathetic and sympathetic systems) [110]. The alteration of microbial communities at the gut
epithelial barrier modulate both inflammatory responses and metabolic pathways [111,112].

2.1. Neuroendocrine and Neuroactive Metabolites Crosstalk

Communication between the brain and gut microbiome is likely modulated through
the vagus nerve [113]. The commensal relationship between microbiota and host neu-
rotransmitter synthesis through the enteric nerves is potentially an evolutionary adapta-
tion [114,115]. Various GI microbiota produce metabolites that are identical to the chemical
structure of host-derived neuronal metabolites [12]. For example, Bacillus, Escherichia, and
Proteus are able to produce the neurotransmitters dopamine and norepinephrine, which are
uptaken by the host; molecular signals modulate communication between the microbiota–
gut–brain axis and have implications for host physiology [116–119]. For example, human
vagus nerve stimulation is a therapeutic intervention to treat various pathologies, such as
refractory depression, IBD, and Crohn’s disease [113,120]. The microbial secondary metabo-
lite indole stimulates the vagus nerve by inducing the expression of c-Fos proteins in the
dorsal vagal complex, indicating that vagus nerve activation leads to enhanced anxiety-like
behaviors [121]. Within the gut barrier, enteroendocrine cells (EECs) represent 1% of the
total epithelial cells and are critical for gut maintenance [12]. Type-L enterochromaffin cells
are the most common EECs and directly interact with the intestinal lumen, microbiota,
and microbially derived metabolites [122]. EECs produce glucagon-like peptide-1 (GLP-1)
and peptide YY (PYY), which stimulate satiation and regulate food intake behaviors [123].
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The expansion of these molecules by EECs activate food-derived nutrients, in addition to
bacteria-derived metabolites such as short-chain fatty acids (SCFAs) and indole, which
likely induce GLP-1 secretion in colonic L-cells [12,124]. Evidence from in vitro models
highlighted that the SCFA propionate stimulates the secretion of PYY and GLP-1 through
interactions with free fatty acid receptors 2 and 3 [125]. Human-derived organoid cultures
identified that bacteria-derived secondary bile acids such as lithocholic acid stimulate
GLP-1 release by activating the G-protein-coupled bile acid receptor 1 [126]. Gut micro-
biota, such as Lactobacillus strains in co-culture with EECs, increase GLP-1 secretion by
downregulating the expression of adaptor proteins involved in TLR signaling such as
MyD88 and CD14 [127]. This may demonstrate the direct effect of lactic acid bacteria (LAB)
on host physiology (Figure 1).
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Figure 1. Bacterial metabolites signaling in the intestine. (A) Secondary bile acids, SCFAs and
tryptophan metabolites are microbially derived metabolites. Secondary bile acids activate FXR and
TGR5, which stimulate different types of cells. Enterochromaffin cells are stimulated promoting 5-HT
release and motility in the colon. Enteroendocrine L-cells promote glucose tolerance through release
of the incretin GLP-1. Enteric neurons with TGR5 stimulate or inhibit motility [128–130]. Bacterial
fermentation of dietary fibers leads to the reduction in luminal pH and production of SCFAs [131]. The
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bacterial-produced SCFAs activate G-protein-coupled receptors (e.g., GPR41, GPR43 and GPR109) on
enteroendocrine cells, enterochromaffin cells, and enteric neurons, leading to the increased production
of GLP-1 and 5-HT, thus directing changes in gut motility [132]. With regards to colonocytes,
anionic-SCFAs enter the cell through a carrier-mediated transport (similar to MCT1), promoting
of mitochondrial fatty acid beta-oxidation and reduction in luminal availability of oxygen through
PPARγ activation [131,132]. Finally, the reduction in oxygen availability upregulates the expression
of tight junction proteins which are important for the maintenance of the gut barrier [132,133].
(B) Under dysbiosis, there is a limited availability of SCFAs, leading to a decreased amount of
available substrate for the colonocytes. This leads to a decreased activation of PPARγ and less
oxygen uptake in colonocytes causing dysregulation of cellular growth and differentiation, which
can be described as a metabolic switch towards anaerobic glycolysis and lactate production. When
the concentration of oxygen increases, decreases in the expression of HIF1 lowers tight junction
expression, thus further degenerating the gut barrier [131–136]. Furthermore, pathogenic interaction
with the impaired cells increases their translocation to the lamina propria, thus promoting oxidative
stress events and chronic inflammation [133–136]. Abbreviations: 5-HT, 5-hydroxytryptamine; FXR,
farnesoid X receptor; GI, gastrointestinal; GLP-1, glucagon-like peptide-1; HIF1, hypoxia-inducible
factor 1; PPARγ, proliferator-activated receptor gamma; TGR5, Takeda G protein-coupled receptor 5.

Enterochromaffin cells regulate intestinal peristalsis, enzymatic secretions, inflam-
matory responses, and are major producers of peripheral serotonin, derived from dietary
tryptophan [137,138] (Figure 1). Studies in germ-free mice found that the reduction in
serotonin in the blood and colon could be restored through microbial recolonization [139].
For example, several strains of bacteria such as Escherichia coli, Streptococcus thermophilus,
Lactococcus lactis subsp. cremoris, Morganella morganii, Lactobacillus plantarum and Hafnia
alvei are reported to produce serotonin in vitro, which contributes to host serotonin lev-
els [12,117–119,140]. Additionally, gut microbiota regulate colonic serotonin biosynthesis
and increase intestinal motility by releasing enteric neural serotonin through the serotonin
receptor 4 (5-HT4, localized in presynaptic enteric neurons) to promote maturation of
intestinal neural networks and neurogenesis in the ENS for gut–brain crosstalk [141,142].
Blatia spp. appears to modulate host serotonin metabolism by increasing tryptophan hy-
droxylase 1 expression within the gut. This in turn decreases the relative abundance of
microbiota related to intestinal dysmotility, impaired gut barrier function, and psychiatric
disorders such as depression or autism [143,144]. The colonization effects derived from
Clostridium ramosum were attributed to the capability of inducing serotonin production in
enterochromaffin cells [145–147]. Clostridium spp. likely contributes to serotonin secretion
by increasing SCFAs and secondary bile acids [139]. Clostridium spp. also possess a high
7α-dehydroxylation activity which aids in the production of deoxycholate, thereby promot-
ing serotonin synthesis from enterochromaffin cells [139]. This demonstrates the active role
of the gut-associated microbiome in maintaining both epithelial integrity and brain health.

2.2. Immunomodulation and Dysregulation

Disorders of the CNS are often accompanied by intestinal inflammation [148,149].
Gut-associated microbiota modulate host immune function and oxidative stress at the
local and systemic level [149,150]. The mucosal immune system is composed of the GI
tract, lamina propria dendritic cells, gut-associated lymphoid tissue, LP-lymphocytes,
and intraepithelial lymphocytes [102]. Hosts tolerate commensal antigens by constantly
recognizing and reacting to microbes to ensure the mutualistic nature of the host–microbial
relationship [151,152]. Therefore, the immune system is integrated as a bidirectional
signaling hub between the CNS and the gut [153]. Microbiota are essential in lymphoid
structure development, epithelial, and innate lymphoid cells function, and T-cell subsets
at a systemic level. These cells maintain gut mucosa homeostasis by signaling for various
proinflammatory (Th1, Th2 and Th17 cells) and anti-inflammatory Foxp3+ Regulatory T-
cells (Tregs)) differentiation or response [149,154]. Tregs cells are concentrated in the colon
and are influenced by intestinal microbiota [155]. Commensal microbiota likely influence



Antioxidants 2022, 11, 71 9 of 46

anti-inflammatory Treg cell generation and immune responses through the production
of both butyrate and propionate, thereby limiting oxidative-stress-induced inflammation
and promoting gut homeostasis [133,149,156] (Figures 1a and 2a). In murine models, the
application of the Bifidobacterium, Lactobacillus, and Clostridium genera increase Foxp3 Tregs,
which are associated with the protection and attenuation of allergic responses in order to
maintain immune homeostasis [157–160].
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Figure 2. Neuronal and immunity crosstalk. (A) Under homeostasis, macrophages mature within
the intestinal mucosa, where they are utilized to capture invading pathogens, recognize antigens,
and clear old apoptotic cells within the area. Macrophages then transfer the captured antigens to the
dendritic cells, which are responsible for entering the mesenteric lymph nodes to induce the differenti-
ation of peripheral T regulatory (Treg) cells from naïve T cells[161]. These cells constitutively produce
IL-10, which promotes the secondary expansion of regulatory T cells in the mucosa and maintains
the homeostasis [161,162]. Butyrate is important in the modulation of intestinal macrophages via the
inhibition of histone deacetylases and NF-kB, and thus downregulates proinflammatory responses
such as IL-6, IL-12 and NO [163,164]. On the other hand, neuron enteric cells are essential for
gastrointestinal motility. The Toll-like receptors (TLRs) expressed by enteric neurons can recognize
gut microbe-derived signals and influence the gut motility[165]. These cells promote crosstalk with
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the Muscularis Macrophages (MMs) in longitudinal and circular smooth muscles and incite the
production of the growth factor bone morphogenetic protein 2 (BMP2) to stimulate motility that is
directed by the neurons. In turn, the enteric neurons through the production of macrophage survival
factor CSF1 promote the maintenance of the MM [152,165,166]. (B) Under dysbiotic conditions,
the epithelial barrier is impaired; this in turn leads to the translocation of microbiota, toxins, and
deleterious exposures, as suggested by Braak’s Hypothesis, thereby leading to the activation of the
host immune response. Macrophages then produce proinflammatory cytokines and present antigens
to dendritic cells; together, both cells induce the expansion of TH1 and TH17, thereby recruiting
other innate effector cells such as neutrophils and eosinophils [162–164]. Additionally, excess TLR
activation by the microbiota or toxins, activates cytokine release, proinflammatory responses, and
apoptosis in enteric neurons. Thus, MMs decrease the expression of BMP2, and enteric neurons
decrease the expression of CSF1 and MM motility[152,166]. Enteric bacteria can further influence
the development and differentiation of CD4+and CD8+ T cells, as well as B cell activity and IgA
production [167,168]. Abbreviations: BMP2, bone morphogenetic protein 2; CSF1, colony stimulating
factor 1; Interferon γ (IFN-γ); TLRs, Toll-like receptors; TNF-α, tumor necrosis factor-alpha.

PD is associated with intestinal inflammation, in which 80% of patients are observed
to have gut microbiota composition and abundance differences compared to non-PD con-
trols [4,169]. For example, an overgrowth of Enterobacteriaceae, as well as decreases in
Prevotellaceae or families associated with SCFAs production, are observed in PD [170–174].
Enterobacteriaceae such as E.coli induce Th17 inflammatory responses through inflamma-
some mechanisms, leading to the production of IL-1β. The induction of Th1 and Th17
crosses the BBB, stimulating the microglia and, consequently, promoting brain inflam-
matory reactions [175,176]. Furthermore, as PD is regularly characterized as a lack of
dopamine biosynthesis in various neuronal cells, patients are generally treated withL-
DOPA to mitigate the effects of PD. Most recently, berberine supplementation was reported
to increase dopamine levels in the brains of mice with PD by modulating the gut micro-
biota, such as Enterococcus spp. [177]. In a study employing metagenomics in PD patients
who were not taking L-DOPA, it was found that microbiota composition at the taxonomic
level was modified [178]. Specifically, there were predicted functional changes that were
associated with intestinal barrier and immune functioning, leading to functional differences
in β-glucuronate and tryptophan degradation pathways, which were adverse in those not
taking L-DOPA[178].

PD patients display high levels of proinflammatory cytokine expression (TNF-α, IFN-
γ, IL-1β and IL-6) and glial activation markers (GFAP and Sox-10) in the colon [179]. TNF-α
enters the brain and induces inflammation by activating microglia or astrocytes; oligomeric
protofibrils are uptaken and presented to CD4+ by antigen presenting cells [175,180,181]
(Figure 2B). Oral administration of Proteus mirabilis promotes α-synuclein aggregation in
the gut and SN, impairing the colonic barrier, and contributes TNF-α and TLR4-mediated
macrophage activation [182]. Thus, the dysbiosis of the gut microbiota induces PD-related
pathological changes by increasing gut permeability, promoting TNF-α transit via blood
to the SN, as well as triggering α-synuclein aggregation and dopaminergic neuronal
damage [175,182,183].

3. Heavy Metals and the Gut–Brain Axis

Various nutrients, vitamins, and reactive metals are consumed daily by humans
through the ingestion of contaminated foods or water [95,184–189]. Simultaneously, the
influx of global industrial emissions of heavy metals into environments is linked to environ-
mentally derived brain pathologies; however, preliminary environmental exposures likely
interact with the gut-associated microbiome before the brain [190,191] (Figure 3). Once
metals enter the GI system, the gut microbiome potentially mediates metal toxicity through
biochemical reactions of oxidation or reduction. However, heavy metals promote oxidative
stress and disrupt healthy microbiomes in humans, thereby inciting dysbiosis [113,192].
When protective commensal microbial communities enter a state of dysbiosis, there is an
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increase in the toxic effects of heavy metals [26] and long-term oxidative stress insults,
which are in turn associated with neurobehavioral and neurological pathologies [193].
Heavy metal toxicants, which are not modulated by the host-associated microbiome, transit
to the brain and can lead to a wide-range of deleterious effects, such as neuroinflammation
and neurodegeneration [22].
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Figure 3. Human exposure to heavy metals in the diet underlies neurodegenerative diseases. Multiple
levels of environmental exposure to heavy metals, which are derived from pollution, lead to adverse
effects on the gut and brain in humans.

The clinical and epidemiological characterization of PD suggest that environmental
risk factors such as heavy metal toxicity, occupational farming, and pesticide exposure are
major factors in PD pathophysiology [194,195]. Heavy metals derived from these environ-
mental exposures lead to the production of reactive radicals such as ROS or NOS that are
normally observed in PD progression [38,196] (Figure 3). Specifically, the acute exposure
to divalent metal ions incites oxidative stress and oligomerization risk for α-synuclein
formation in the brain [197]. Furthermore, Mn, Pb, and Cu ions increase α-synuclein
fibrils formation, which produces to Lewy body formation, a major pathophysiological
characteristic of PD [54,198,199]. Moreover, the chronic exposure to high levels of metals
leads to tissue accumulation over time, especially in the brain [38,200]. Due to the vul-
nerability of the CNS to metals and the lack of a natural means to detoxify, excrete, or
eliminate metals, neuronal energy homeostasis and antioxidant balance are perturbed,
which leads to neurodegeneration [63,201–203]. This is the case for dopaminergic nerves
of the nigrostriatal system, which are readily stressed by heavy metal exposure and may
be associated with PD onset [204]. Thus, there is a necessity to further investigate the
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study of the prodromal phase of PD in relation to metal toxicity pathomechanisms to better
understand the underlying disease etiology.

3.1. Metal Transport, Movement, and Molecular Mimicry

Environmental exposure to heavy metals alters host metal transporters through molec-
ular mimicry by interacting with nutritional targets, resulting in metal uptake into cells and
further accumulation by the host [205]. Uptaken metals incite injury by forming complexes
that mimic endogenous molecules such as amino acids or peptides, thereby binding to
transporters to reach apical membranes and promote oxidative stress [201,206,207]. For
example, within the intestinal lumen, Hg2+ forms ligands with S-thiols to stimulate en-
dogenous proteins through molecular mimicry mechanisms. Likewise, CH3Hg-S g mimics
GSH, Cys-S-Hg-S-Cys acts as a mimic of cystine; both Cys-S-Cd-S-Cys and G-S-Cd-S g
are structurally similar to cysteine and glutathione disulfide [208]. These molecules are
then taken up by amino acid transporters, multidrug resistance-associated proteins, or
oligopeptides transporters, and then readily trafficked into the brain [54,201,209].

There are a diversity of transporters for the purpose of shuttling endogenic molecules,
these are readily employed by heavy metals to exert toxic effects on humans. The best
studied is DMT1 which is expressed in the duodenum, erythrocytes, liver, and kidneys;
this membrane protein is essential for up-taking divalent metals cations (Pb2+, Hg2+,
Fe2+, Mn2+) and increasing metal accumulation in tissues [32,206]. For example, human
colorectal cells with DMT1 expression knocked-down have a decreased uptake of Fe2+,
Pb2+, and Cd2+ [203,206,207,210–213]. Organic anion transporters that are involved in
intestinal uptake of CH3Hg+ through Zinc carriers (ZIP8 and ZIP14) interact with both
Hg2+ and Mn2+. ZIP8 and ZIP14 work in tandem with the zinc-regulated, zinc transporter
1 to transport Cd2+, a mimic of Zn2+. More so, Cd2+ and Mn2+ are transported through
Ca2+ channels and via endocytosis (Figure 4, Table 1) [202,203,207,214,215].
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Figure 4. Gut–microbiome metal uptake. (A) Mechanisms of microbial heavy metal bioremediation
in the gut: 1. Biosorption 2. Bioaccumulation, 3. Biotransformation [216]. (B) Schematic of intestinal
metal transport: The primary mechanisms by which iron and other divalent metals (Pb2+, Hg2+, Fe2+,
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Mn2+) are taken up by the enterocyte is through DMT-1 from the luminal membrane[217]. In the case of Fe3+,
this metal is reduced to Fe2+ by DYCTB [217]. Other receptors for Zn2+ (ZIP, ZnT) [201,218–222], Ca2+ and
amino acids transporters (b0,+, PepT1) [201,223,224] are utilized to uptake MeHg or other metal ions.
Iron was also suggested to be transported with heme with HCP1 and as ferritin [225]. Once entering the
intracellular space, metals are readily stored as ferritin (Fe2+) with metallothioneins and exported into
the body circulation through ferroportin or other transporters (LAT, ZIP, ZnT) [201,218–222,226–228].
Ferritin is converted to Fe3+ by ferroxidase, which is then released for use by transferrin, other
metals are transported by albumin or bound to other cell-derived proteins [201,229]. Abbreviations:
HCP-1, Heme carrier protein; Znt, Zinc transporter; ZIP, RT, IRT-like protein; LAT, L-type/large
neutral amino acid transporter; MRPs, Multidrug Resistance-Related Protein; DMT-1, Divalent metal
transporter 1; DYCTB, Duodenal cytochrome B.

Table 1. Molecular mimicry of metals throughout the gut–brain axis.

Transporters
Molecule/Ion
Metal Being
Mimicked

Metal Replacement Cells Containing the
Transporters of the Transporter Citation

Organic anion
transporters: CH3Hg+

Endothelial cells/Glial
cells/Enterocytes [201,230,231]

OAT1 GSH
Cysteine GS-Cd-S-G

OAT3
CH3Hg-S-Cys

Zinc-regulated zinc
transporter 1 (hZTL1) Zn 2+ Cd2+ Enterocytes/Neurons [218–220]

Ca2+ channels Ca2+
Cd2+

Neurons/Endothelial cells/
glial cells [201,223,224]Pb2+

Mn2+

Divalent metal
transporter 1

Fe2+
Pb2+

Enterocytes/Endothelial
cells/Neurons/Glial cells

[217]
DMT-1 Mn2+

Cd2+

Zinc-imidazolate
polymers (ZIPs)

Zn 2+

Pb2+

Enterocytes/Endothelial/
Astrocytes [201,221,222]1.2 Mn2+

8, 14 Cd2+

Hg2+

Transferrin receptor
Fe2+ Mn2+ Neurons/Endothelial cells/

Glial cells
[229]TfR

Amino acid
transporters (system

b0,+, system L)

Cysteine CH3Hg-S-Cys
Enterocytes/Endothelial

cells/Glial cells
[201,226–228]

Methionine Cys-S-Hg-S-Cys
Cys-S-Cd-S-Cys

CH3Hg-S-CysGly

Multidrug
resistance-associated

proteins
CH3Hg+

Enterocytes/Endothelial
cells/glial cells [201,232]MRP 1, 2, 3,4 GSSG G-S-Cd-S-G

GSH CH3Hg-S-G
As (III)

As–GSH
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Table 1. Cont.

Transporters
Molecule/Ion
Metal Being
Mimicked

Metal Replacement Cells Containing the Transporters
of the Transporter Citation

Ferroportin Fe2+ Cd2+ Enterocytes/Endothelial cells/ Neu-
rons/Oligodendrocytes/Astrocytes [201,233–235]

Mn2+

Glucose permeases
Glucose As (III)

Enterocytes/Endothelial
cells/Astrocytes [210]GLUT 1, 2, 5

Sodium-dependent
phosphate transporters Phosphate As(V) Enterocytes [218–220,236,237]

NaPiIIb

Aquaporins Glycerol As(III)

[218–220,238–240]

AQP 3, 10 Water Hg2+
Enterocytes/Enteric
neurons/Endothelial

cells/Astrocytes

AQP 4
Pb2+

Fe2+

Mn2+

Organic anion
transporting
polypeptides

Amphipathic
organic

compounds
As(III) Enterocytes/Astrocytes/Endothelial [218–220]

OATPB

Within intestinal mucosal cells, various metal ions (Zn2+, Cd2+, Hg2+, Pb2+, Fe2+) cross
the apical membrane and readily bind with metallothioneins due to the high content of
thiol groups [241,242]. Metallothioneins (MT) have various roles in homeostasis such as
the storage, scavenging, transport, and detoxification of free metal ions, thus mitigating
cellular damage [242]. For example, MT1 and MT2 are overexpressed in the duodenum
when Cd accumulates in intestinal cells [104]. However, Cd promotes the release of Fe from
MTs, leading to ROS production and oxidative stress [241,243]. Other examples include the
L-system (LAT2), MRPs (MRP1,3,4 and 5), metal transport protein 1 (MTP1), ferroportin,
and hephaestin, which participate in the absorption of dietary Fe (Table 1) [201].

Metal ions are able to permeate into the blood through the intestinal barrier by utilizing
several transporters, such as transferrin [205,244]. For example, Pb interacts with both
hemoglobin and delta-aminolevulinic acid dehydratase (ALAD); however, both Mn and
Mg are able to bind to albumin or transferrin and are transported in the blood [245–247].
Albumin binds with numerous metals such as Cu, Hg, and Zn [248] (Figure 4). Through
these mechanisms, metals are transported to various target organs such as the liver, kidneys,
and brain, where they accumulate [184,199,249–251]. Metals do not bind to all molecules,
rather many mimic molecules, this in turn can lead to an alternative function and oxidative
stress. For example, Pb inactivates the heme-associated ALAD enzyme by binding to
thiol-groups, leading to ROS production [225]. Cd, Fe, Cu and Mn bind with apolipopro-
tein A-I, suggesting that exposure to Cd results in oxidative stress by disturbing lipid
metabolism [252].

Endothelial cells are a major component of the BBB, in addition to astrocytes, pericytes,
basement membranes, and various proteins. Brain endothelial cells enable the process of
transportation, such as allowing for the entry of nutrients and other metabolites into the
brain [253]. Similar to the intestinal barrier, endothelial cells and neuronal cells within the
brain express transporters to acquire biological metals. Specifically, Zn, Fe, and Cu are
trafficked by major brain transporters and are readily uptaken across the BBB [207]. Fe
acts as a cofactor, leading metals to enter the brain and cross through endothelial cells by
transferrin receptors (TfR). The Fe2-Tf complex, which binds to the TfR, is invaginated
in order to fuse with endosomes. Eventually Fe is released into the cytoplasm with the
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support of DMT1. Cytoplasmic Fe is then transferred into the mitochondria or stored in
cytosolic ferritin [254–256].

Mn binds to Tf and is transported by Fe or Zn transporters into the brain leading to
metal accumulation. While the uptake mechanisms are not clear, dietary Fe may influence
Mn transport through non-competitive mechanisms [257,258]. Additional carriers found
in the BBB, such as ZIP8 and ZIP14, located in the apical and basolateral membranes,
both support the bidirectional flux of Mn2+, while ZIP1 and ZIP 2 support the uptake of
Pb [207,215]. Additionally, MeHg likely binds to sulfhydryl groups and forms a complex
with L-cysteine, which enables transport across the membranes through the L-type amino
acid transporter 1 (LAT1). LAT-1 is located in endothelial and pericyte cell membranes
and recruits MeHg into the brain; the shuttling of MeHg into the brain further induces the
dysfunction of astrocytes and pericytes by increasing BBB permeability [222,259]. Specifi-
cally, MeHg exposure inhibits aquaporin AQP4 in astrocytes, leading to alterations in water
balance and, consequently, contributing to neurodegeneration [222,260]. Similarly, Pb is
taken up into astrocytes through voltage-dependent calcium channels; however, recent
studies highlighted the role of Connexin 43 (Cx43) in relation to the uptake of heavy metals
such as Pb [261]. Cx43 is a gap junction protein expressed in endothelial cells, astrocytes,
activated microglia, and neurons. This gap junction transports metals throughout neuronal
cells and is an essential mechanism for disseminating the deleterious effects of metals upon
brain cells [261]. Cd uptake is related to Fe uptake mechanisms through DMT-1. Alterations
in tight-junction proteins such as ZO-1 translate to uncontrollable Cd uptake in the brain,
which in turn induces the impairment of neural tissue functioning [249,262].

3.2. Oxidative Stress and Inflammation in the Gut and Brain

ROS (superoxide, hydrogen peroxide, and hydroxyl) produced from metals generate
deleterious products which impair key enzymes of the mitochondrial electron transport
chain, leading to alterations in protein functions [263–265]. For example, the hippocampus,
which is associated with memory, is impacted by heavy metals affecting various regions of
the brain in PD patients [15]. Metal stress upon the hippocampus is linked to accelerated ag-
ing, memory loss, and dementia [266,267]. The hippocampus contains higher than average
levels of glutamate and glucocorticoid receptors, which can predispose the hippocampus
to metal stress [268].

Heavy metals further induce oxidative stress by generating ROS, which impair tight
junctions that regulate barrier and permeability functions of both the GI tract and BBB
by modifying phosphorylated junction proteins, thereby inducing chronic inflammation
(Table 2) [28,201,269–273]. However, oxidative stress caused by ROS can be counteracted
via antioxidants. Across various organisms, glutathione (GSH) mitigates cellular damage
by ROS. Specifically, metal ions accelerate hydroxyl radical production through Fenton
reactions, leading to GSH reductase inhibition and, eventually, a decrease in GSH concen-
tration [274] (Figures 4 and 5). Specifically, when ROS levels are greater than antioxidant
capacity, oxidative stress is generated. Thus, the increase in ROS triggers cell damage
through lipid peroxidation, DNA fragmentation, mitochondrial damage, and other cellular
alterations that disrupt barrier tight junctions [273].
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Table 2. Metal ions and ROS/NOS adversely oxidize neuroproteins and lipid metabolism.

Metal Ion Reactive Species Oxidized Molecules Adverse Outcomes Cite

Lead

Pb2+ δ-aminolevulinic acid
dehydratase (ALAD)

Reduces the antioxidant
(glutathione) levels [275,276]

Hydrogen peroxide
Superoxide radical Superoxide dismutase (SOD) Oxidative stress

Hydroxyl radicals Catalase Alteration in Ca2+ influx
Glucose-6-phosphate

dehydrogenase (G6PD) Apoptosis

GSH
Glutathione reductase

Glutathione peroxidase
Glutathione s-transferase

Voltage-gated calcium (Ca2+)
channels

N-methyl-d-aspartate (NMDA)

Cadmium

Cd2+ Thioredoxin Depresses antioxidants
(glutathione) levels [258,274,277–279]

Superoxide anion Cysteine Oxidative stress

Hydrogen peroxide Ubiquitin enzymes Damage in the electron
transport chain

Hydroxyl radicals Mitochondrial Complex II III Apoptosis
Topoisomerase II Lipid peroxidation

DNA methyltransferases Alteration in maintaining
genomic integrity

GSH
Glutathione reductase

Glutathione peroxidase
Glutathione s-transferase

Mercury

MeHg DNA Depresses antioxidants
(glutathione) levels [280–285]

Hg2+ Thioredoxin reductase Oxidative stress
Hydrogen peroxide Nitric oxide synthase Lipid peroxidation

Nitric oxide Monoamine oxidase Mitochondrial function
Glutathione reductase Decreases GABA signaling

Glutathione peroxidase Neurotransmitter metabolism
Astrocytic glutamine transporter Glutamine uptake

Choline acetyltransferase Acetylcholine synthesis
Creatine kinase Decrease ATP production

Cytosolic phospholipase A2 Membrane damage in
Endothelial cells

Enolase
Glutamate transporters

Ca2+ ATP
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Table 2. Cont.

Metal Ion Reactive Species Oxidized Molecules Adverse Outcomes Cite

Mn

Mn2+ Dopamine Impairment of oxidative
phosphorylation [276,281,286–289]

Mn3+ SOD Decrease ATP synthesis

DA-o-quinone Complex I, II Disruption of mitochondrial
energy production

Aminochrome Aconitase Alteration in Ca2+ influx
Adenylate cyclase

Succinate
Malate

Glutamate
N-methyl-d-aspartate (NMDA)

ATP synthase

Iron

Fe2+ Complex I III Lipid peroxidation [281,290–292]
Fe3+ SOD Dopamine metabolism

Hydrogen peroxide
Superoxide radical α-synuclein Mitochondrial functions

disruption in ATP synthesis
Hydroxyl radicals Tyrosine hydroxylase Apoptosis

3,4- dihydroxypheny-
lacetaldehyde
DA-o-quinone

Hydrogen peroxide DNA/protein degradation

6-hydroxydopamine Lipid peroxide
Aminochrome DNA/RNA

Creatine kinase BB
Cytochrome c oxidase

Ketoglutarate dehydrogenase

Arsenic

iAsV ATP synthase Uncouples oxidative
phosphorylation [250,293,294]

iAsIII β-tubulin Decrease ATP formation in
the mitochondria

Monomethyl arsonous
acid (MMAIII), Glucose 6-arsenate Inhibition of the hexokinase

Monomethylarsonic
acid (MMAV)

Peroxisome
proliferator-activated receptor

gamma coactivator 1-alpha
(PGC-1α)

Decrease in
mitochondrial biogenesis

Dimethylarsinous acid
(DMAIII), and

Mitochondrial transcription
factor A (TFAM)

Dimethylarsinic acid
(DMAV) Pyruvate dehydrogenase

Arsenic triglutathione

The human GI tract contains a diversity of metabolites produced by the microbiota.
These microbiota metabolites mediate gut–brain communication by transiting to the CNS,
thereby modulating oxidative stress and promoting microglia activation [192,295]. Oxida-
tive stress disrupts gut and BBB barriers, leading to α-synuclein misfolding, aggregation,
and subsequent neuronal damage in both ENS and CNS [183]. Increased intestinal per-
meability allows for the translocation of heavy metal ions and bacterial antigens, both are
critical in promoting intestinal neuronal oxidative injury. Synthesis of nitric oxide (NO)
in the GI tract by inhibitory motor neurons is readily translocated into the brain through
the vagus nerve [296]. On the other hand, NO that is produced by the gut microbiota, is
scavenged by hemoglobin and is later diffused. This in turn provides free radicals which
can interact with α-synuclein, microbes, and immune signaling, eventually leading to a
perturbed BBB and neurodegenerative disorders [148].

Microbial dysbiosis of the GI system promotes a pro-inflammatory environment and
alters barrier permeability. This factor, in addition to free heavy metal ions which leak from
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the gut, likely induces downstream oxidative stress in the ENS, leading to α-synuclein
misfolding and aggregation [54,297]. Alterations in microbiota stimulate ROS production
by activating the cytoplasmic NLRP3-associated inflammasome, regulating the maturation
and secretion of pro-inflammatory cytokines, such as IL-1β in epithelial cells, thereby
promoting Th17 cell differentiation [156,298]. Gut-mucosa Th17, an inflammatory subset of
T-helper cells, are associated with the development of autoimmune disorders, in addition
to PD [175,299,300]. Caspase-1-deficient and stressed mice which lack inflammasome acti-
vation, elicit a reduction in depressive-like behaviors and have an altered fecal microbiome.
The changes in the microbiome are related to beneficial effects, such as rebalancing in gut
microbial communities, and the attenuation of inflammation, all highlight that modulation
of the gut microbiota via inflammasome signaling likely alters brain functioning [301].
Proinflammatory signaling from LPS and TNF directs nitric oxide synthase (iNOS) upregu-
lation by inducing the oxidation and nitration of the actin cytoskeleton, thereby disrupting
the GI mucosal barrier by depleting both occludin and zonula occludens-1 [136,302–304].
Due to the fact that the GI submucosal neurons and terminal axons are proximal to the
gut lumen, this may lead to the spread of α-synuclein from the ENS to the CNS through
the vagus nerve pathway [297]. Furthermore, when dopaminergic nerve cells are exposed
to chronic oxidative stress, this insult eventually leads to the characteristic motor symp-
toms of PD [20,25]. These tandem reactions trigger neuroinflammation and the onset of
neurodegeneration [305].

Heavy metal exposure and ROS by-products promote neurotoxic disturbances such as
cognitive impairments, learning/memory dysfunctions, movement disorders, loss of lan-
guage skills, nervousness, and emotional instability [28,204]. Human brains are especially
susceptible to fatty acid oxidation due to high rates of oxygen consumption within this
organ and ROS stress caused by heavy metals. Specifically, when fatty acids contained in
vascular endothelial cells, neurons, and astrocytes are exposed to MeHg, these cells become
impaired and cannot uptake antioxidants; this cascade further leads to chronic oxidative
stress, inflammation, and endothelial dysfunction [203,306].

Mn exposure has systemic effects on ROS regulation and production, primarily upon
enzymes that control both protein folding and transcription [307,308]. A recent RNA-Seq
study investigating the acute and chronic effects of Mn on human-derived neuroblastoma
cells observed that Mn at any dose incites damages to the nervous system by upregulating
oxidative stress, leading to mitochondrial dysfunction and a heightened inflammatory
response [68]. Mn prevents neurotoxin clearance by promoting cellular oxidative stress
and impairing crosstalk between both neurons and astrocytes by dysregulating calcium
signaling, the glutamate–glutamine pathway, and glutamate–GABA cycle [281,295,309,310].
These metabolic disturbances drive oxidative stress, mitochondrial dysfunction by miti-
gating ATP levels, induce protein misfolding, and eventually, neurotoxicity through neu-
roinflammation, leading to nigrostriatal cell death [40,281]. Mitochondrial oxidative stress
further exacerbates ROS production and drives neuroinflammation in the brain by perturb-
ing muscarinic and dopaminergic receptors [311,312]. Furthermore, the Mn3+ oxidation of
dopamine increases the relative concentration of localized, oxidized dopamine, resulting
in increased oxidative stress [60,313]. While Mn impacts neurotransmitter uptake and
trafficking through neuronal oxidative stress causes impairments in cellular metabolism,
this pathomechanism is shared between both Mn neurotoxicity and PD onset; however,
there is a lack of mechanistic evidence connecting Mn exposure to PD causation [314–318]
(Figure 5A).
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Figure 5. Heavy metals and oxidative stress in neuronal cells: the disruption of BBB through metal
neurotoxicity and molecular mimicry. (A) Mn, Fe and other toxic metals accumulate within the
mitochondria by utilizing the MCU. An increase in oxidative stress insults leads to a dysfunction of
the mitochondrial electron transport chain. Metals that are able to bind to ADP via ATP-synthase
uniquely uncouples oxidative phosphorylation and ATP formation within the mitochondria. Pb2
has an inhibitory effect on the activity of calmodulin and, consequently, leads to the avoidance of
synaptic vesicles release [311–314,319–322]. (B) In the neuronal synapses, PB, Cd, and Mn impair
Ca2+ channels (voltage-gated Ca2+ and Ca2+ ATPase) leading to Ca2+ ion avoidance and alterations
in ion signaling. Pb2 has an inhibitory effect on the activity of calmodulin and consequently leads
to the avoidance of synaptic vesicle release [323,324]. In the binding sites of postsynaptic cells at
the NMDA-receptor/channel, and AMPA disturbances of the postsynaptic potential, leads to the
synaptic plasticity and induction of LTP[323–325]. (C) Glial cells further increase the production of
ROS by mitochondrial damage. Specifically, alterations in antioxidant levels and metal reactions
further promote the activation of the NF-kB pathway by the release of proinflammatory cytokines
(TNF-α, IL-1, IL-6). Increased cellular damage associated with the accumulation of metals promotes
α -synuclein formation in astrocytes leads to the suppression of protective functions and a decrease in
glutamate uptake, leading to excitotoxicity in neurons [326–333]. (D) In endothelial cells, the increase
in ROS production promotes the release of metalloproteinase-9 and PGE-2 by endothelial cells. This
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factor then stimulates both pericytes and glial cells to further promote pro-inflammatory signals
and, as a consequence, degrades the extracellular matrix of both tight junctions and BBB permeabil-
ity [41,273,283]. (E) The interaction of glial cells with ROS leads to mitochondrial damage and the
release of proinflammatory cytokines, which are further bolstered by the additional burden of heavy
metals. This impairs the essential roles of neuron maintenance by disrupting glutamate/GABA-
glutamine shuttling. The expression of EAAT1 and EAAT2 and the activity of glutamine synthetase
can be downregulated by the excess of intra-astroglial heavy metals [334–337]. Thus, glutamine
catabolism and elevated extracellular glutamate further induces excitotoxicity and neuronal damage,
finally leading to neurodegeneration[334,338,339]. Abbreviations: AMPA: α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid, DMT1: Divalent metal transporter 1, DAT: dopamine active
transporter, EAAT: excitatory amino acid transporter, IL-1: Interleukin-1, IL-6: In-terleukin-6, IL-12:
Interleukin-12, JAM: junctional adhesion molecule, LTP: Long term potentiation, MCU: mitochon-
drial calcium uniporter, MMP-9/-3: metalloproteinase-9/-3, MRP: Multidrug resistance-associated
proteins, MTs: metallothioneins, NMDA: N-Methyl-D-Aspartic acid, NADPH oxidase: nicotinamide
adenine dinucleotide phosphate oxidase, NF-κB: nuclear factor kappa, PGE-2: Prostaglandin E2,
PECAM: Platelet/endothelial cell adhesion mole-cule-1, ROS: Reactive oxygen species, TfR: Trans-
ferrin receptor, TNF: Tumor Necrosis Factor, VE-CADHERINE: vascular endothelial cadherin, ZIP:
Zinc-imidazolate polymers, ZnT1: zinc transporter protein-1.

Inorganic Hg2+ that is oxidized by ROS has an increased half-life in the brain and
binds to the sulfhydryls of thiols, leading to disruptions in protein conformation or enzyme
functions [340,341]. By binding to GSH and the cysteine residues of hormones, essential
functions such as GSH upregulation, mitochondrial functions, and the inhibition of the
NFkB pathway are blocked, thereby leading to neuronal damage [342–345]. For exam-
ple, MeHg causes apoptosis within 18 h of exposure by impairing mitochondrial mRNA
expression, inciting the mutation of mtDNA, and leading to the excessive production of
ROS [346,347]. When heavy metals damage mitochondria, and GSH concentrations are
inhibited, Hg is able to concentrate in the midbrain and promote ROS production prior to
PD onset by depleting dopamine production of dopaminergic cells [348–350]. This mecha-
nism of neurodegeneration occurs due to the fact that Hg has a high affinity for dopamine
receptors as compared to other metals, thus preventing GSH from mitigating ROS and lead-
ing to the impairment of numerous neuronal cellular processes and, eventually, hallmark
neurological pathologies preceding PD [38,351].

Fe exerts neurotoxic effects through the production of ROS and reacts with hydroxyl
radicals; the production of hydrogen peroxide interacts with ferroptosis to release Fe ions
that oxidize dopamine and induce dopamine catabolism [352–355]. The tandem increase in
both Fe and ROS in the brain of PD patients is associated with substantia nigra damage [356].
This oxidative stress cascade can result in: neural degeneration, the loss of dopaminergic
cells and apoptosis; the overall effect of chronic oxidative stress leads to the exacerbation
of neuroinflammation in PD patients [319–321]. Chronic inflammation perpetuates Fe
ion accumulation in the brain and modifies proteins which metabolize Fe; this further
drives neuronal apoptosis by inhibiting mitochondrial complex I [322,357–360]. Over time,
the chronic inflammation by free Fe ions creates ROS, increases the presence of both IL-6
and L-Ferritin in the cerebrospinal fluid, and, finally, directs neuronal apoptosis, which is
presented as recurrent tremors [84,361].

BBB dysequilibrium allows for the entry of metals by increasing peripheral inflam-
matory immune cell infiltration into the CNS, further promoting PD development [362].
Microglia are able to sense diverse stimuli which disrupt CNS homeostasis, such as tox-
icants, neuronal damage, microbial infection, and α-synuclein [326] (Figure 5c). Initial
microglial activation allows for leukocytes to enter the BBB, thereby recruiting Th1 and
Th17 cells to produce cytokines that secrete inflammatory molecules such as cytokines,
chemokines, reactive free radicals, and others (e.g., iNOS, NO, IL-1beta, IL-6, TNF-α, IFN-γ,
IL-8, TGF-b, prostaglandins, cyclooxygenases) [159–161]. This in turn may worsen neurode-
generative conditions, inducing neuronal inflammation by stimulating the inflammatory
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M1 phenotype in the microglia, thereby contributing to neuroinflammation and neurode-
generation [327–333]. Overall, the chronic activation of M1 microglia is implicated as a key
component in the development of neurodegenerative diseases [333].

Astrocyte activation through chronic metal exposure promotes the secretion of pro-
inflammatory TNF-α, IL-6, and IL-10, which result in BBB tight junction impairment [363–365]
(Figure 5e). The protective role of astrocytes, which effectively clears α-synuclein and
neurotrophic factors, is impaired following metal alterations of glycogen consumption
by inducing ROS production, further promoting astrogliosis and dopaminergic neuron
degeneration [366,367]. This mechanism is essential in PD onset due to the fact that if
α-synuclein is overproduced and taken up by astrocytes, this likely leads to astrogliosis and
neurodegeneration [339]. Thus, the overactivation, abnormal influx, and loss of regulatory
activities within astrocytes is a significant contributing factor in the progression of immune-
mediated PD [338,339].

3.3. Microbes and Heavy Metals in Gut–Brain Bioremediation

Minerals and trace elements (Ca, P, Mg, Fe, Cu and Zn) are essential for intestinal
homeostasis and absorption [368]. However, diets contaminated with heavy metals can
result in adverse effects through a variety of mechanisms [369]. The transport of nutrients
occurs in the small intestines; the contact or accumulation of metal ions within the GI
epithelium induces oxidative stress, cellular injury, dysbiosis, and increases the abundance
of facultative anaerobes [207,370]. As a consequence, the available epithelial oxygen
increases, leading to the depletion of anaerobic SCFA-producing microbiota, thus reducing
the production of anti-inflammatory or antioxidant metabolites. In a healthy environment,
oxidative stress is mitigated through chelation or the microbial-mediated reduction, uptake,
and eventual clearing of heavy metals (Table 3) [99,371].

Table 3. Gut microbial interactions with metals, both antagonistic and synergistic.

Probiotic Microorganism Toxic Element Model/Cell Line Treatment Effects Citation

Lactobacillus rhamnosus GR-1 Arsenic, Cadmium,
Mercury, Lead Humans

Reduction in toxic levels in
blood and microbiota changes

(Succinivibrionaceae and
Gammaproteobacteria families)

[372]

Mix of microorganisms: L.
plantarum DSM 24730, L.
acidophilus DSM 24735, L.

paracasei DSM 24733, B. infantis
DSM 24737, B. longum DSM

24736, L. delbrueckii subsp.
bulgaricus DSM 24734, B. breve
DSM 24732 and Streptococcus

thermophilus DSM 24731.

Arsenic, Cadmium,
Mercury, Lead Humans

Concentration of Cd, Hg, and Pb
in breast milk, lower

concentration of Cd in stools
from newborns treated with

the probiotics

[373]

Lactobacillus rhamnosus GR-1 Cadmium, Lead Caco-2 cells Reduce translocation of toxics [24]

Escherichia coli Nissle 1917
(EcN-20) and (EcN-21) Cadmium, Mercury Rats

Increasing GSH levels, SOD
activity and catalase, decrease
lipid peroxidation in liver and
kidney and decrease ALT, AST
and ALP activities, bilirubin,

creatinine and urea levels
in serum

[374]
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Table 3. Cont.

Probiotic Microorganism Toxic Element Model/Cell Line Treatment Effects Citation

Streptococcus thermophilus,
Lactobacillus acidophilus and

Bifidobacterium bifidum
Arsenic Rats

Ameliorating the toxic effects on
testis and blood metabolites,
increase antioxidant enzyme

activity
(glutathione-s-transferase)

[375]

Lactobacillus kefir CIDCA 8348
and JCM 5818 Cadmium Human hepatoma

cell line
Increase cell viability by binding

to the toxic metal [376]

Lactobacillus rhamnosus Rosell-11,
Lactobacillus acidophilus Rosell-52

and Bifidobacterium longum
Rosell-175

Cadmium Rat hepatocytes,
Rats

Decrease genotoxicity through
binding to toxic metal [377]

Lactobacillus rhamnosus Rosell-11,
Lactobacillus acidophilus Rosell-52

and Bifidobacterium longum
Rosell-175

Cadmium Rats

Increase in toxic metal secretion
by feces and decrease in

concentration in the blood.
Normalized ALT and AST

activities

[378]

Lactobacillus plantarum L67 Cadmium Murine RAW
264.7 cells

Inhibits cytotoxicity and
intracellular Ca2+ mobilization;

suppressed the expression of
AP-1 and MAPK protecting

against inflammation

[379]

Lactobacillus plantarum
CCFM8610 Cadmium

Human intestinal
cell line HT-29

and mice

Protection against cell damage,
reversed the disruption of tight

junctions, protected against
inflammation, and decreased the

intestinal permeability

[380]

Saccharomyces cerevisiae Cadmium Mice Protected against genotoxic and
spermatotoxic effects [381]

Lactobacillus plantarum and
Bacillus coagulans Cadmium Rats

Decreased AST, ALT, BUN,
bilirubin (increased by toxic

exposition) and metal
accumulation in the liver and

kidney

[382]

Lactobacillus delbrueckii,
Lactobacillus fermentum,
Lactobacillus acidophilus,

Bifidobacterium and Lactobacillus
bulgaricus

Cadmium Mice
Increased toxic excretion in feces,

and increasing β-catenin and
BDNF in brain tissue

[383]

Streptococcus thermophilus Cadmium Mice

Through toxic metal binding,
decreased levels of toxic metal in
blood and attenuation levels of

MDA and GSH

[384]

Pediococcus pentosaceus GS4 Cadmium Mice
Reduced tissue deposition,

increased fecal secretion of toxic,
and increased enzymatic activity

[208]

Bacillus cereus Cadmium Fish

Reduced Cd accumulation in
organs, modulate antioxidant

activity and intestinal microbial
composition

[385]
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Table 3. Cont.

Probiotic Microorganism Toxic Element Model/Cell Line Treatment Effects Citation

Lactobacillus plantarum
CCFM8610 Cadmium HT-29 cells, mice

Inhibition of metal absorption,
alleviated cytotoxicity, reversal

of the disruption of tight
junctions and inhibition of

inflammation

[380]

Lactobacillus plantarum
CCFM8610 Cadmium Fish

Mitigation of oxidative stress in
tissues and reversed alterations

in hematological and
biochemical parameters

[386]

Lactobacillus acidophilus Cadmium Fish

Decreased number of
micronucleus formation in

erythrocytes and improvement
of animal survival rate.

[387]

Akkermansia muciniphila Cadmium Mice Modulation of gut microbiota
composition [388]

Lactobacillus plantarum
CCFM8661 Lead Mice

Decreased toxic levels in blood
and tissues, recover blood
δ-aminolevulinic acid

dehydratase activity, avoidance
of alterations in glutathione,

glutathione peroxidase,
superoxide dismutase,

malondialdehyde, and reactive
oxygen species

[389]

Lactobacillus plantarum
CCFM8662 Lead Mice

Induced fecal metal excretion
through hepatic bile acids

synthesis, enhanced biliary
glutathione and increased fecal

bile acid excretion.

[390]

Faecalibacterium prausnitzii and
Oscillibacter ruminantium Lead Mice

Increase in the expression of TJ
proteins (ZO-1, occludin and
claudin-1), increased fecal Pb
excretion, increase SCFAs, pH
and oxidative reduction in the

intestinal lumen

[391]

Lactobacillus plantarum
CCFM8610 Cadmium Mice

Decrease intestinal metal
absorption, tissue accumulation,
oxidative stress and ameliorate

hepatic histopathological
changes

[392]

Lactobacillus reuteri Lead Fish

Decreased oxidative stress,
reversed alterations in

hemato-biochemical parameters,
and restored intestinal

enzymatic activities

[393]

Lactobacillus plantarum,
Lactobacillus acidophilus, Bacillus
subtilis, Pediococcus pentosaceus,

Bacillus licheniformis and
Saccharomyces cerevisiae

Lead Broiler Chicks

Improved antioxidant
parameters, liver transaminases,

decreased accumulation of
metals and morphological

alterations

[394]
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Table 3. Cont.

Probiotic Microorganism Toxic Element Model/Cell Line Treatment Effects Citation

Lactobacillus delbrueckii subsp.
bulgaricus KLDS1.0207 Lead Mice

Increased fecal excretion,
decreased oxidative stress, lipid

peroxide by decreasing MDA
concentration, and improved

antioxidant production

[395]

Lactobacillus pentosus ITA23 and
Lactobacillus acidipiscis ITA44 Lead Broiler Chicks

Reduced metal tissue
accumulation, decreased lipid
peroxidation, and normalized

antioxidant activity

[179]

Lactobacillus brevis 23017 Mercury Mice Reduced intestinal inflammation
and decreased oxidative stress [396]

and Lactobacillus plantarum Mercury Rats

Decreased tissue accumulation
of toxic metal, avoided
antioxidant alterations,

normalized creatinine, bilirubin,
urea AST, and ALT levels

[397]

Streptococcus thermophilus,
Lactobacillus acidophilus and

Bifidobacterium bifidum
Mercury Rats

Protection against the adverse
effects in the brain and kidney.

Increased activity of
glutathione-S-transferase, lactate

dehydrogenase, normalized
creatinine, triglycerides levels

and modulate histopathological
changes in the brain.

[398]

Chronic exposure to toxic metals, such as Cu, Pb, Zn, and Cd, alter the gut micro-
biome of individuals who reside in metal-polluted environments by shifting gut-associated
microbiota towards a relatively high abundance of Lachnospiraceae spp., Eubacterium eli-
gens, Ruminococcaceae UGG-014, Erysipelotrichaceae UCG-003, and Tyzzerella spp., as well as
significantly decreasing Prevotellaceae [399]. Overall, this change in microbial composition
by metal exposure incites metabolic changes in gut microbiota, affecting host metabolism.
A stable and functional gut-associated microbial community is necessary to remediate
xenobiotic metals. Gut microbiome commensals induce numerous factors which protect
hosts from metal stress through the expression of endogenous metallothioneins [400], the
upregulation of glutathione (GSH) for anti-oxidative activities [401], and other relevant
processes [105]. These factors act in orchestration to limit heavy metal uptake to modu-
late metal-associated pathogenesis. For example, gnotobiotic mice exposed to Cd and Pb
via oral ingestion, have a significant 5–30 and 7–40-fold increase in metal accumulation
compared to controls in fecal samples, respectively [27]. These results suggest that host-
associated microbiota are essential barriers to mitigate and bioremediate heavy metals in
the gut and brain.

A broad group of anaerobic digesting microorganisms described as LAB are key col-
onizers of the human GI tract. LAB generally act as probiotics and human symbionts,
which lack deleterious effects on human health. LAB tolerates acids, degrades different
carbohydrates, binds metals to decrease intestinal metal absorption, and reduces tissue
metal accumulation, thereby mitigating oxidative stress [402,403]. LAB metal bioreme-
diation properties also create a strong competition in human-associated niches as pro-
biotics [106,392,404]. Human gut LAB likely prevents and bioremediate metal toxicity
associated with neurodegenerative disease in at-risk populations [405,406]. LAB responds
to various dietary heavy metals, and this is indicative of a potential intervention strategy
as a neurological probiotic for the clearance of metals (Table 4).
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Table 4. Interactions of probiotic microbiota and their effects on the gut–brain axis.

Probiotic Microorganism Model Outcome Citation

Lactobacillus casei Shirota Humans Improves stool consistency and bowel
habits [407]

Lactobacillus acidophilus, Lactobacillus reuteri,
Lactobacillus fermentum and

Bifidobacterium bifidum
Humans

Decreases The Movement Disorders
Society-Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS),
biomarkers of inflammation and
oxidative stress (high-sensitivity

C-reactive protein (hs-CRP),
Malondialdehyde (MDA), Glutathione)

and insulin metabolism.

[408]

Lactobacillus acidophilus, Bifidobacterium
bifidum, L. reuteri and Lactobacillus fermentum Humans

Downregulates gene expression levels
of IL-1, IL-8 and TNF-α; increases the

gene expression of TGF-β and PPAR-γ
[409]

Lactobacillus acidophilus and
Bifidobacterium infantis Humans

Improves abdominal pain, bloating and
constipation with

incomplete evacuation
[410]

Streptococcus salivarius subsp thermophilus,
Enterococcus faecium, Lactobacillus rhamnosus

GG, Lactobacillus acidophilus, Lactobacillus
plantarum, Lactobacillus paracasei, Lactobacillus
delbrueckii subsp bulgaricus, and Bifidobacterium

(breve and animalis subsp lactis)

Humans Improves constipation in PD patients [411]

Lactobacillus salivarius LS01 and
Lactobacillus acidophilus

Peripheral blood
mononuclear cells

from PD patients and
Caco-2 cells

Reduces proinflammatory cytokines,
oxidative stress and increased the
anti-inflammatory response and

protection of the epithelium from gut
permeability

[412]

Lactobacillus acidophilus, Lactobacillus
rhamnosus GG and Bifidobacterium

animalis lactis
Mice

Increases levels of BDNF, GDNF and
dopamine, and decreases levels of

MAO-B in the brain.
[413]

Bifidobacterium bifidum, Bifidobacterium
longum, Lactobacillus rhamnosus, Lactobacillus
rhamnosus GG, Lactobacillus plantarum LP28

and Lactococcus lactis subsp. Lactis

Mice
Preserves dopamine neurons, reduces
the motor impairments, and maintains

tyrosine hydroxylase in neurons
[414]

Probiotic Bifidobacterium and Lactobacillus are found in human infants and increase
both gut microbiota diversity and healthy immune functioning [415,416]. L. rhamnosus
GR-1 mitigates metal translocation by employing mechanisms of heavy metal tolerance by
binding, sequestering, and clearing excess metals for the host [417]. Organic acids produced
by LAB such as Lactobacillus, chelate toxic metals by decreasing pH and increasing metal
solubility, resulting in the formation of metallo-organic molecules [418–420]. This occurs
through three mechanisms: ion exchange, precipitation through nucleation reactions, and
by creating metal nanoparticles in bacteria cell walls [24,421–423].

Probiotic LAB uniquely ferments complex fibers to produce SCFAs (acetate, butyrate,
and propionate), thereby providing nutritional supplements for colonocytes to support
gut barrier maintenance and prevent invasive pathogens [125,424]. Cd-exposed mice are
observed to have a decreased abundance and growth of the genera Lactobacillus and Bifi-
dobacterium, resulting in an impaired GI barrier and Cd accumulation [425]. Low butyrate
production increases pH in the gut, creating conditions favoring the overgrowth of inva-
sive pathogens [91,107,164]. Thus, decreased SCFA production promotes increased gut
permeability, the growth of opportunistic bacteria, increased uptake of metals, and triggers
chronic inflammation [425,426]. When SCFAs are limited, both intestinal dysbiosis and
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chronic inflammation are heightened [104]. The oral administration of L. plantarum is bene-
ficial in the remediation of Cd, Pb and Cu toxicity; this mechanism inhibits metal uptake
by intestinal cells and allows for metal excretion in the feces [389,427,428]. L. rhamnosus
GR-1 (LGR-1), which is supplemented in yogurt, demonstrated a decrease in the levels of
both As and Hg in the blood of pregnant women and children. These findings suggest
that various Lactobacillus strains are potential therapeutic candidates in the remediation of
heavy metals to prevent diverse diseases, such as neurodegenerative pathologies [429].

LAB strains also synthesize branched-chain amino acids (BCAAs). These amino acids
modulate host physiology by increasing mitochondrial biogenesis, leading to increased
antioxidant effects against ROS, and are able to penetrate the BBB [430–433]. Low plasma
BCAAs were associated with autism; however, dietary supplementation with BCAAs
reverses some neurological phenotypes [434]. With regard to PD, recent studies identified
that PD patients generally have reduced concentrations of both BCAAs and aromatic
amino acids compared with controls [435,436], while other studies observed increased
BCAA concentrations in PD patients as compared to controls [437,438]. These conflicting
observations on the effects of BCAAs, which are derived from LAB, elicit the need to further
investigate the mechanistic effect of BCAA upon neurodegeneration and PD onset.

LAB supports the production of various gut-associated secondary metabolites, which
can potentially influence neuronal health. For example, L. rhamnosus JB-1 was successfully
employed as a therapeutic probiotic to reduce stress, anxiety, and depressive behaviors in
mice [439]. Furthermore, decreases in microbiome-derived acetate in mice treated with the
antibiotic vancomycin demonstrates a reduction in synaptophysin in the hippocampus,
leading to impairments in learning and memory [424,440]. Propionate from LAB inter-
acts with FFAR3 in the ANS, PNS, and CNS to induce intestinal gluconeogenesis [424].
Probiotic strains such as Lactobacillus, Bifidobacterium, and Bacteroidetes are also a signif-
icant source of bile salt hydrolase; this allows for the deconjugation of bile acids from
taurine and glycine [12,441]. Recently, it was hypothesized that bile acids modulate neu-
ronal function through the stimulation of Fibroblast Growth Factor Receptor (FGF)15
secretion by Farnesoid X receptor (FXR) in the GI, silencing hypothalamic Agouti-related
protein/neuropeptide Y neurons through FGF receptors [442].

A primary inhibitory neurotransmitter in the brain, GABA is produced by both the
host and GI-associated microbiota [443]. Alterations in GABA and glutamate metabolism
were identified during Mn accumulation [444]. The neurotoxic effects include effects in the
dopaminergic function in the striatal zone on the brain, where high rates of both oxygen
consumption and metabolic rates are crucial factors for increasing brain sensitivity to
oxidative damage. [444,445]. Additionally, alterations in GABA receptor expression are
related to anxiety and depression symptoms, which occur in tandem with IBD [147,446].
Mice supplemented with probiotic L. rhamnosus were found to have decreased anxiety
levels in addition to increased gene expression of both GABAAα1 and GABAAα2 in the
hippocampus[432]. Histamine, synthesized by both microbiota and epithelial gut cells of
the host have essential roles for mediating gut microbiome and host neurocommunica-
tion [447,448]. Application of the probiotic L.reuteri activates histamine receptor 2, thereby
modulating host mucosal responses to inflammation and highlighting the role of probiotic
microbiota in gut-brain communication [449].

4. Systems Toxicology
4.1. Towards Systems Toxicology

In our day-to-day life, humans are exposed to an environmental cocktail of heavy
metals through their diet. Conversely, classical toxicity testing and the risk assessment of
metals typically investigates a singular exposure. Therefore, the consideration of metal
mixtures upon multiple target organ systems is lacking in detail. Specifically, the appli-
cation of “Omics” methods can be utilized to increase the mechanistic understanding of
metal mixtures toxicity upon biological pathways such as oxidative stress, mRNA splicing,
and ETC dysfunction in relation to neurodegeneration and PD [259,450]. As extensively
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discussed in previous sections of this review, heavy metals toxicity influences neurodegen-
eration via the microbiota through a wide variety of pathomechanisms. The utilization
of different “omics” technologies such as transcriptomics and metagenomics, needed to
generate large “molecular snapshots” of various conditions underlying neurodegeneration
in the gut–brain axis, are essential [451,452]. While these approaches provide the means
to obtain sizable quantitative datasets describing a variety of molecular functions that
underlie neurodegeneration, a major hurdle still exists: the data-driven integration of
multi-omics and microbiome data into a large-scale system toxicology analysis through
modeling approaches [453].

Systems biological knowledge bases and models can be readily employed to integrate
and interpret these data at a systems level, providing mechanistic hypotheses about the
interactions between the large variety of biological components involved. For example,
the alterations that metal toxicants induce between different biological processes, such
as oxidative stress responses, mRNA splicing, and energy metabolism and their relation
to neurodegeneration [450,454] can be characterized at the levels of genes, proteins, and
metabolites. Systems biology models can be employed in this case to infer systems-level
activity changes to characterize the interplay between metal toxicants, gut bacteria, and
human tissues. In the next section, we introduce a metabolic modeling approach which is
specifically designed to simulate the metabolic interactions occurring between multiple
human organs, including the gut and its bacterial community. We will speculate about how
this approach can be employed to study the role of the microbiota in modulating heavy
metal uptake and toxicity effects.

4.2. Whole-Body Models Integration with Heavy Metals Bioremediation

Various systems biology tools such as Constraint Based Reconstruction and Analysis
(COBRA) [455,456] have proved their worth by deciphering the metabolic activity of sin-
gle organisms, as well as multi-species metabolic cross-talk. One of the most frequently
employed COBRA methods is flux-balance analysis (FBA) [457], which is used to computa-
tionally estimate and characterize biochemical reactions activity in reconstructed metabolic
networks of the studied organisms under metabolic steady-states. This framework requires
the specific definition of a growth environment (e.g., which metabolites are taken up by the
modeled organism), which is dependent upon molecules that are known to be available
within the environment under investigation.

Over time, these applications have led to the development of whole-body metabolic
models (WBM models) [458]. These models represent multiple individual tissues of an
organism by their respective metabolic network along with their unique metabolic con-
nections (e.g., via the bloodstream or the lymphatic system). Additionally, previously
published WBM models also contain a specific colon luminal compartment with metabolic
networks for the gut microbiota [458]. Moreover, depending on the specific questions
to be answered, physiological constraints can be integrated into these models to include
information such as blood flow and kidney filtration [458]. These applications led to the
recapitulation of interorgan interactions such as the lactic acid and alanine/glucose-alanine
cycles through simulations by using the WBM approach [458]. Overall, WBM models
highlight a promising approach to predict the interactions between multiple organ systems
and microbes within specific contexts, which can include toxic exposure as an important
factor for the emergence of PD and related diseases.

Additionally, heavy metals have a detrimental effect on the bacterial community [459],
which is important for maintaining gut–brain axis homeostasis [12]; microbial communities
are, therefore, strong mediators in the pathophysiological balance between health and disease
statuses. While the influence of heavy metals on gut-associated microbiota in directing changes
in microbial community composition were studied experimentally [107,460], computational
studies which propose metabolic interventions to revert those changes are still required.
For example, a list of potentially beneficial metabolites could be generated by simulating
the effects of several metabolic interventions on the structure of microbiomes altered by
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heavy metals. This would allow for the screening of specific metabolites that are able to
revert a dysbiotic, host-associated microbial composition back towards a healthy state.

In the context of heavy metal toxicity that is associated with neurodegeneration
and PD, WBM models could be employed to investigate the extent to which microbial
communities could either mitigate or exacerbate brain toxicity effects. It is already known
that some specific bacteria or a combination of them, as shown in Table 3, are able to
reduce the toxicity of several contaminants; Streptomyces werraensis for example is known
to absorb hexavalent chromium [461]. The combined effect of multiple bacterial species
and their communication within host tissues could be studied through the WBM models
approach. Additionally, as WBM models allow to account for sex-specific differences,
it will be possible to investigate whether sex-specific trajectories of heavy metal toxicity
on the host microbiome [370,462] are related to differences in host metabolism. Other
potential applications of metabolic modeling approaches include the assessment of the
mechanistic bases which underlie complex biological relationships, such as the effect of gut
microbiome taxonomic changes and the influence of IBD treatments upon PD incidence,
such as the case for anti-TNF therapy [22,178]. A list of metabolic-dependent heavy metal
uptake and transformations pathways that can be employed by the bacteria to alter heavy
metals availability in the surrounding environment is extensively explained in Chandran
et al. 2020 [406]. An important example of these transformations is the methylation of
heavy metals, which increases their solubility, and thus the potential transport to the brain.
Specific models that include heavy metal metabolism need to be established, and such
models’ creation and validation is of paramount importance for systems toxicology study
and will require a large amount of work. The use of models specifically curated to include
this information will allow for the estimation of microbiome-specific metal transformation
capabilities. Those values could be compared to investigate whether the activity of heavy
metals transformation mechanisms correlate with PD severity. Overall, the integration of a
gut-associated microbial compartment can allow for the further investigation of host–gut
microbial co-metabolism within a systems toxicology context. To provide some examples
of similar concepts on a topic that differ from heavy metals and PD, it could be important
to take inspiration from systems biology. For example, results from integrated WBM
models illustrated that the presence of specific host microbiota does not only bolster
the production of essential neurotransmitters, but also recapitulates gut–liver alcohol
exchange and colonocytes uptake of bacterial butyrate [458], the latter being essential in
maintaining the homeostasis of colon epithelial cells. Moreover, this framework allowed for
the modeling of the competition between bacterial metabolites and drug detoxification in
the liver [458]. Overall, these results suggest that important metabolic exchanges between
microbiome, gut, and brain can be modeled with this approach and could be specifically
tailored to include information about heavy metal trafficking throughout the gut–brain
axis.

5. Conclusions: Fermented Functional Probiotics and Oxidative Stress

Industrialization and urbanization contribute to the release of heavy metals in food
and water. Contamination with heavy metals is a serious ecological problem for humans
and animals. Although metals are biologically important, they are usually required in trace
amounts, excessive metal accumulation in various organs induces various detrimental
intracellular events (oxidative stress, mitochondrial dysfunction, DNA fragmentation,
protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, and the
activation of apoptosis). Metal accumulation in tissues is known to disrupt the homeostatic
functioning of biological systems [405,419]. Thus, harmful compounds can cross organismic
barriers leading to alterations within microbiome–gut–brain axis communication; chronic
metal toxicity promotes oxidative stress of the gut and brain, eventually leading to PD-
associated pathologies [27,38].

The gut barrier, as the first line of defense, largely depends on microbiome–host
interactions to control the entry of ingested toxicants. Recent studies illustrated the gut
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microbiome’s role in modifying the bioavailability and toxicity of heavy metals. Specifically,
microbial communities were shown to decrease metal accumulation in both the blood
and organs [105]. In this regard, the integration of both in vitro or in vivo studies of toxic
exposures with computational modeling allows for the study of community composition,
microbiome-specific metals transformation capabilities, gut–brain communication and
neurotoxicity from a systems toxicology point of view. This is important due to applications
of WBM models that include the prediction of interactions between multiple organ systems
and microbes. Tailoring WBM models to account for chronic toxic exposures within specific
contexts can facilitate the identification of the mechanistic foundation which underlies these
interactions. Moreover, the utilization of novel modeling approaches such as WBM models
can be employed to screen for metabolites that appear to be important in the gut-associated
microbiome structure and improve the bioremediation potential of microbes, allowing for
new strategies to decrease metal uptake and accumulation to improve human health. Thus,
potential bioprocessing capabilities of LAB can be estimated as probable interventions
to alleviate oxidative stress and metal toxicity, which are significant causative agents of
neurodegeneration and the onset of PD.
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