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Background and Research Question: Walking impairment remains a major limitation

to functional independence after stroke. Yet, comprehensive and effective strategies

to improve walking function after stroke are presently limited. Backward Locomotor

Treadmill Training (BLTT) is a promising training approach for improving walking function;

however, little is known about its mechanism of effect or the relationship between

backward walking training and resulting overground forward walking performance.

This study aims to determine the effects of serial BLTT on spatial aspects of

backward and forward walking in chronic post-stroke individuals with residual

walking impairment.

Methods: Thirty-nine adults (>6 months post-stroke) underwent 6 days of BLTT

(3×/week) over 2 weeks. Outcome measures included PRE-POST changes in backward

and forward walking speeds, paretic and non-paretic step lengths, and single-

support center of pressure distances. To determine the association between BLTT and

overground walking, correlation analyses comparing training-related changes in these

variables were performed.

Results: We report an overall improvement in BLTT and overground walking

speeds, bilateral step lengths, and single-support center of pressure distances over

six training sessions. Further, there were weak positive associations between PRE-

POST changes in BLTT speed, BLTT paretic step length, and overground forward

walking speed.

Conclusion and Significance: Our findings suggest that individuals with chronic post-

stroke walking impairment experience improvements in spatial walking measures during

BLTT and overground. Therefore, BLTT may be a potential adjunctive training approach

for post-stroke walking rehabilitation.

Keywords: backward locomotion, post stroke walking rehabilitation, gait rehabilitation, backward treadmill

training, walking impairment
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INTRODUCTION

Walking impairment resulting from stroke significantly reduces
functional ambulatory independence and is a significant public
health issue worldwide (1). While most post-stroke survivors
have some residual walking ability, <8% have adequate walking
speed and endurance to allow for normal daily functioning (e.g.,
work, grocery shopping) (2, 3). This insufficient recovery of
walking ability is devastating because it leads to a loss of life roles,
social isolation, dependency, sedentary lifestyle, and increased
risk of falls, fractures, and secondary medical complications
(4). It is recognized that post-stroke walking rehabilitation
training should be multimodal (3) and emphasize exercises such
as task-specific training (5), paretic limb weight-bearing (i.e.,
strengthening) (6), aerobic conditioning (7), and balance (3);
yet, there are currently limited rehabilitative training strategies
available that incorporate all of these rehabilitative components
into one exercise. In light of the anticipated increase in the
rate of post-stroke survivors with residual walking impairment
(8), the development of more comprehensive and time-efficient
rehabilitation approaches is needed to facilitate the rate and
extent of walking recovery.

Recent studies suggest that backward walking training may be
one comprehensive rehabilitative approach to enhance walking
recovery (9–11). Although the mechanism of backward walking
is not well-understood, past electrophysiologic studies in healthy
controls and the elderly have reported that backward walking
training activates trunk, hip, and knee muscles to a greater extent
than forward training. In addition, backward walking training
has been suggested to improve motor control by alleviating the
maladaptive flexor-synergy gait pattern associated with central
nervous system injury (12–14). Further, functional neuroimaging
and electrocorticography studies report greater cerebral activity
in the supplementary motor area, pre-central gyrus, and superior
parietal lobule during backward compared to forward walking,
suggesting that backward walking presents more of a challenge to
the nervous system and therefore may provide greater neuronal
connectivity, which may contribute to enhancing corticomotor
plasticity (15–17). From a functional movement perspective,
investigations spanning a wide range of individuals, including
the young and neurologically intact, elderly, and neurologically
impaired individuals, have reported that backward training can
improve forward walking performance by promoting lower
extremity strengthening (18), enhancing proprioception (10, 19),
agility, and balance (11)—ultimately leading to an improvement
in overground forward walking speed (20).

Specific to the post-stroke population, a limited number
of pilot studies and small randomized controlled have
studied backward walking training in combination with
other conventional modalities with promising preliminary
results. These include backward treadmill training with the
use of body-weight support (BWS) (21, 22), with and without

usual physical therapy (23, 24), direct overground training

with standard physical therapy (25), observation (26), and
mirror assisted therapy (27), and concurrent administration of
botulinum toxin (28). Despite the wide variations in approaches
to backward walking training, the majority of these studies

have reported training-related improvements in walking speed,
balance, and other spatiotemporal measures (9). Our group
recently developed a training protocol termed backward
locomotor treadmill training (BLTT) in light of these past
studies. BLTT differs from past backward walking training
studies in the post-stroke population because the entirety of
the training takes place on an instrumented treadmill and does
not utilize BWS. Specifically, it is postulated that the absence of
body weight support inherently requires trainees to bear more
weight on the paretic leg (29) while concurrently receiving a
high dose of practice on a continuously moving platform (i.e.,
treadmill), likely providing a greater exercise than previous
backward walking training approaches. Additionally, the use of
an instrumented treadmill in this protocol allows for real-time
adjustments and longitudinal monitoring of backward walking
training speeds and other metrics (e.g., step length) and helps to
highlight how these parameters change over time. For example,
it is unknown whether trainees with chronic post-stroke walking
impairment will overtime increase their backward walking speed
or lengthen vs. shorten their step lengths—a factor that may help
to understand better the mechanistic benefits of BLTT in relation
to walking performance and neuromotor control (30–35).
Similarly, the correlation between training-related changes
during backward training and overground walking has not been
reported and may provide preliminary insight into which aspects
of BLTT most closely predict overground walking performance.

Our group recently performed a pilot safety, feasibility,
and preliminary efficacy of BLTT and a non-invasive spinal
neuromodulatory protocol (36). That study confirmed that the
BLTT protocol is safe and feasible in chronic stroke survivors
and found clinically meaningful improvement in walking speed
lasting beyond 2 weeks post-training with BLTT that was
independent of non-invasive neuromodulation. However, due
to the limited scope of that study, that manuscript was unable
to incorporate outcomes concerning training-related changes
associated with BLTT or the relationship between those changes
and overground forward walking performance. Hence, this
secondary analysis manuscript utilizes data collected from that
study along those from nine additional individuals subsequently
enrolled into the protocol to optimize statistical power for
achieving the aims of this study. As such, the objectives of
this manuscript are to highlight training-related spatial changes
over six sessions of BLTT in chronic post-stroke individuals,
and to determine its association with overground walking
performance. Knowledge gained from study may help provide
key preliminary insight into the relationship between backwards
treadmill training and forward walking performance, while
serving as a means for sample-size determination for larger
prospective studies.

METHODS

Design Overview
Setting and Participants
This study was approved by the University of Cincinnati
Institutional Review and was performed in the Neurorecovery
Lab from September 2017 to October 2019. Thirty-nine chronic
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stroke survivors with residual walking impairment were recruited
from the community and gave written informed consent prior
to enrollment, in accordance with the recommendations of
the Declaration of Helsinki. Inclusion and exclusion criteria
as previously described elsewhere (36) were: Inclusion: 18–
80 years of age, residual walking impairment secondary
to ischemic/hemorrhagic stroke(s), >6 months post-stroke
(chronic), ability to provide consent, ambulate at least 10
meters without a walker, and maintain at least a 0.13 m/s
speed on the treadmill while walking in a backward direction
for a duration of six consecutive minutes. In addition, all
participants were asked to abstain from formal physiotherapy
and botulinum toxin injections at least 2 weeks prior to study
enrollment and through the entirety of training and follow-
up (37). Exclusion: Unstable cardiovascular status precluding
participation in a moderate-high intensity exercise, severe
lower extremity spasticity (modified Ashworth >2/4), significant
language barrier which may interfere with the ability to
follow instructions during training and testing, and untreated
depression [>10 on the Patient Health Questionnaire (PHQ9)]
(38), see Table 1.

Description of Training and Outcomes

Backward Locomotor Treadmill Training
On the first visit (screening), enrolled participants were oriented
to the backward locomotor treadmill task while holding one
handrail for support for 3min. All participants were expected to
maintain the minimum required training speed of 0.13 m/s on
the instrumented Biodex Gait TrainerTM 3 motorized treadmill,
per study inclusion criteria, as this speed was the minimum
necessary for the treadmill sensors to detect and record walking
metrics associated with training. Based on the comfort level, the
belt speed was increased in increments of +0.04 m/s until a
comfortable training speed was achieved, as previously described
(36). Qualifying participants then underwent six sessions of
training, which consisted of four 6-min blocks. All training
sessions were conducted by a protocol-trained and certified
physical therapist, Figure 1. The starting belt speed was based on
the last preferred speed achieved on the previous day, with the
option to increase or reduce the speed, per subject preference.
For additional safety, all participants wore a safety harness
(without-body weight support) and were provided 2-min rest
breaks between each 6-min training block. Participants were
cued to step “reach” back as far as possible with each step
during the swing phase of gait while working to maintain an
upright posture throughout the duration of the training period.
In addition, to reduce possible confounders between training
sessions, participants were instructed not to practice walking
backward outside of the study protocol for the duration of
the study.

Outcomes

BLTT
The outcome variables obtained during training were the
change in backward walking speed and step lengths (paretic and
non-paretic). Previous studies have suggested that backward
walking ability decreases with age and is characterized by

TABLE 1 | Baseline characteristics of study participants (n = 39).

n Percentage

Gender (female) 17 44

Stroke type (ischemic) 31 79

Left hemispheric 19 49

Brain stem/cerebellar 6 15

Single point cane 4 10

Quad cane 6 15

Hemi-walker 1 3

AFO 13 33

KAFO 2 5

Mean Median Range (min–max)

Age 56.9 57.3 33.7–72.9

Time post-stroke (years) 4.18 2.40 0.70–18.6

PHQ9 score 4.38 3 0–16

MMSE score 28.1 29 18–30

Height (cm) 174 172 157–195

Gait Measures

Backward locomotor treadmill training

Speed (m/s) 0.29 0.27 0.13–0.69

Step length (cm) -paretic leg 25.9 25.0 10.0–61.75

Step length (cm)-non-paretic leg 24.6 23.8 10.0–64.75

Step length symmetry index (%) 94.4 96.7 82.6–100

10-meter walk test (fast)

Speed (m/s) 0.99 1.06 0.19–2.00

Step length (cm)-paretic leg 60.0 60.0 34.8–89.6

Step length (cm)-non-paretic leg 53.5 53.5 14.3–92.1

Step Length Symmetry Index (%) 88.9 92.1 52.7–99.9

SS COP dist. (cm)- paretic leg 6.81 5.00 1.13–16.1

SS COP dist. (cm) - non-paretic leg 10.9 11.1 8.50–18.6

SS COP dist. symmetry index (%) 69.1 68.0 19.3–99.6

AFO, Ankle-Foot Orthosis; KAFO, Knee-Ankle-Foot Orthosis; MMSE, Mini-Mental State

Examination; PHQ-9, Patient Health Questionnaire 9-item Depression Scale; SS COP

Dist., Single Support Center of Pressure Distance. Symmetry indices range from 0 TO

100%, where 0% means complete asymmetry and 100% means perfect symmetry.

decreasing speeds and stride lengths and may be related
to a myriad of factors such as an age-related decline in
strength, neuromotor control, and biomechanical constraints
(39, 40). Since stroke commonly impacts chronologically older
individuals, compounded by acquired functional hemiparesis,
it is likely that study participants may experience similar
limitations. Hence, investigating training-related changes in
these parameters may inform how BLTT may impact lower
extremity strengthening and neuromotor control. These
measures were acquired using built-in treadmill sensors (41)
and were later exported for offline analysis. Four separate
values (from each 6-min training block) were averaged to
formulate a single cumulative value per training session. Of
specific interest were: PRE to POST changes [Day 7 minus
Day 2 (baseline)] in average walking speed and step length
during BLTT.
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FIGURE 1 | Backward locomotor treadmill training (BLTT) protocol. Study participants underwent six, 30-min sessions of BLTT over a 2-week period (red cubes).

Outcome measures were obtained prior to training at baseline (D2), subsequent training days (D3–D7), and ∼24 h following the completion of training (D8).

Overground Walking
Three measures were obtained during the 10-meter walk test
(10-mWT): speed, step length (paretic and non-paretic), and
single support center of pressure distance [SS COP Dist. (paretic
and non-paretic)]. Walking speed has been shown to be a
valid, reliable, and good predictor of functional ambulation and
community independence (42) and is commonly impaired after
stroke. Likewise, bilateral step length is often shorter than in
healthy controls and is associated with decreased walking speed
and an increased risk of falls (43, 44). The SS COP Dist. measures
how body weight is progressed over the foot during single
support and has been suggested to be a predictor of hemiparetic
gait velocity (45, 46). As such, measurement of training-related
changes in SS COP Dist. may provide information about
the neuromuscular response involved in maintaining upright
balance and forward progression during walking. To obtain the
above measures, the 10-mWT was performed daily prior to the
start of BLTT and was captured with a 20-feet Zeno Walkway
gait analysis mat (Protokinetics, PA, USA) and Protokinetics
Movement Analysis Software (PKMAS) (24), and were later
exported for offline analysis. Of specific interest were: PRE to
POST [Post-training Day 8 (∼24 h post Day 7) – Day 2 (pre-
training baseline)] changes in walking speed, average step length,
and SS COP Dist.

Relationship Between BLTT and Overground

Walking Performance
To determine the association between BLTT and forward
walking performance, correlation analyses were performed
comparing PRE to POST changes between 1. 1BLTT speed
vs. 110-mWT speed, 2. 1BLTT step lengths vs. 110-mWT
speed, 3. 1-BLTT step lengths vs. 1-overground walking

step lengths, 4. 1BLTT speed vs. 110-mWT speed SS COP
Dist and 5. 1-BLTT step lengths vs. 1-overground SS
COP Dist.

Spatial Symmetry
Symmetry indices were calculated for Step Lengths (BLTT and
10-mWT) and SS COP Dist. (10-mWT), PRE to POST using
the following equation: [1 - | Paretic – Non-paretic | / (Paretic
+ Non-paretic)] ∗ 100%; with possible values ranging from 0–
100%, where 0% means complete asymmetry and 100% means
perfect symmetry.

Statistical Analysis
To address the objectives of this study, only participants
that completed at least half of the six training sessions were
included for BLTT analysis; therefore, one participant from
the original safety and feasibility study who did not complete
the first day of training was excluded. For forward walking
and correlation analysis, one participant whose forward walking
data was uninterpretable during forward gait analysis (due
to walk-running). Two participants who did not complete
the entire 6 days of the study were excluded from the
correlation analysis looking at PRE to POST changes. Shapiro-
Wilk tests were used to assess for deviations from normal
distribution among the continuous variables, and the significance
level was set at p = 0.05 for all measures. Paired t-tests
were used to test PRE to POST changes in spatiotemporal
measures on the treadmill (backward) and overground (forward).
Robust regression was used to limit the impact of outliers
in determining the relationship between training-associated
changes during BLTT compared to changes observed with
the 10-mWT (47).
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FIGURE 2 | Backward locomotor training (BLTT) speed and step length over six training sessions. Mean progression in BLTT speed (A) paretic and non-paretic step

lengths (B) per training session from baseline (D2) through session 6 (D7), (error bars show standard error, ****indicates significance level <0.001).

RESULTS

BLTT: Speed
The BLTT speed was significantly greater on Day 7 (0.42 m/s ±
0.18) relative to baseline (D2) (0.30 m/s ± 0.13), (p < 0.001), see
Figure 2A.

BLTT: Step Length
Both lower extremities demonstrated an improvement in step
length. The non-paretic leg showed an increase in step length
at Day 7 (35.9 ± 14.0 cm) compared to baseline (24.8 ±

10.7 cm), p < 0.001. Similarly, the change in paretic step
length on Day 7 also increased (38.0 ± 16.3 cm) relative
to baseline (26.1 ± 11.0 cm), p < 0.001, See Figure 2B.
Interlimb BLTT step length symmetry was less on Day
7 (91.8% ± 5.92) compared to baseline (94.4% ± 4.98),
p= 0.019.

10-mWT: Overground Walking Speed
Overground walking speed was significantly greater on Post-
training Follow-up Day 8 (1.21 m/s± 0.60) compared to baseline
walking speed (0.98 m/s ±0.49), p < 0.001, see Figure 3A. In
total, 25 of 36 study participants (69%) experienced clinically
meaningful improvements in walking speed (≥0.15 m/s) by the
completion of training (48).

10-mWT: Step Length
Both lower extremities demonstrated an improvement in
overground walking step length during overground walking. The
non-paretic step length increased from 52.0± 17.7 cm at baseline
to 56.4 ± 16.1 cm, P < 0.001. Likewise, the paretic step length
increased from 60.3± 13.8 cm to 63.4± 14.7 cm (p= 0.003), see
Figure 3B. Interlimb step length symmetry was greater on Day 8
(90.6%± 9.48) compared to baseline (88.9%± 10.8), p= 0.019.

10-mWT: SS COP Dist
The non-paretic SS COP Dist. increased from 10.9± 3.96 to 12.3
± 4.45 at Post-training Follow-up Day 8, p < 0.001. Similarly,
the paretic leg also demonstrated an increase from 6.81± 4.49 at
baseline to 8.38 ± 5.32, p < 0.001, see Figure 3C. Interlimb SS

COP Dist. symmetry was unchanged on Day 8 (72.8% ± 20.4)
relative to baseline (69.1%± 21.6), p= 0.169.

Correlation Analysis
There was a weak positive relationship between 1 BLTT Speed
and 1 10-mWT Speed, R2 = 0.11, β = 0.90 (0.23–1.57), p
< 0.010, and 1BLTT Paretic Step Length and 1 10-mWT
Speed, R2 = 0.10, β = 0.01 (0.001–0.01), p < 0.030, see
Figure 4. No significant relationship was seen between all the
other variables, see Table 2.

DISCUSSION

Our findings suggest that chronic stroke individuals with residual
walking impairment experience progressive improvement in
backward walking speed and bilateral step lengths with training.
In addition, study participants demonstrated training-related
improvement in overground forward walking speed, bilateral
step lengths, and single support center of pressure distances.
Furthermore, correlation analysis suggests a weakly positive
association between the changes in backward walking speed,
BLTT paretic step length, and change in overground forward
walking speed. In addition, there was a slight improvement in
overground step length symmetry following six training sessions.

Previous studies have reported that backward walking ability
significantly declines with age, and hemiparesis as a result of
stroke increases this likelihood, resulting in functional walking
impairment and increased risk of falls (49). Therefore, the finding
that our study participants showed improvement in backward
walking ability with serial training is encouraging and may have
several functional, safety, and quality of life implications (39, 50).
Further, while the relationship between backward and forward
walking is not entirely understood, previous work suggests that
the two forms of locomotion may overlap, enabling one training
modality to improve the other (13, 51). As such, in this study,
participants demonstrated improvements in both backward and
forward walking speeds and step lengths over consecutive days
of training.
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FIGURE 3 | Ten meter walk test (10-mWT). Mean change in 10-mWT speed relative to baseline [dotted line signifies the minimal clinically important difference (MCID)-

≥0.15 meters/s] (A). Mean training-related change in paretic and non-paretic step lengths (B), and percent single support times (C) (error bars are standard error,

****indicates significance level <0.001, ***level <0.01).
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FIGURE 4 | Correlation analysis of backward locomotor treadmill training change in BLTT speed (A) and paretic Step Length (B) and overground walking speed on

the 10-meter walk test.

The mechanism of walking impairment after stroke is
multifactorial and it is widely recognized that post-stroke walking
rehabilitation training should be multimodal in its approach
(3). While our reported findings are preliminary, we postulate
that BLTT may be one such approach, as it provides task-
specific training (5), facilitates aerobic conditioning (7, 52)
and has been suggested to improve balance by emphasizing
sensorineural integration practice (3, 25, 50, 53, 54). Moreover,
BLTT likely improves walking performance by training key
muscles essential for efficient biomechanics during forward
walking. For example, previous backward walking exercise
studies have demonstrated that the backward walking approach
uniquely activates fundamental supplementary core and lower
extremity muscle groups, including hip extensors, which are also
important contributors to forward walking (25, 55). In addition,
since BLTT requires trainees to bear a significant portion of
their body weight during training, serial BLTT may improve
lower extremity loading ability, resulting in greater stability,
postural control, and adequate weight shifting during stance. The
observed improvement in SS COP Dist. during forward walking
supports the idea that training enables greater lower extremity
strengthening and foot and ankle stability, enabling body weight
to progress over the foot more effectively during single support
(46). Another unifying association is the possibility that BLTT
improves neuromotor control, as suggested by the incremental
increase in overground step length and symmetry following six
training sessions (56)–an attribute that has implications for the
stability of gait and is decreased with aging and after brain injury
(39, 57).

While improvement in backward treadmill training ability
does not inherently translate to improved overground walking
performance, our correlation analysis found a positive but weak
association between changes in backward treadmill training
speed, paretic step length, and forward walking speed. This
finding suggests that several confounding variables still exist

in determining the precise relationship between backward
training and overground forward walking. Nevertheless,
these results lay a foundation for future studies that will
confirm these relationships and ultimately uncover the best
predictors of walking rehabilitation training to improve
walking performance.

Limitations and Future Directions
Our findings are limited by the lack of a control group
(forward walking training); therefore, a determination
regarding the uniqueness of our measures to BLTT cannot
be made. Nevertheless, it is reassuring that previous backward
walking protocols with forward walking controls report similar
improvements (20). Furthermore, the generalizability of our
results is limited due to the single site and exploratory nature
of this study; hence future hypothesis-driven, and larger
randomized controlled multisite studies are needed to validate
our findings. In addition, since the factors contributing to stroke
walking impairment are often heterogeneous (i.e., age, stroke
size type and location, level of spasticity), larger studies would
enable further subgroup analysis to determine the impact of
such variables on BLTT performance and overground walking
performance. In addition, this study was limited to ambulators;
therefore, our findings are not generalizable to non-ambulatory
stroke survivors, who BLTT is likely not feasible without
the use of bodyweight support. With respect to underlying
mechanisms of improvement, the instrumented treadmill used
in this study was not equipped with built-in force-sensors,
therefore it was not possible to obtain COP-related measures
during BLTT. Therefore, future investigations are needed to
capture SS COP Dist. during BLTT and empirically determine
its influence on overground walking performance. To this end,
our conclusion regarding muscle-strengthening and foot-ankle
stability was based on observations from previous studies and
indirectly from the observed improvement in SS COP Dist.
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TABLE 2 | Correlation analysis of backward locomotor treadmill training and overground walking performance.

Robust Regression

Intercept ß (95% CI) ß p-value R2

110-mwt speed

1BLTT speed 0.11 0.90 (0.23–1.57) 0.01* 0.11

1BLTT non-paretic step length 0.14 0.01 (−0.002 to 0.01) 0.06 0.08

1BLTT paretic step length 0.13 0.01 (0.001–0.01) 0.03* 0.10

110-mwt non-paretic step length

1BLTT non-paretic step length 5.90 −0.22 (−0.48 to 0.05) 0.11 0.06

110-mwt paretic step length

1BLTT paretic step length 3.13 0.10 (−0.12 to 0.31) 0.38 0.02

110-mwt %SST paretic

1BLTT non-paretic step length 0.95 0.10 (−0.04 to 0.24) 0.18 0.03

110-mwt %SST non-paretic

1BLTT paretic step length 0.51 0.12 (−0.01 to 0.25) 0.08 0.06

during overground walking. Therefore, future studies should
incorporate electromyography and dynamometry to empirically
test changes in muscle recruitment patterns and strength
associated with BLTT in the post-stroke population. Lastly,
while this study was primarily focused of walking speed as the
primary outcome measure, clinical measures such as balance
(58) and spasticity (59) play an equally critical role in walking
rehabilitation and outcome; therefore future BLTT studies
should consider adding these measures in order to provide a
more comprehensive view of the impact of this training approach
on walking rehabilitation.

CONCLUSION

To our knowledge, this study is the first to report progressive
BLTT-specific changes in the post-stroke population and
highlight its association with changes in overground walking
performance. Well-powered, prospective randomized
control studies are needed to determine the efficacy
of BLTT. Likewise, mechanistic-based studies will help
determine more definitively which training metrics to target
during backward walking training—an essential step in
developing and optimizing future stroke rehabilitation clinical
trials (60).
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