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Abstract 

Background:  Screening carotid B-mode ultrasonography is a frequently used method to detect subjects with carotid 
atherosclerosis (CAS). Due to the asymptomatic progression of most CAS patients, early identification is challenging 
for clinicians, and it may trigger ischemic stroke. Recently, machine learning has shown a strong ability to classify data 
and a potential for prediction in the medical field. The combined use of machine learning and the electronic health 
records of patients could provide clinicians with a more convenient and precise method to identify asymptomatic 
CAS.

Methods:  Retrospective cohort study using routine clinical data of medical check-up subjects from April 19, 2010 
to November 15, 2019. Six machine learning models (logistic regression [LR], random forest [RF], decision tree [DT], 
eXtreme Gradient Boosting [XGB], Gaussian Naïve Bayes [GNB], and K-Nearest Neighbour [KNN]) were used to predict 
asymptomatic CAS and compared their predictability in terms of the area under the receiver operating characteristic 
curve (AUCROC), accuracy (ACC), and F1 score (F1).

Results:  Of the 18,441 subjects, 6553 were diagnosed with asymptomatic CAS. Compared to DT (AUCROC 0.628, ACC 
65.4%, and F1 52.5%), the other five models improved prediction: KNN + 7.6% (0.704, 68.8%, and 50.9%, respectively), 
GNB + 12.5% (0.753, 67.0%, and 46.8%, respectively), XGB + 16.0% (0.788, 73.4%, and 55.7%, respectively), RF + 16.6% 
(0.794, 74.5%, and 56.8%, respectively) and LR + 18.1% (0.809, 74.7%, and 59.9%, respectively). The highest achieving 
model, LR predicted 1045/1966 cases (sensitivity 53.2%) and 3088/3566 non-cases (specificity 86.6%). A tenfold cross-
validation scheme further verified the predictive ability of the LR.

Conclusions:  Among machine learning models, LR showed optimal performance in predicting asymptomatic CAS. 
Our findings set the stage for an early automatic alarming system, allowing a more precise allocation of CAS preven-
tion measures to individuals probably to benefit most.
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Background
Carotid atherosclerosis (CAS) is a complex disease [1], 
which reflects cerebral atherosclerosis to a certain extent 
and can trigger ischemic stroke. The atherosclerotic 
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process usually originates early in life and the condition 
remains asymptomatic for several decades. The standard-
ised prevalence of asymptomatic CAS in China is 36.2% 
[2]. One of the key measures to delay the development of 
asymptomatic CAS into symptomatic CAS and cerebro-
vascular events is to identify apparently healthy individu-
als with risk factors and control them as early as possible 
[3]. However, the early diagnosis of asymptomatic indi-
viduals remains a challenge for clinicians.

Machine learning can effectively configure multimodal 
data and achieve a precise predictive ability to assess diag-
nostic and prognostic outcomes [4]. Medicine is under-
going an electronic revolution, more and more electronic 
medical records are available, laying the cornerstone for 
personalised medicine mediated by computer technol-
ogy. Mounting studies [5–8] have shown that machine 
learning yields satisfactory results in biomedicine. One 
meta-analysis [9] revealed that the diagnostic perfor-
mance of deep learning models was comparable to that of 
healthcare professionals. Driven by market forces and a 
strong public interest, such machine- learning-based pre-
dictive tools require rapid development.

In neurology, machine learning has been increasingly 
applied in disease diagnosis, treatment, and outcome pre-
diction [10, 11]. To date, no study has applied machine 
learning algorithms to predict asymptomatic CAS. In this 
context, we used and compared multiple machine learn-
ing models to predict asymptomatic CAS subjects using 
electronic health records.

Methods
Study design and data collection
Electronic health records of medical check-up subjects 
were retrospectively extracted from the Department 
of Health Management at The Second Affiliated Hospi-
tal of Xi’an Jiaotong University from April 19, 2010 to 
November 15, 2019. Inclusion criteria: (1) Data docu-
mented in "Rocket Frog" (Beijing, China), an electronic 
health record system; (2) Age ≥ 18  years old; (3) Lack 
of symptoms, such as limb weakness, aphasia, transient 
monocular blindness, dizziness, crooked mouth, dyspha-
gia, and coma; (4) Complete carotid B-mode ultrasonog-
raphy examination; (5) No missing values; (6) Provision 
of informed consent (refer to the Ethics approval and 
consent to participate and Statement sections for more 
details). Subjects were excluded if they did not meet the 
above criteria. If the subject had completed more than 
one check-up, the most recent report was included, as 
this would be more closely related to the physical con-
dition of people. The sample selection process is sum-
marised in Fig.  1. To ensure data accuracy, data were 
collected independently by two clinicians. If the data 
were not identical after assessment using the assert_
frame_equal module from pandas, a third clinician would 
reconfirm the data.

CAS was diagnosed by carotid B-mode ultrasonogra-
phy [12], which was defined as a carotid intima-media 
thickness of 1.0 mm or greater, or plaque formation. We 
used a carotid ultrasound machine (Preirus, Hitachi, 

Fig. 1  Flowchart illustrating sample selection. (CAS, carotid atherosclerosis)
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Tokyo, Japan) with a probe (5–10  MHz; L7-3, Tokyo, 
Japan). To maintain a balance between positive and nega-
tive cases, the participants were randomly divided into a 
training set (70%) and a testing set (30%), as stratified by 
CAS. Briefly, we first separated the positive and negative 
cases from the entire dataset. Then, 70% of the positive 
cases were randomly assigned to the training set and the 
remaining 30% were assigned to the testing set. The divi-
sion of negative cases was the same as that in positive 
cases.

Features preprocessing
Before implementing the models, we first preprocessed 
candidate features on the complete dataset, which repre-
sented the personal characteristics, vital signs, co-morbid 
conditions, laboratory values, and physical examinations 
(see Additional file  1: Table  1 for more details). Using 
asymptomatic CAS as a dependent variable, we per-
formed binary logistic regression, a widely and tradition-
ally used method in the medical and biological sciences 
[13] to select statistically significant features. Categorical 
features were encoded as binary input features and con-
tinuous features were scaled to span the range [0, 1].

Models comparison for binary classification problem
After that, we used six state-of-the-art machine learning 
algorithms to predict the probability of a binary outcome 
(asymptomatic CAS or non-asymptomatic CAS): logistic 
regression (LR), random forest (RF), decision tree (DT), 
eXtreme Gradient Boosting (XGB), Gaussian Naïve Bayes 
(GNB), K-Nearest Neighbour (KNN), because they are 
touted as currently widely and successfully classifiers for 
clinical data [14–16].

LR, a generalised linear regression analysis model, is 
used to predict a categorical dependent variable based 
on one or more predictor (independent) variables. That 
is, it is used to estimate the expectation values of each 
parameter in a qualitative response model [17]. This 
algorithm was implemented using the LogisticRegres-
sion module of Scikit-Learn. RF is a recursive method 
using randomization and bagging to increase the vari-
ance of ensemble trees. The outcome is directly related 
to the number of trees in a forest [18]. The higher the 
number of trees, the more exact the results obtained. 
We implemented it using Scikit-Learn’s RandomForest-
Classifier module. DT [19] is used for discriminant 
analysis and constructed by recursive partition, whose 
information theory includes ID3, C4.5 and CART. ID3 
cannot handle continuous data and when processing 
continuous attribute data, the efficiency of C4.5 is eas-
ily negatively affected by data discretization [20]. In the 
process of constructing the classification tree, CART 
uses the discretized continuous attribute derived from 

the Ginigain minimum of the selection criterion as 
the cut-off point, and the dichotomy can simplify the 
DT and improve its efficiency [21]. In this study, we 
used the CART algorithm to construct an asympto-
matic CAS prediction model. XGB [7] is an optimized 
distributed gradient boosting library designed to be 
excellently scalable and highly efficient. As a modified 
algorithm based on the traditional gradient boosting 
decision tree, XGB reduces the risk of overfitting by 
adding regular terms and directly uses the first and the 
two order derivatives of the loss function [22, 23]. This 

Table 1  The characteristics of 18,441 participants

Categorical features represented as frequency (%). Continuous features 
represented as median ± SD, except age, which was median (minimum, 
maximum). (SBP, systolic blood pressure; HDL, high density lipoprotein; TC, total 
cholesterol; γ-GLT, γ-glutamyl transpeptidase)

Feature Training set
(n = 12,909)

Testing set
(n = 5532)

Total population
(n = 18,441)

Characteristics

Age 50.88 (19, 96) 50.81 (18, 93) 50.86 (18, 96)

Age subgroup, y

 18–64 11,170 (86.6) 4815 (87.0) 15,991 (86.7)

 > 64 1733 (13.4) 717 (13.0) 2450 (13.3)

Gender (male) 7738 (59.9) 3297 (59.6) 11,035 (59.8)

SBP, mmHg 128.69 ± 17.76 128.04 ± 17.43 128.49 ± 17.66

Heart rate, beats/min 75.71 ± 7.80 75.48 ± 7.93 75.64 ± 7.84

Pulse, beats/min 77.40 ± 10.88 76.92 ± 10.94 77.25 ± 10.90

Waistline, cm 83.66 ± 10.10 83.70 ± 9.89 83.67 ± 10.04

Co-morbid conditions

Hypertension 1502 (11.6) 868 (15.7) 2370 (12.9)

Diabetes mellitus 524 (4.1) 326 (5.9) 850 (4.6)

Hyperlipidemia 177 (1.4) 210 (3.8) 387 (2.1)

Family history 287 (2.2) 235 (4.2) 522 (2.8)

Ever-smoker 563 (4.4) 284 (5.1) 847 (4.6)

Laboratory values

Glucose, mmol/L 5.42 ± 1.36 5.31 ± 1.36 5.39 ± 1.36

HDL, mmol/L 1.23 ± 0.21 1.21 ± 0.25 1.22 ± 0.22

TC, mmol/L 4.40 ± 0.62 4.40 ± 0.80 4.40 ± 0.68

Total protein, g/L 68.89 ± 4.21 69.15 ± 3.68 68.96 ± 4.06

Albumin, g/L 44.30 ± 2.78 44.21 ± 2.40 44.27 ± 2.67

Albumin/Globulin 1.84 ± 0.28 1.82 ± 0.29 1.84 ± 0.28

γ-GLT, U/L 27.33 ± 26.86 27.12 ± 25.18 27.27 ± 26.37

Platelets, 10^9/L 217.36 ± 58.42 218.57 ± 57.25 217.72 ± 58.07

Carotid atheroscle-
rosis

Yes 4587 (35.5) 1966 (35.5) 6553 (35.5)

 Age 18–64 y 3246 (25.2) 1418 (25.6) 4670 (25.3)

 Age > 64 y 1335 (10.3) 548 (9.9) 1883 (10.2)

No 8322 (64.5) 3566 (64.5) 11,888 (64.5)

 Age 18–64 y 7924 (61.4) 3397 (61.4) 11,321 (61.4)

 Age > 64 y 398 (3.1) 169 (3.1) 567 (3.1)
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algorithm was implemented using Scikit-Learn’s XGB-
Classifier module. Naïve Bayes (NB) [24] applies Bayes’ 
theorem with the "naive" assumption of independence 
between every set of features, meaning that all fea-
tures contribute independently to the probability of the 
target outcome [25]. When the likelihood of features 
is presumed to be Gaussian, GNB is obtained [26]. 
This algorithm was implemented using Scikit-Learn’s 
GaussianNB module. KNN [27] is based on a wealth of 
information among the k-closest neighbours of exist-
ing data to predict new data. In fact, it does not con-
struct a model to predict asymptomatic CAS. Instead, 
the prediction is based on the largest proportion of the 
k-closest point, so it is often called a lazy classifier [28]. 
This algorithm was implemented using Scikit-Learn’s 
KNeighborsClassifier module.

Since the values of hyperparameters must be set in 
advance and cannot be automatically obtained from data 
[11], tuning parameters are critical and specific for each 
model. GridSearchCV, which is implemented by estima-
tors, is a traditional way for hyperparameter adjustment 
in any classification method. Consistent with the study 
reported  by Puneet et  al. [29], we optimized hyperpa-
rameters using Scikit-Learn’s GridSearchCV module 
and fitted them to the training set without a specific 
validation set. Briefly, before GridSearchCV performed 
all necessary model fitting and outperformed the best 
hyperparameters, a dictionary was defined to store the 
hyperparameters which needed to be searched first. Fit-
ting the GridSearchCV object not only searched for the 
best hyperparameters, but also obtained a new training 
model which automatically fitted the best cross-valida-
tion performance hyperparameters of all training sets 
[30]. After obtaining the optimal hyperparameter combi-
nation of each algorithm, we evaluated the model using a 
30% hold-out testing set.

Considering that 30% hold-out validation may also suf-
fer from overfitting, we performed tenfold cross-valida-
tion scheme to avoid this problem [31]. To achieve this, 
first, the data were partitioned into 10-equal parts. The 

model was trained on 9 parts and leaving 1 part for test-
ing. This process was repeated 10 folds while changing 
the test part one-by-one until testing was performed on 
all the 10 parts.

Predictive performance measurements
Several metrics were used to evaluate performance: accu-
racy, F1 score, specificity, precision, recall and we visual-
ized the area under the receiver operating characteristic 
curve (AUCROC). Accuracy refers to the ratio of the 
number of correctly predicted asymptomatic CAS to the 
total number of participants [32]. F1 score is composed 
of a weighted average of precision and recall [33]. Com-
pared to commonly used performance metrics (including 
recall and specificity), AUCROC better reflected model 
performance. Hence, AUCROC was the main metric, 
while accuracy and F1 score were considered as the sec-
ondary priorities. Furthermore, a confusion matrix was 
used to evaluate the performance of the best model.

Statistical and machine learning analysis
Statistical analysis was performed using SPSS 23.0. Char-
acteristics are presented as mean (± SD) for continu-
ous features and frequencies (%) for categorical features. 
Binary logistic regression analysis was used to select sig-
nificant features (p < 0.2). Machine learning models were 
implemented using the Scikit-Learn toolkit in Python 
version 3.7.4.

Results
Data description
We preprocessed 40 continuous features and 19 categori-
cal features, and a total of 19 features were used as input 
features to develop models (see Additional file 1: Table 2 
for more details). Among the 18,441 participants, 6553 
were diagnosed with asymptomatic CAS. 59.8% were 
male, mean age was 50.86 years old and 13.3% were older 
than 64 years old. Characteristics of the participants are 
presented in Table 1. The training set consisted of 12,909 
subjects (13.4% aged > 64  years old; 59.9% male; 35.5% 

Table 2  Comparison of the predictive performance for six models (testing set)

Acc, accuracy; Sp, specificity; Pp, precision; Re, recall; F1, F1 score; AUCROC, the area under the receiver operating characteristic curve; LR, logistic regression; RF, 
random forest; DT, decision tree; XGB, eXtreme Gradient Boosting; GNB, Gaussian Naïve Bayes; KNN, K-Nearest Neighbour

Model Acc (%) Sp (%) Pp (%) Re (%) F1 (%) AUCROC

LR 74.7 86.6 68.6 53.2 59.9 0.809

RF 74.5 89.5 71.3 47.2 56.8 0.794

DT 65.4 71.8 51.2 53.8 52.5 0.628

XGB 73.4 87.8 68.0 47.2 55.7 0.788

GNB 67.0 88.0 63.1 37.2 46.8 0.753

KNN 68.8 81.5 57.7 45.6 50.9 0.704
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with asymptomatic CAS), while the testing set con-
sisted of 5532 subjects (13.0% aged > 64 years old; 59.6% 
male; 35.5% with asymptomatic CAS). In the testing set, 
hypertension was present in 15.7%, diabetes mellitus in 
5.9%, hyperlipidemia in 3.8%, family history in 4.2%, and 
ever-smoker in 5.1%. All of these values were higher than 
those in the training set or total participants. The labora-
tory values of the testing or training sets were similar to 
those of the total participants. In the subgroup of people 
over 64  years old, the number of subjects with asymp-
tomatic CAS was significantly higher than that of those 
without asymptomatic CAS, in both the training and 
testing sets.

Model comparison for binary classification problem
A comparison of the receiver operating characteris-
tic curve for six models is shown in Fig.  2 and Table  2. 
The differences between these curves were slight, but 
we could still clearly recognize each model. DT showed 
the poorest predictive performance, with the lowest 
AUCROC of 0.628, an accuracy of 65.4%, and a F1 score 
of 52.5%. In comparison the other five models improved 
prediction: KNN + 7.6% (AUCROC: 0.704, accuracy: 
68.8% and F1 score: 50.9%); GNB + 12.5% (0.753, 67.0%, 
and 46.8% respectively); XGB + 16.0% (0.788, 73.4%, and 
55.7% respectively); RF + 16.6% (0.794, 74.5%, and 56.8% 
respectively); and LR + 18.1%, which had the highest 
AUCROC of 0.809, an accuracy of 74.7%, and a F1 score 
of 59.9%. Detailed predictions of LR were presented in 
the form of a confusion matrix (see Additional file  1: 
Table 3 for more details). In the present context, LR was 
able to predict 1045/1966 asymptomatic CAS (sensitivity 

53.2%) and 3088/3566 non-asymptomatic CAS (speci-
ficity 86.6%). The results of the tenfold cross-validation 
showed that LR had a better discriminative ability for 
asymptomatic CAS than the other five models (Table 3).

In order to confirm the independence between 19 fea-
tures, Pearson correlation analysis for NB was performed, 
as shown in Fig. 3. No significant cross-correlation (Pear-
son correlation coefficient > 0.8) was observed, which 
proved that the NB worked well.

Moreover, according to the information gain values of 
DT model, we further ranked those 19 features, as shown 
in Fig. 4. Age contributed the most to the asymptomatic 
CAS outcome, followed by systolic blood pressure, glu-
cose, high density lipoprotein, platelets and so on.

Discussions
In this retrospective analysis, we used six state-of-the-art 
machine learning models to predict asymptomatic CAS 
subjects based on 19 input features, which were selected 
according to binary logistic regression. Among the six 
models, LR achieved an AUCROC of 0.809, an accuracy 
of 74.7%, and a F1 score of 59.9% when validating in the 
separate hold-out testing set, generating the optimal pre-
dictive model for data, which was in keeping with other 
studies using machine learning techniques to assess clini-
cal events [34, 35]. This accuracy was equivalent to or 
exceeded that of other evaluating tools yet used in neu-
rology [36].

Similar to previous reports, approximately 35.5% of the 
included subjects presented with asymptomatic CAS. 
Furthermore, in the subgroup of people over 64  years 
old, we found that the number of subjects with asymp-
tomatic CAS was significantly higher than that of those 
without asymptomatic CAS. In accordance with several 
studies [37, 38], age is one of the robust risk factors of 
asymptomatic CAS. Population aging poses a threat, and 
the number of people with CAS will continue to increase, 
which deserves more attention from the entire society. 
Perhaps stakeholders should put more effort into inter-
vention measures for this threat in the future.

While machine learning algorithms help us to deal with 
several problems, they also present an inherent prob-
lem increasingly more evident. More often than not, 
machine learning is still “black box”, lacking sufficient 

Fig. 2  Performance characteristic curves for six models (Testing 
set). (LR, logistic regression; RF, random forest; DT, decision tree; 
XGB, eXtreme Gradient Boosting; GNB, Gaussian Naïve Bayes; KNN, 
K-Nearest Neighbour)

Table 3  Comparison of the performance for six models (tenfold 
cross-validation)

Model AUCROC Model AUCROC

LR 0.812 XGB 0.797

RF 0.799 GNB 0.755

DT 0.630 KNN 0.701
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interpretability. It means that researchers or clinicians 
are progressively relying on the “black box”, achieving 
results without even knowing what is going on in the 
machinery of the classifiers. If we had knowledge about 
some important details about the classifiers, we might 
achieve one result that could be much more effective. For 
example, when we used DT, the model already selected 
the most important features according the information 
gain values and then split, ranking of the features selected 
by the DT potentially provided us with additional infor-
mation. In other words, by focusing on and controlling 
those high-risk predictors, such as age, systolic blood 
pressure, and glucose, we would see a more positive ten-
dency throughout the individual’s entire CAS treatment. 
Delaying the progression of CAS would be a tremendous 
relief for individuals, clinicians, and healthcare systems.

According to complex multidimensional clinical data, 
Xia Hu, and colleagues [39] constructed a Bayes-based 
learning framework to reveal predictive insights into 
the rapid progression of atherosclerosis in prediabetics 

at risk. And they found that NB was the best, obtaining 
an AUCROC of < 0.800. Combined with machine learn-
ing techniques, Sebastian Okser et al. [40] used the “grey 
zone” of genetic variation to predict increased risk of pre-
clinical CAS. After spending a full 6-year period, they 
achieved AUCROCs of 0.844 and 0.761 when predicting 
the extreme classification of CAS risk and progression. 
The major disadvantages of the above assessment models, 
lie not only in the specific selection of samples (such as 
for prediabetics) but also in the requirement of a longer 
period. Whereas our proposed framework predicted the 
imminent future for medical check-up subjects, making it 
a much more pragmatic prescreening tool for clinicians.

Because of binary logistic regression-based feature 
selection and considerable hyperparameter tuning, 
machine learning approaches were compared at their 
best performance. We believe that the input features in 
the population-based models should depend on the avail-
ability of clinical evidence and clinical data, rather than 
statistical significance, thus feature selection was set at a 

Fig. 3  Pearson correlation analysis regarding 19 features for Naïve Bayes. (PLT, platelets)
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filter p value of 0.2. One of the key results was that the 
addition of the tenfold cross-validation further verified 
the superior predictive ability of LR. As a widely used pre-
dictive tool in the real-world clinic, LR has extended its 
potential to improve prediction of precise asymptomatic 
CAS. Consequently, we envision that the predictions 
from our models will warn clinicians to pay attention to 
individuals who are at elevated risk of asymptomatic CAS 
and make them the major beneficiaries.

Based on MINimum Information for Medical AI 
Reporting (MINIMAR) [41], there were indeed some 
limitations to be noted. We believe that the data from 
multi centers would provide reliable predictive value 
on how our models identify asymptomatic CAS with-
out selection bias. Due to the limited electronic records 
available from the “Rocket Frog” system, we did not 
include the image information, lending our inability to 
accurately predict the location of atherosclerosis. More-
over, the lack of external validation based on other health 
systems may limit the generalizability of our models.

Conclusions
In this study, we demonstrated that the logistic regres-
sion model produced a more accurate and effective 
prediction for asymptomatic CAS among six machine 

learning models. These findings set the stage for an 
early automatic alarming system, allowing a more pre-
cise allocation of CAS prevention measures to individ-
uals probably to benefit most. Future large-scale studies 
are needed to provide more reliable and precise data 
for the prediction of asymptomatic CAS. Using more 
image information and advanced machine learning 
schemes are also promising.
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