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Abstract

Background

Predicting which children will go on to develop mental health symptoms as adolescents is

critical for early intervention and preventing future, severe negative outcomes. Although

many aspects of a child’s life, personality, and symptoms have been flagged as indicators,

there is currently no model created to screen the general population for the risk of develop-

ing mental health problems. Additionally, the advent of machine learning techniques repre-

sents an exciting way to potentially improve upon the standard prediction modelling

technique, logistic regression. Therefore, we aimed to I.) develop a model that can predict

mental health problems in mid-adolescence II.) investigate if machine learning techniques

(random forest, support vector machines, neural network, and XGBoost) will outperform

logistic regression.

Methods

In 7,638 twins from the Child and Adolescent Twin Study in Sweden we used 474 predictors

derived from parental report and register data. The outcome, mental health problems, was

determined by the Strengths and Difficulties Questionnaire. Model performance was deter-

mined by the area under the receiver operating characteristic curve (AUC).

Results

Although model performance varied somewhat, the confidence interval overlapped for each

model indicating non-significant superiority for the random forest model (AUC = 0.739, 95%

CI 0.708–0.769), followed closely by support vector machines (AUC = 0.735, 95% CI

0.707–0.764).
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Conclusion

Ultimately, our top performing model would not be suitable for clinical use, however it lays

important groundwork for future models seeking to predict general mental health outcomes.

Future studies should make use of parent-rated assessments when possible. Additionally, it

may not be necessary for similar studies to forgo logistic regression in favor of other more

complex methods.

Introduction

Childhood onset psychopathology can carry a heavy burden of negative outcomes that persist

through adolescence and into adulthood. These outcomes are often severe: criminal convic-

tions, low educational attainment, unemployment, and increased risk of suicide attempts [1,

2]. As many of the documented risk factors for mental illnesses in adolescence can be miti-

gated by early interventions [3], research establishing the most informative mental health indi-

cators could help more precisely identify the proper traits for intervention targets.

There are several well researched indicators in childhood that are associated with the devel-

opment of mental health problems. Psychopathological traits in early childhood also often

indicate a higher risk for consistent mental health problems in adolescence and adulthood [4];

with even subthreshold symptoms indicating future adversity and a general predisposition to

mental illnesses [5–7]. Internalizing and externalizing symptoms in childhood are both fre-

quently associated with higher risk of mental illness diagnosis later in life [5, 8]. Specifically,

impulsivity has been associated with a susceptibility of developing mental illnesses and suicide

[9, 10]. Moreover, neurodevelopmental disorders, such as autism or ADHD, indicate lifelong

diagnosis and frequent psychiatric comorbidities [11]. Similarly, learning difficulties can also

indicate future mental health adversity and are frequently seen in children with neurodevelop-

mental disorders [12, 13].

Additionally, parental mental health, such as anxiety or depression, has been found to cor-

relate with childhood internalizing and externalizing symptoms, likely due to a shared biologic

(genetic) etiology[14, 15]. Thus, parental mental health may serve as an indicator of a more

general predisposition for mental illness in lieu of genetic data. Genetic etiology is important

to account for as most childhood psychiatric disorders overlap at both the phenotypic and etio-

logical level [15]. Similarly, living in a lower SES neighborhood has been associated with an

increase in internalizing problems and ADHD, although the mechanisms of this association

are debated [16, 17]. Factors associated with the neonatal environment and birth have been

associated with later adverse mental health and neurodevelopmental disorders [18, 19]. More-

over, chronic physical illness or disability can have a profound effect on mental health [20].

Taken together, reported factors in childhood associated with adolescent mental illness

reflect intricate developmental pathways at almost every level. Understandably, most studies

have not properly integrated risk factors from varying domains. Modern advancements in pre-

diction modeling with machine learning may, in part, provide a cost-efficient solution to this

problem.

Machine learning in mental health

Supervised machine learning, used for classification or prediction modelling, has the advan-

tage of accounting for complex relationships between variables that may not have been
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previously identified. Thus, as datasets become larger and the variables more complex,

machine learning techniques may become a useful tool within psychiatry to properly disentan-

gle variables associated with outcomes for patients[21, 22].

A majority of studies using machine learning within psychiatry have focused on classifica-

tion or diagnosis [23, 24]. However, critique has been raised that these studies are prone to

under-perform due to a lack of insight on underlying assumptions of the various machine

learning techniques or on the psychiatric disorders and corresponding diagnostic processes

[25]; highlighting the difficulty in creating and validating such models. That said, advance-

ments have been made in the field using tree based models to predict suicide in adolescents

and the U.S. military [26, 27]. Beyond their proven efficacy, tree based models provide infor-

mation on how extensively a variable was used for the model, or variable importance, which

gives some insight to the models’ classification process. This indicates that, while the way for-

ward is arduous, properly conducted machine learning techniques can be interpretable and

improve the efficacy of clinical decision making.

The primary aim for this study is to develop a model that can predict mental health prob-

lems in mid-adolescence. Additionally, we aim to investigate various machine learning tech-

niques along with standard logistic regression to determine which performs best using

combined questionnaire and register data. We expect that the techniques used will perform

with similar accuracy according to the “No Free Lunch Theorem” [28, 29].

Methods

Participants

Participants came from the Child and Adolescent Twin Study in Sweden (CATSS), an ongo-

ing, longitudinal study containing 15,156 twin pairs born in Sweden. During the first wave,

the twins’ parents were contacted close to their 9th or 12th birthdays for a phone interview,

this wave had a response rate of 80% [30], while the second wave at age 15 had a response

rate of ~55%. This sample population was chosen due to the depth of information available,

including questionnaire and register data. Using the unique identification number given to

all Swedes we linked several Swedish national registries to the CATSS data; the National

Patient Register (NPR) [31], the Multi-Generation Register (for identification of parents)

[32], the Medical Birth Register (MBR) [33], the Prescribed Drug Register (PDR) [34], as

well the Longitudinal Integration Database for Health Insurance and Labor Market Studies

(LISA) [35]. A total of 7,638 participants born between 1994 and 1999 who completed data

collection at age 9 or 12 and again at age 15 were eligible for inclusion and were used in the

analysis.

The study was approved by the Regional Ethical Review Board in Stockholm (the CATSS

study, Dnr 02–289, 03–672, 2010/597-31/1, 2009/739-31/5, 2010/1410-31/1, 2015/1947-31/4;

linkage to national registers, Dnr 2013/862–31/5).

Measures

The outcome measure of adolescent mental health problems was collected at age 15 via the

Strengths and Difficulties Questionnaire (SDQ) [36]. We used the SDQ to obtain parent-rated

emotional symptoms, conduct problems, prosocial behavior, hyperactivity/inattention, and

peer relationship problems. A binary variable was created based on a combination of the par-

ent reported subscales, not including prosocial behavior, with a cut-off score validated for the

Swedish population, corresponding to approximately 10% scoring above cut-off and thus

rated as having mental health problems [37]. Predictors were collected at 9/12 or earlier from

questionnaires administered through CATSS and through registers. We included a wide range
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of predictors based on previous findings of association with adolescent mental health out-

comes and/or childhood mental health. Predictors encompassed everything from birth infor-

mation, physical illness, to mental health symptoms, to environmental factors such as

neighborhood and parental income. Informants included both register and parental reported

information. A total of 474 variables were initially included in the dataset, a complete list can

be found in S1 File.

Data pre-processing

Variables with more than 50% missingness were removed from analysis (202 variables

excluded). Redundant variables were also removed (134 excluded). Additionally, variables

with no variance were removed (32 excluded) and those with variance near zero were com-

bined into one variable if possible, e.g. dust, mold, and pollen allergy collapsed into allergy

[38]. Ultimately, 85 variables were determined to be suitable for analysis. As most machine

learning techniques require complete datasets, missing values were imputed with tree based

imputation with the R package mice [39].

Table 1. Information on techniques.

Technique R Package used� Descrption

Random Forest RandomForest

[51]

Decision trees are a model type that groups data in a tree like structure

based on if-then-else decisions. At each decision point (node), data is

branched off into smaller subgroups based on one of the predictor

variables. Random forest is a method based on aggregating the results of

many decision trees and prediction is determined based on the majority

decision [52]

XGBoost XGBoost [53] XGBoost, or extreme gradient boosting, uses gradient boosting within

random forest. Gradient boosting works by assigning scores to each leaf of

the tree and builds new trees based on the performance of previously

created trees, thus varying weight is assigned to each tree. This is in

contrast to standard boosting techniques in random forest that work by

assigning equal weights to trees [53].

Logistic Regression Base R Logistic regression represents the standard method in epidemiology for

analyzing binary outcomes [54]. In this model predictors are assumed to

have a linear relationship to the outcome on the log-odds scale. Each

predictor in the model has an associated regression coefficient which

describes the direction and strength of its relationship to the outcome. We

tested this model with interactions for all variables with sex, as well as with

linear and quadratic effects for the A-TAC variables.

Neural Network Neuralnet [55] Neural network features numerous interconnected processors, or

“neurons”, organized in multiple layers: input, hidden, and output [55].

While there is only one input and output layer, there can be numerous

hidden layers. During the learning process the input neurons respond to

the data while neurons in the hidden and output layer respond to weighted

connections from neurons at the previous layer. These weighted

connections may be linear or non-linear and vary in complexity

depending on the data and task [55]. Before analysis with this method, the

predictors were scaled and centered.

Support Vector

Machines

e1701[56] Support Vector Machines works by dividing classes, i.e., cases versus non-

cases, based on a line called a hyperplane. The hyperplane is created based

on the greatest possible distance of the nearest neighboring predictor data

points between the classes. Data with higher complexity that cannot be

separated in two dimensions can be lifted to a higher dimension through a

process called kernelling [57].

�mlr [42] was also used for all techniques

https://doi.org/10.1371/journal.pone.0230389.t001
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Statistical analysis

All analyses were performed in R. First, a learning curve was plotted with the entire dataset in

order to check if our study was sufficiently powered.

Then, we split our data into a training-set (60% of the sample), a tune-set (10%), and a test-

set (30%). Splitting data allows for more accurate determination in how the model will per-

form in a new dataset and helps alleviate overfitting, i.e. to fit the training data too closely to

accurately predict other datasets. Stratified random sampling was used to ensure that the twin

pairs would not get separated between the datasets, thus avoiding potential overfitting. Addi-

tionally, we preserved an equal distribution of the outcome between each set. Descriptive sta-

tistics were created for each set to determine the quality of the partition (Table 2).

We artificially inflated the number of cases in the training-set through a Synthetic Minority

Over-sampling Technique (SMOTE), as implemented in the R-package SMOTEBoost [40],

because positive cases were relatively rare. This phenomenon is commonly termed class imbal-

ance [41] and can cause the model to predict all outcomes as the majority class.

The performance of predictions from considered models were determined by the area

under the receiver operating characteristic curve (AUC). We created prediction models

using several machine learning techniques: random forest, XGBoost, logistic regression,

neural network and support vector machines (Table 1) to determine which produced the

best fitting model for a test set. Using cross validation, each technique trained multiple

models using the training set and tested their performance on a subset of the training set.

The model with the lowest error was then tested using the tune set. Once the performance

in the tune set was deemed satisfactory, the final models were then fitted to the test set.

Parameter tuning was guided in part by standard practice when available, however a major-

ity of the tuning took place through the random search function in R package mlr [42, 43].

Random search was completed using cross-validation with 3 iterations, 50 times. Variable

importance was calculated for tree-based models: random forest and XGBoost. Confidence

intervals at 95% were created for each AUC by bootstrapping predictions 10,000 times. Pos-

itive Predictive and Negative predictive values were obtained for the best performing

model.

Sensitivity analysis

The SDQ, used to derive our outcome variable, has several suggested cut-offs based on dif-

ferent criteria and sample populations. Although we used a cut-off of 11, based on capturing

the highest 10% in a Swedish sample [37], it’s possible that this cut-off does not represent a

distinct subgroup of psychopathology, ultimately hampering model performance. To assess

whether model performance was affected based on used cut-off, we created a new model

using the best performing technique with a more stringent cut-off from the original publica-

tion. This cut-off of 17 was based on capturing the highest 10% of scorers in a UK sample in

the original publication [36].

Table 2. Descriptive information from the partitioned data.

N Birth year Sex SDQ Cutoff

Mean (SD) Male % Cut off reached %

Trainset 4554 1996.5 (1.69) 48.4% 12.1%

Tuneset 804 1996.3 (1.68) 49.6% 12.3%

Testset 2280 1996.5 (1.68) 48.1% 11.5%

https://doi.org/10.1371/journal.pone.0230389.t002
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Results

The datasets were deemed to be well separated (Table 2). Our classes were fairly imbalanced as

only 12% of our sample reached the cut off, we mitigated the effects of this through a combination

of over- and under sampling on the training set using SMOTEBoost. Next, the learning curve

revealed that the models performed well without additional data nor hyper-parameter modifica-

tions, with an exception of neural network which required additional data preparation, e.g. cen-

tering and scaling of continuous variables (Fig 1).

Fig 1. Learning curve. The learning curve specifying the performance of each technique without any data nor hyper-parameter

modification (y axis) given the total percent of the dataset (x axis) used to train the models.

https://doi.org/10.1371/journal.pone.0230389.g001

Fig 2. AUC curves for tune set. The AUC performance for each technique using the tune set.

https://doi.org/10.1371/journal.pone.0230389.g002
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Model tuning

We then fit models using all considered techniques; the AUCs from the tune-set of the final

models for each technique can be found in Fig 2. A full list of the optimal parameters and the

ranges tried for each model can be found in S1–S4 Tables. No model was found to be signifi-

cantly superior, however random forest and support vector machine (SVM) had the highest

AUCs of 0.754 (95% CI 0.698–0.804; and 95% CI 0.701–0.802, respectively). The rest of the

models performed similarly with an AUC above 0.700 (Fig 2 & Table 3).

Prediction

The created models were then used to predict the outcome in the test set. The lack of a statisti-

cally significant better model remained. The random forest model preformed slightly better at

predicting the test set than SVM, with an AUC of 0.739 (95% CI 0.708–0.769) and 0.735 (95%

CI 0.707–0.764) respectively (Table 4 & Fig 3), however the CI of each AUC overlaps the esti-

mate of the other indicating a non-significant difference.

The probability threshold was set to 0.8, meaning that the model classified participants as

having mental health problems if the probability of belonging to the class was greater than 0.2.

Our top model had a predictive value of 15%, while the negative predictive value was at 96%.

This corresponds to a sensitivity of .91 and a specificity of .30, and classified 15% of the test set

with the outcome.

Sensitivity analysis

The more stringent cut-off based on a UK sample [36] categorized roughly 3% of our sample

as having mental health issues. We trained a random forest model based on this new cut-off,

and found a test AUC of 0.765 (95% CI 0.698–0.826). Although the AUC was marginally bet-

ter, the confidence interval overlapped with the top performing model with the Swedish cut

offs, indicating no meaningful difference.

Table 3. Model performance on tune set.

Learner AUC 95% bootstrap interval

Logistic Regression 0.750 0.693–0.805

XGBoost 0.723 0.662–0.778

Random Forest 0.754 0.698–0.804

Support Vector Machines 0.754 0.701–0.802

Neural Network 0.715 0.658–0.769

https://doi.org/10.1371/journal.pone.0230389.t003

Table 4. Model performance on test set.

Learner AUC 95% bootstrap interval

Logistic Regression 0.700 0.665–0–734

XGBoost 0.692 0.660–0.723

Random Forest 0.739 0.708–0.769

Support Vector Machines 0.736 0.707–0.765

Neural Network 0.705 0.671–0.737

https://doi.org/10.1371/journal.pone.0230389.t004
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Variable importance

The variable importance for random forest revealed that the parent-reported mental health

items ranked highly, as well as neighborhood quality, gestational age, and parity (Table 5).

This indicates that model accuracy decreased significantly when these particular variables

were permuted, i.e. randomly exchanged between individuals, during the analysis.

Discussion

Using a large range of data from parent reports and register data from numerous Swedish

national registers, this study predicted adolescent mental health reasonably well, with a maxi-

mum AUC of 0.739 on the test set (using the random forest model). Although the AUC indi-

cates an adequate model, it is not accurate enough for clinical use. While the negative

predictive value is at 96% indicates clinical level sensitivity, the positive predictive value of this

model is only 15%. This indicates that only a small percentage of the children flagged will

Fig 3. AUC curves for test set. The AUC performance for each technique using the test set.

https://doi.org/10.1371/journal.pone.0230389.g003

Table 5. Variable importance in random forest.

Predictor (Source) Importance

Oppositional Defiant symptoms 1 136.97

Impulsivity symptoms 1 94.05

Inattention symptoms 1 92.66

Executive dysfunction 1 87.72

Emotional symptoms 1 76.82

Neighborhood deprivation 2 64.03

Peer difficulty 1 53.22

Parity 3 44.17

Gestational age at birth 3 43.71

Separation anxiety 1 43.13

1 Autism—Tics, AD/HD and other Comorbidities inventory [58]
2 the Longitudinal Integration Database for Health Insurance and Labor Market Studies[35]
3 Medical Birth Register [33]

https://doi.org/10.1371/journal.pone.0230389.t005
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actually reach our pre-specified cut-off for mental health problems, which should be compared

to the prevalence in the sample of 10%.

The variable importance derived from the random forest model indicated that the model

did not overly rely on any variable, thus the model would be relatively stable with the removal

of any one variable, including those stable over time. The highest ranked variables were par-

ent-reported mental health symptoms such as impulsivity, inattention, and emotional symp-

toms were important predictive factors for poor mental health at 15. Register information on

neighborhood quality, parity and gestational age of birth were also deemed important. These

findings fit within literature [17, 18, 44] and could potentially be used by clinicians, parents, or

educators to identify at risk children for potential intervention.

The highest ranking variables were either parent-rated or could easily be reported by

parents, this indicates that register information, which can be expensive or difficult for

researchers to obtain, may not be necessary for a successful psychiatric risk model. Thus,

future studies predicting adolescent mental health may want to place a greater emphasis on

assessment from caregivers. Moreover, this provides further encouragement for parental

involvement in clinicians’ assessment of childhood and adolescent psychiatric prognosis and

emotional well-being. Additionally, future studies with similar aims should focus on using

symptom ratings for mental health, including neurodevelopmental disorders, for their model.

Sensitivity analysis showed that the model performance was slightly improved, although

not significantly, with a more extreme cut-off (sensitivity analysis AUC = 0.765, 95% CI 0.698–

0.826; random forest AUC = 0.739, 95% CI 0.708–0.769). This indicates that future studies can

use cut-offs validated for their country or the original study based on preference. Additionally,

this provides some evidence that the more extreme cases do not represent a distinct severe

class.

In line with the No Free Lunch Theorem, all models performed with relatively similar accu-

racy [29]. A recent systematic review found no clear predictive performance advantage of

using machine learning techniques instead of logistic regression, in a range of clinical predic-

tion studies [45]. In our study, the similar performance to logistic regression may partially be

attributed to the relatively linear associations from the predictors to the outcome, evident by

the lack of significance for non-linear associations in our logistic regression model. When the

data has a mostly linear relationship to the outcome, machine learning models will be very

similar to standard regression [46]. Although random forest performed slightly better than the

compared models, it may be unnecessary for studies with similar datasets and aims to use com-

plex machine learning techniques instead of logistic regression when weighed against time

spent learning the techniques, computational time, as well as interpretability of the model.

The strengths of this study include the comprehensive analysis of a wide variety of factors

associated with adolescent mental health. Further, the use of parental reports indicates that

these risk factors are identifiable by non-clinicians, indicating a low cost future solution for

large scale mental health screens. The results need to be viewed in the light of several limita-

tions. First, because we used a twin sample our findings may not be generalizable to singletons

as our sample might have underlying differences in comparison to singletons. However, previ-

ous literature has found little difference in mental health between singletons and twins [47].

That said, zygosity did not rank as highly important, indicating that the model did not rely on

the similarity between twins. On a similar note, our study results may not generalize outside of

Sweden or Scandinavia, as all of our participants were Swedish born and we did not validate

our results in an external sample. Second, the outcome as well as the most important variables

were all parent-reported, this may have introduced an association due to a reporting bias.

Additionally, because we used mixed data types (continuous, categorical, and binary) in our

model it’s possible that the variable importance could have been biased, however this effect is
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likely to be mitigated as we did not sample with replacement [48]. Finally, the response rate

between data collections was 55% [30], so it’s likely that the nonresponders had elevated psy-

chopathology symptoms compared to responders. Additionally, the performance of the model

would likely improve with a larger sample size.

In summation, our models had a reasonable AUC, but no model had statistically significant

higher performance than the other. Although supervised machine learning techniques are cur-

rently generating considerable interest across scientific fields, it may not be necessary for most

studies to forgo logistic regression, especially for studies with smaller datasets featuring pri-

marily linear relationships. Additionally, our results provide further support for diligent

screening of neurodevelopmental symptoms and learning difficulties in children for later psy-

chiatric vulnerabilities. Although, machine learning techniques seem to be promising for the

integration of risks across different domains for the prediction of mental health problems in

adolescence, it seems premature for implementation in clinical use. Nevertheless, as early treat-

ment for these and other mental health symptoms has been found to largely mitigate negative

outcomes and symptoms [49, 50], there is hope for prevention of negative mental health prob-

lems in adolescence with properly timed interventions.
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37. LUNDH LG, WÅNGBY-LUNDH M, Bjärehed J. Self-reported emotional and behavioral problems in

swedish 14 to 15-year-old adolescents: A study with the self-report version of the strengths and difficul-

ties questionnaire. Scandinavian journal of psychology. 2008; 49(6):523–32. https://doi.org/10.1111/j.

1467-9450.2008.00668.x PMID: 18489532

38. Kuhn M, Johnson K. Applied predictive modeling: Springer; 2013.

39. Buuren Sv, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. Journal of

statistical software. 2010:1–68.

40. Chawla NV, Lazarevic A, Hall LO, Bowyer KW, editors. SMOTEBoost: Improving prediction of the

minority class in boosting. European conference on principles of data mining and knowledge discovery;

2003: Springer.

41. Guo X, Yin Y, Dong C, Yang G, Zhou G, editors. On the class imbalance problem. Natural Computation,

2008 ICNC’08 Fourth International Conference on; 2008: IEEE.

PLOS ONE Predicting mental health problems in adolescence using machine learning techniques

PLOS ONE | https://doi.org/10.1371/journal.pone.0230389 April 6, 2020 12 / 13

https://doi.org/10.1111/j.1469-7610.2007.01755.x
http://www.ncbi.nlm.nih.gov/pubmed/17683450
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.1146/annurev-clinpsy-032816-045037
http://www.ncbi.nlm.nih.gov/pubmed/29401044
https://doi.org/10.1017/S0033291716001367
https://doi.org/10.1017/S0033291716001367
http://www.ncbi.nlm.nih.gov/pubmed/27406289
https://doi.org/10.1371/journal.pone.0079476
http://www.ncbi.nlm.nih.gov/pubmed/24260229
https://doi.org/10.1007/s10803-014-2268-6
http://www.ncbi.nlm.nih.gov/pubmed/25294649
https://doi.org/10.1111/jcpp.12916
https://doi.org/10.1111/jcpp.12916
http://www.ncbi.nlm.nih.gov/pubmed/29709069
https://doi.org/10.1001/jamapsychiatry.2014.1754
https://doi.org/10.1001/jamapsychiatry.2014.1754
http://www.ncbi.nlm.nih.gov/pubmed/25390793
https://doi.org/10.1375/twin.14.6.495
http://www.ncbi.nlm.nih.gov/pubmed/22506305
https://doi.org/10.1034/j.1600-0412.2003.00172.x
http://www.ncbi.nlm.nih.gov/pubmed/12780418
https://doi.org/10.1002/pds.1294
https://doi.org/10.1002/pds.1294
http://www.ncbi.nlm.nih.gov/pubmed/16897791
https://doi.org/10.1007/s10654-018-0469-6
https://doi.org/10.1111/j.1469-7610.1997.tb01545.x
http://www.ncbi.nlm.nih.gov/pubmed/9255702
https://doi.org/10.1111/j.1467-9450.2008.00668.x
https://doi.org/10.1111/j.1467-9450.2008.00668.x
http://www.ncbi.nlm.nih.gov/pubmed/18489532
https://doi.org/10.1371/journal.pone.0230389


42. Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, et al. mlr: Machine Learning in R. The

Journal of Machine Learning Research. 2016 Jan 1; 17(1):5938–42.

43. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE transactions on evolutionary

computation. 1997; 1(1):67–82.

44. Lockwood J, Daley D, Townsend E, Sayal K. Impulsivity and self-harm in adolescence: a systematic

review. European child & adolescent psychiatry. 2017; 26(4):387–402.

45. Jie M, Collins GS, Steyerberg EW, Verbakel JY, van Calster B. A systematic review shows no perfor-

mance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clin-

ical Epidemiology. 2019.

46. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a

methodology review. Journal of biomedical informatics. 2002; 35(5–6):352–9. https://doi.org/10.1016/

s1532-0464(03)00034-0 PMID: 12968784

47. Robbers SC, Bartels M, Van Oort FV, van Beijsterveldt CT, Van der Ende J, Verhulst FC, et al. A twin-

singleton comparison of developmental trajectories of externalizing and internalizing problems in 6-to

12-year-old children. Twin Research and Human Genetics. 2010; 13(1):79–87. https://doi.org/10.1375/

twin.13.1.79 PMID: 20158310

48. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. Bias in random forest variable importance measures:

Illustrations, sources and a solution. BMC bioinformatics. 2007; 8(1):25.

49. Arnold LE, Hodgkins P, Caci H, Kahle J, Young S. Effect of treatment modality on long-term outcomes

in attention-deficit/hyperactivity disorder: a systematic review. PloS one. 2015; 10(2):e0116407. https://

doi.org/10.1371/journal.pone.0116407 PMID: 25714373

50. Landa RJ. Efficacy of early interventions for infants and young children with, and at risk for, autism spec-

trum disorders. International Review of Psychiatry. 2018; 30(1):25–39. https://doi.org/10.1080/

09540261.2018.1432574 PMID: 29537331

51. Liaw MA. Package ‘randomForest’. University of California, Berkeley: Berkeley, CA, USA. 2018 Mar

22.

52. Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002 Dec 3; 2(3):18–22.

53. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. InProceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data mining 2016 Aug 13 (pp. 785–794).

54. Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M. Logistic regression. New York: Springer-Verlag;

2002 Aug.

55. Günther F, Fritsch S. neuralnet: Training of neural networks. The R journal. 2010 Jun 1; 2(1):30–8.

56. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions of the Department of

Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2017. R package version. 2018; 1(8).

57. Schölkopf B, Smola AJ, Bach F. Learning with kernels: support vector machines, regularization, optimi-

zation, and beyond. MIT press; 2002.
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