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Abstract

Vascular endothelial growth factor A (VEGFA) plays a key role in the angiogenesis of human skin. Elevated levels of VEGFA
are associated with several pathological conditions, including chronic inflammatory skin diseases and several types of skin
cancer. In particular, squamous cell carcinoma (SCC) of the skin, the second most common skin cancer in the general
population, is characterized by invasive growth, pronounced angiogenesis and elevated levels of VEGFA. The processing,
turnover and production of VEGFA are extensively regulated at the post-transcriptional level, both by RNA-binding proteins
and microRNAs (miRNAs). In the present study, we identified a new miRNA recognition element in a downstream conserved
region of the VEGFA 39-UTR. We confirmed the repressive effect of miR-361-5p on this element in vitro, identifying the first
target for this miRNA. Importantly, we found that miR-361-5p levels are inversely correlated with VEGFA expression in SCC
and in healthy skin, indicating that miR-361-5p could play a role in cancers.
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Introduction

Angiogenesis is a multi-step process leading to the formation of

vascular structures derived from preexisting blood vessels, either

through remodeling or the formation (‘‘sprouting’’) of new vessels.

It involves the induction of microvascular hyperpermeability,

breakdown of the vascular basement membrane, recruitment and

proliferation of endothelial cells (EC), and the formation of mature

blood vessels. Positive and negative regulators of angiogenesis have

to be tightly regulated to maintain physiological tissue homeostasis

and function. For example, in healthy adult skin, angiogenesis is

generally quiescent as angiogenic stimuli are overruled by

inhibitory signals. However, environmental insults may tip this

balance, leading to initiation of angiogenesis in order to counteract

tissue damage. Similarly, excessive angiogenesis in the skin,

resulting from dysregulation of one or more of its regulators, is

associated with a plethora of pathological conditions, such as

psoriasis and other inflammatory dermatoses, autoimmune blis-

tering diseases, and many cancers, most prominently melanoma,

basal cell carcinoma and squamous cell carcinoma. Anti-angio-

genic therapy therefore holds promise for the treatment of a wide

spectrum of human ailments [1,2].

Cutaneous squamous cell carcinoma (SCC) is the second most

common skin cancer in the general population [3]. In contrast to

basal cell carcinoma – the most common skin cancer – it is

characterized by the risk for metastasis. Incidence of SCC is 60- to

100-times higher among immunosuppressed patients, which

makes it the most common cancer following organ transplantation.

Invasive SCC develops from atypical keratinocytes, clinically

visible as actinic keratosis or Bowen’s disease, both considered

intraepithelial non-invasive forms of SCC [4]. Approximately 1%

of these intraepithelial lesions develop into an invasive SCC [5].

However, such tumor development requires intense interactions

with stromal cells and profound extracellular remodeling. Angio-

genesis is an essential part of the malignant phenotype as most

tumors are apparently not able to exceed 1–2 mm of diameter

without developing new blood vessels [6]. Therefore they produce

angiogenic factors at an early point of development.

Vascular endothelial growth factor A (VEGFA) is a homo-

dimeric heparin-binding glycoprotein that mainly acts as a para-

crine mitogen, growth and survival factor for ECs, but it also

causes vascular permeability, vasodilatation, and various changes

in immune cell properties upon binding to its main receptors

VEGF receptor 21 and 22. VEGFA has been identified as the
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predominant tumor angiogenesis factor in the majority of human

cancers, including those of the breast, colon, lung and prostate

[7,8]. Invasive SCC also expresses increased levels of VEGFA,

particularly in the leading front of the tumor, which is an intuitive

site for the induction of angiogenesis [9]. Furthermore, over-

expression of (murine) VEGFA resulted in enhanced invasion and

angiogenesis in experimental human SCC [10]. In some other

cancers, such as head and neck squamous cell carcinoma,

increased expression of VEGF has been associated with pro-

gression to a more aggressive phenotype, both clinically and in

experimental systems [11]. Similarly, increased VEGFA expres-

sion correlates with greater metastatic potential of melanoma, and

its expression is high in melanoma metastases themselves [12,13].

In the skin, VEGFA is mainly secreted by epidermal keratinocytes.

Its expression is up-regulated in response to hypoxia [14],

activation of epidermal growth factor (EGF) receptor signaling

via EGF or transforming growth factor (TGF)-a, and to a number

of cytokines including tumor necrosis factor (TNF)-a, TGF-b,
fibroblast growth factor-7 and others [15,16].

Interestingly, it was shown that heterozygous deletion of the

VEGFA 39-untranslated region (39-UTR) in mice leads to a two-

to three-fold increase in VEGFA levels and embryonic lethality

following cardiac failure, thus suggesting the presence of important

regulatory elements in its downstream untranslated region [17].

Indeed, VEGFA expression appears to be excessively regulated at

the post-transcriptional level. For example, at least twelve protein

isoforms have been described, resulting from alternative splicing,

as well as the use of alternative promoters or ribosome entry sites

[18]. Moreover, its 39-UTR contains several putative or verified

stabilization/destabilization elements and alternative polyadenyla-

tion signals, which may influence mRNA processing, turnover and

translation rates upon binding of the respective trans-acting

factors, such as ELAV1/HuR, PTB or the c-interferon activated

inhibitor of translation (GAIT) complex [19–34].

Various microRNAs (miRNAs) have been found to regulate

human VEGFA expression post-transcriptionally. MiRNAs are

short (,21 nucleotides) noncoding RNAs that generally lead to

repression of gene expression upon the binding of recognition

motifs that are typically present in the 39-UTR of transcripts.

Binding occurs in an antisense fashion which is mainly mediated

by a ‘seed’ region which comprises the 59-terminal six to eight

nucleotides of the miRNA and exhibits a high degree of

complementarity to the target mRNA. Misexpression of miRNAs

in hypoxia-induced nasopharyngeal carcinoma-derived CNE cells

identified several miRNAs that were able to repress VEGFA

expression in vitro, although the corresponding recognition motifs

in the mRNAs have not been unambiguously identified [35,36].

One of the two VEGFA internal ribosome entry sites, driving the

expression of the VEGF-121 isoform [37], has been shown to be

susceptible to regulation by miR-16 [38]. Moreover, miR-16, as

well as miR-424, have recently been demonstrated to regulate

angiogenic activity in endothelial cells by targeting VEGFA and

other angiogenic mediators [39]. Lei et al. identified a feedback

loop regulating the adaptation of murine tumor cells to different

oxygen concentrations in which hypoxia-inducible factor 1 alpha

(HIF-1a) suppresses the expression of miR-20b, which in turn may

regulate both HIF-1a and VEGFA expression [40]. Two

miRNAs, miR-126 and -205, were shown to regulate VEGFA

expression and are implicated in a number of cancers, including

lung, prostate and breast cancer [41–46]. Similarly, miR-200c is

dysregulated in leiomyomata [47] and endometrial cancers [48],

while miR-29b-mediated regulation of VEGFA is implicated in

prostate cancers [45]. Jafarifar et al. showed that the binding of the

splicing factor hnRNP L to a CA-rich sequence element in the

VEGFA 39-UTR under hypoxia led to competitive displacement

of miRNAs miR-297, -299, -567 and -605 and consequently

derepression of VEGFA expression in tumor-associated macro-

phages [30]. Finally, microRNAs 200b, 93 and 29b were

implicated in the non-malignant conditions diabetic retinopathy

[49], diabetes [50], and pre-eclampsia [51], respectively.

In the present study, we have used miRNA target prediction

algorithms and luciferase reporter assays to identify a new

microRNA recognition element (MRE) in a downstream con-

served region of the VEGFA 39-UTR, and we have confirmed the

repressive effect of miR-361-5p on VEGFA expression in vitro with

luciferase reporter assays and ELISA. We also found that miR-

361-5p levels were lower in those skin-derived cell lines that

express high levels of VEGFA, as well as in SCC tumors compared

to healthy skin. These results indicate that miR-361-5p might

affect cancer development or progression by modulating VEGFA

expression in particular tumor types.

Results

VEGFA is a Putative Target of microRNA-361-5p
The almost 2 kb long sequence of the human VEGFA 39-

UTR, the vast majority (.95%) of which is present in all of its

known isoforms, contains two regions that are highly conserved

among vertebrates, one at its 59- and the other one at its 39-end.

While most miRNA recognition elements (MREs) that have been

unambiguously shown to be able to affect human or murine

VEGFA expression are located in the 59-conserved region

[30,38–40,42,50], only miR-126, miR-200b/c, and recently

miR-29b have been demonstrated to bind in the ,730

nucleotide downstream conserved region (Figure S1A) [41,43–

45,47–49,51,52]. Both regions are lower in GC content

compared to the weakly conserved region separating them

(GC% approximately 44, 58 and 28 from 59 to 39). It has also

been suggested that the density of functional MREs increases

towards both ends of a transcript’s 39-UTR [53]. We therefore

wondered whether the 39-conserved region of the VEGFA 39-

UTR contains additional MREs that may contribute to VEGFA

dysregulation in cancers.

In order to find potential candidate miRNAs that may be

implicated in the regulation of VEGFA expression, we employed

five miRNA target prediction services to search for predicted

MREs in the VEGFA 39-UTR: microRNA.org [54], TargetScan

[55], DIANA-microT [56], miRDB [57], and MicroCosm [58].

This analysis revealed that only three miRNA/MRE pairs were

predicted by all five algorithms (Table S1): Two MREs, predicted

to be targeted by miR-29b and miR-205, have already been

shown to regulate VEGFA expression [42,45,46,51]; the third

MRE, predicted to be regulated by miR-361-5p, is located in the

downstream conserved region. RNAhybrid [59] calculated a min-

imum free energy of 222.0 kcal/mol for the interaction between

miR-361-5p and the MRE located between nucleotides 1604 and

1625 of the VEGFA 39-UTR in transcript NM_001025366

(Figure S1B), which is in the range of other MREs reported for

VEGFA [36]. No targets for miR-361-5p have been experimen-

tally confirmed so far, but it has been shown that the transfection

of a miR-361-5p mimic in hypoxia-induced CNE cells leads to

reduced VEGFA protein levels, as determined by ELISA –

supporting the idea that this miRNA may regulate VEGFA

expression [35,36]. Thus, we chose to focus our studies on this

miRNA.

MIR361 is encoded on the 6 chromosome, in an intron

between exons 9 and 10 of CHM/choroideremia (Rab escort

protein 1) and gives rise to two mature miRNA species, miRNA-

VEGFA and miR-361-5p Expression in Human SCC
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361-3p and the predominant miRNA-361-5p. The locus is highly

conserved among placental mammals only, particularly the stem

region of the putative precursor miRNA. MicroRNA 361-5p has

first been isolated from pancreatic islets by Poy and colleagues [60]

and subsequently from neuroblastoma cell lines [61]. In the

following, the miRNA has been detected in different tissues and

cell types [62–67]. Moreover, in mice the miRNA may be involved

in the molecular mechanism underlying insulin resistance and

protection thereof [68], and it was found to be differentially

expressed in a bleomycin-induced mouse model of lung fibrosis

[69].

It is of interest that miR-361-5p is predicted to target mRNAs

coding for other proteins acting in angiogenesis (a list of potential

miR-361-5p targets compiled from five miRNA target prediction

algorithms is given in Table S2; pathways enriched among the

Gene Ontology annotations of candidates are shown in Table S3;

putative targets acting downstream of VEGFA are highlighted in

a pathway map in Figure S2). Potential downstream targets

include PKC, Rac, PI3K, NFAT. The pathways most strongly

enriched among predicted miR-361-5p targets include upstream

regulators of VEGFA expression, such as the EGF and FGF

signaling pathways (P= 7.261026 and 2.661025, respectively),

as well as the VEGF pathway and angiogenesis (P = 0.0085 and

0.0016).

MicroRNA-361-5p Targets the VEGFA 39-UTR
Due to the generally high degree of interconnectivity within

post-transcriptional regulatory networks [70–73], the extensive

post-transcriptional regulation that has already been shown to be

exerted on the VEGFA transcript [19–52], and the high

occurrence of predicted MREs in the conserved region surround-

ing the putative MRE (Table S1), it is possible that other trans-

binding factors might affect the binding potential of our miRNA of

interest. Thus we reasoned that it may be beneficial to preserve

potential RNA recognition elements in our experiments. To do

this, we cloned the entire downstream conserved region of the

VEGFA 39-UTR behind the coding sequence of Renilla luciferase

under the control of an SV40 promoter, on a plasmid further

encoding a firefly luciferase for normalization purposes (Figure 1A).

Additionally, we also generated a mutant of the putative miR-361-

5p MRE, in which three nucleotide residues are deleted (Figure 1B;

effective deletion relative to the miRNA seed region= 2 nucleo-

tides). In order to avoid competition between the reporter and

endogenous VEGFA, we performed the assays in human

embryonic kidney (HEK293) cells [74], which express low levels

of VEGFA [75].

The ability of HEK293 cells to take up miRNA mimics (see

materials and methods) was verified by transfection with increasing

amounts of a Cy3-labeled control oligonucleotides, followed by

flow cytometry analysis (Figure S3), revealing that.90% of the

cells take up the labeled mimics across the whole range of

concentrations in a dose-respondent fashion. When overexpressing

the miR-361-5p mimic together with the wild type VEGFA 39-

UTR luciferase reporter, relative Renilla activity was decreased by

approximately 25% compared to the control precursor

(P = 0.0327; unpaired t-test, two-tailed), as well as the mutated

reporter (P = 0.0263; unpaired t-test, two-tailed), which did not

change relative to the control (Figure 1C). Although the co-

transfection of wild type and mutant reporters with miR-361-5p

antisense inhibitor or control did not lead to significant differential

luciferase activities, these data indicate that the putative miR-361-

5p MRE possesses regulatory potential, and that it is subject to

regulation by miR-361-5p.

Endogenous VEGFA Expression is Regulated by
microRNA-361-5p
To check whether endogenous VEGFA levels could be affected

by miR-361-5p, we chose to alter levels of the miRNA in

epidermoid squamous cell carcinoma-derived A431 cells [76] and

keratinocytes derived from normal skin that transformed sponta-

neously in vitro (HaCaT) [77] – both of which are known to express

high levels of VEGFA, as well as low levels of miR-361-5p (see the

following paragraph). First, the efficiencies of transfecting these

cells with miRNA mimics and antisense inhibitors were tested with

increasing concentrations of Cy3-labeled control oligonucleotides

and monitored by flow cytometry (Figure S3). Oligonucleotides

were incorporated by more than 90% of the cells in all conditions,

with fluorescence intensities increasing in a dose-respondent

manner. We then determined VEGFA levels in the culture

supernatants of both cell lines transfected with different amounts of

miRNA-361-5p mimic or control using ELISA (Figure 2A/B).

Baseline levels of secreted VEGFA of mock-transfected cells were

approximately 31766585 and 13146152 pg/mL per 24 hours,

for A431 and HaCaT cells respectively. VEGFA levels were

significantly decreased in A431 cells (up to ,30% when

transfecting 10 nM; P= 0.0063; unpaired t-test, two-tailed;

Figure 2A), while we only observed a slight decrease in VEGFA

levels in HaCaT cells (up to ,11% when transfecting 30 nM;

P= 0.0502; unpaired t-test, two-tailed; Figure 2B) when comparing

transfection of miR-361-5p mimic and control. Conversely,

VEGFA levels were not affected in A431 cells transfected with

increasing amounts of miRNA-361-5p antisense inhibitor when

compared to cells transfected with a control (Figure 2A), while in

HaCaT cells we detected elevated VEGFA levels for all tested

antisense inhibitor concentrations (up to ,39% when transfecting

10 nM; P= 0.0150; unpaired t-test, two-tailed; Figure 2B). Next

we tested the effects of miR-361-5p mimics and antisense

inhibitors in a setting where VEGFA expression is induced by

treatment with TNF-a (10 ng/mL, 24 h; Figure 2C/D) [16]. As

expected, baseline levels of VEGFA after 24 hours were increased

by 18% (A431, 37456266 pg/mL) and 138% (HaCaT,

31236254 pg/mL) when compared to uninduced states (compare

above). Importantly, significant changes in secreted VEGFA levels

were found for miR-361-5p mimics and antisense inhibitors in

A431 (,26/24% decrease/increase for mimics and antisense

inhibitors, respectively; P= 0.0045 and 0.0181; unpaired t-test,

two-tailed; Figure 2C) and HaCaT cells (,19/17% decrease/

increase for mimics and antisense inhibitors, respectively;

P= 0.0150 and 0.0233; unpaired t-test, two-tailed; Figure 2D),

when compared to the corresponding control oligonucleotides.

Taken together, these findings demonstrate that miR-361-5p

affects the levels of secreted VEGFA, further suggesting that the

miRNA is able to repress endogenous VEGFA expression in vitro.

VEGFA and miR-361-5p Expression Levels are Inversely
Correlated in Skin-derived Cells in vitro
Next, we used quantitative reverse transcription PCR (qRT-

PCR) to determine the expression levels of endogenous miR-361-

5p and VEGFA mRNA in four skin-derived human cell lines: (1)

the VEGFA-secreting epithelial cell lines A431 and HaCaT; (2)

primary dermal lymphatic (LEC) and blood vascular (BEC)

endothelial cells, which are targeted by VEGFA but express only

low levels of it themselves [78,79]. While miRNA expression did

not differ significantly within the two groups of cells (fold

difference between A431 and HaCaT=1.04+0.97–0.50; fold

difference between BEC and LEC=1.94+3.77–1.28), miR-361-

5p levels were significantly higher in the endothelial cells

VEGFA and miR-361-5p Expression in Human SCC
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compared to the VEGFA-expressing epithelial cells (fold differ-

ences between LEC/BEC and A431/HaCaT ranging from 23.72

to 47.82; P values between 0.0064 and 0.0120; unpaired t-test, two

tailed; Figure 3A). Conversely, while VEGFA mRNA levels

differed only slightly within the two groups of cells (fold difference

between A431 and HaCaT=3.86+1.48–1.07; P= 4.061028; fold

difference between LEC and BEC=1.46+5.12–1.13), the epithe-

lial cells contained considerably higher amounts of VEGFA

mRNA compared to the endothelial cells (fold differences between

A431/HaCaT and LEC/BEC ranging from 70.43 to 378.41; P

values between 0.0019 and 0.0101; unpaired t-test, two tailed;

Figure 3B). With a Spearman’s rank correlation coefficient of the

DCT values of r =20.80 (two-tailed) across all cell lines, the

expression levels of miR-361-5p and VEGFA correlated well in an

inverse manner, although this correlation did not reach signifi-

cance. In summary, these data indicate that miR-361-5p is

expressed in all of the tested skin-derived cell lines, with the highest

levels occurring in endothelial cells. Considering the observed

relation between miRNA and VEGFA levels, it is possible that

miR-361-5p might play a role in maintaining the functional

balance of differential VEGFA expression between epithelial and

endothelial cells in the skin.

Figure 1. Mutation of the putative recognition element abolishes miRNA-361-5p-mediated regulation of a VEGFA 39-UTR reporter.
(A) Schematic representation of the luciferase reporter constructs, indicating the VEGFA 39-UTR fragment fused to Renilla luciferase, the predicted
miRNA recognition element (MRE) for miR-361-5p, and the firefly luciferase gene used for normalization. (B) Sequence alignment of miR-361-5p with
the wild type (wt) VEGFA 39-UTR and mutated reporter. The seed sequence (bold) and mutated residues (red) are highlighted. (C) HEK293 cells were
co-transfected with either of the indicated luciferase reporters and a miR-361-5p mimic, antisense inhibitor, or the respective control. Data were
obtained from three independent experiments, performed in triplicate. For each experiment, mean ratios of Renilla and firefly luciferase activities
were normalized to those of psiCHECK-2-transfected cells, then to Pre- or Anti-miR control-transfected cells. Mean values of three independent
experiments 6 S.D. are plotted. Two-tailed, unpaired t-tests were used to calculate P values (single asterisks denote P values,0.05).
doi:10.1371/journal.pone.0049568.g001

VEGFA and miR-361-5p Expression in Human SCC
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Figure 2. Impact of altered miRNA-361-5p levels on secretion of endogenous VEGFA. A431 and HaCaT cells were transfected with the
indicated concentrations of miR-361-5p mimics, antisense inhibitors, or controls, either in the presence (A, B) or absence (C, D) of TNF-a. Cellular
supernatants were analyzed for VEGFA protein content using a human VEGFA ELISA. Three independent experiments were performed in triplicate.
Mean values 6 S.D. from a representative experiment are plotted. Two-tailed, unpaired t-tests were used to calculate P values (one and two asterisks
denote P values,0.05 and,0.01, respectively).
doi:10.1371/journal.pone.0049568.g002

VEGFA and miR-361-5p Expression in Human SCC
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MicroRNA-361-5p Levels are Decreased in Cutaneous
Squamous Cell Carcinoma
Having established that miR-361-5p levels are lower in those

skin-derived cell lines that exhibited higher levels of VEGFA

expression in vitro, we hypothesized that its expression may be

lower in SCC, and that it may thus contribute to the initiation or

maintenance of high VEGFA expression, either directly or

indirectly. We therefore measured the expression of miR-361-5p

and several other VEGFA-regulating miRNAs in five samples of

SCC obtained from patients and in five healthy skin samples using

qRT-PCR.

First we investigated whether VEGFA expression was indeed

increased in the SCC samples by assessing VEGFA mRNA levels

with two different assays, one for exon 3 and the other one for the

downstream conserved region in the 39-UTR. Interestingly, we

found that the VEGFA 39-terminus was expressed at significantly

lower levels than the coding region (fold difference between

VEGFA exon 3 and VEGFA 39-terminus assays of 2.72+1.34–
0.90; P= 0.0098; unpaired t-test with Welch’s correction, two-

tailed; P= 0.0115; Mann-Whitney U=17, n1=n2= 10, two-

tailed; Figure S4). As expected, we found that VEGFA mRNA

levels were around two-fold higher in the SCC samples compared

to healthy control samples (fold difference between SCC and

healthy skin for the exon 3 assay: 2.27+2.61–1.22; P=20.0472;

unpaired t-test with Welch’s correction, two-tailed; P = 0.0556;

Mann-Whitney U=3, n1= n2= 5, two-tailed; fold difference

between SCC and healthy skin for the 39-terminal assay:

2.12+4.50–1.44; P= 0.1846; unpaired t-test with Welch’s correc-

tion, two-tailed; P= 0.2222; Mann-Whitney U=6, n1= n2= 5,

two-tailed; Figure 4A and S4B). Moreover, data correlated very

well for both assays (r = 0.83, P = 0.0015; Spearman’s rank

correlation, one-tailed; Figure 4B).

Next, we measured the expression of miR-361-5p and the

known VEGFA-regulating miRNAs miR-20b, miR-34a, miR-93,

miR-126 and miR-205. In order to gain first insights into the

regulation of miR-361-5p, we also determined the expression

levels of the miRNA’s ‘host gene’ CHM. In normal skin samples,

the average expression levels of miR-20b (,62-fold down) and

miR-205 (,51-fold up) strongly deviated from that of the

reference RNA (RNU6B), while for all other miRNAs the

difference stayed within an order of magnitude (Figure S4A). Of

note, miR-361-5p levels (,3.6-fold lower than RNU6B) were very

consistent between samples (Figure S4A) and correlated fairly well

with CHM mRNA levels (r = 0.53, P= 0.0587; Spearman’s rank

correlation, one-tailed; data not shown). In the SCC samples,

miR-361-5p and CHM levels were significantly decreased

compared to healthy skin samples (fold difference between SCC

and healthy skin for the miR-361-5p assay: 0.44+0.33–0.19;
P= 0.0220; unpaired t-test with Welch’s correction, two-tailed;

P= 0.0159; Mann-Whitney U=1, n1= n2=5, two-tailed; fold

difference between SCC and healthy skin for the CHM assay:

0.40+0.53–0.23; P = 0.0456; unpaired t-test with Welch’s correc-

tion, two-tailed; P= 0.0952; Mann-Whitney U=4, n1= n2= 5,

two-tailed), whereas all other tested miRNAs either did not exhibit

considerably reduced expression levels or, as seen for miR-126,

even appeared to be increasingly expressed (fold difference

between SCC and healthy skin of 3.72+10.99–2.78; P = 0.0699;

unpaired t-test with Welch’s correction, two-tailed; P = 0.0952;

Mann-Whitney U=4, n1= n2= 5, two-tailed; Figure 4A and

S4B). Importantly, miR-361-5p levels exhibited the strongest

inverse correlation with VEGFA levels across all samples (r = -0.58

and -0.60, P= 0.0408 and 0.0333 for the exon 3 and 39-terminal

assays, respectively; Spearman’s rank correlation, one-tailed;

Figure 4B). No other miRNA passed an r #20.5 threshold.

Notably, CHM did not correlate with VEGFA expression (r = 0.05

and 0.09, P = 0.4405 and 0.4014; Spearman’s rank correlation,

one-tailed; for the exon 3 and 39-terminal assays, respectively).

In summary, we found that out of a panel of six miRNAs

targeting VEGFA, only miR-361-5p levels were decreased in SCC

expressing high levels of VEGFA, indicating that miR-361-5p

dysregulation could contribute to the observed elevated VEGFA

levels in SCC. Although we did not observe a similar inverse

correlation between CHM and VEGFA mRNA levels, the

correlation between CHM and miR-361-5p levels may be an

indication that transcription of the miRNA precursor is dependent

Figure 3. VEGFA and miR-361-5p expression levels are inversely correlated in human skin-derived cell lines. qRT-PCR analysis of miR-
361-5p (A) and VEGFA (B) expression in A431, HaCaT, primary human dermal lymphatic (LEC) and blood endothelial cells (BEC). Fold differences 6
S.D. in expression levels with regards to the references (RNU6B and ACTB, for miRNA-361-5p and miRNA-361-5p, respectively) are plotted. Data
represent at least three independent experiments performed in duplicate. Two-tailed, unpaired t-tests were used to calculate P values (one, two and
three asterisks denote P values,0.05,,0.01, and,0.001, respectively).
doi:10.1371/journal.pone.0049568.g003
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on CHM transcription. Nevertheless, additional regulation at the

miRNA processing step may occur and contribute to the non-

correlated response of CHM and VEGFA transcripts [80].

Discussion

In this study, we have identified microRNA 361-5p as a novel

potential regulator of VEGFA expression. Using luciferase re-

porter assays, we have shown that miR-361-5p can target the

VEGFA message via a recognition motif that is located in the

downstream conserved region of the VEGFA 39-UTR. Of note,

an additional potential miR-361-5p MRE (located between

nucleotides 1900 and 1921 of the 39-UTR) was predicted by

microRNA.org, and could contribute to the miRNA’s observed

repressive potential, but was not analyzed by mutational analysis

as part of this study because of the low prediction coverage and

weaker calculated free minimum energy (-12.8 kcal/mol; RNAhy-

brid). Consistent with findings indicating that the regulatory

impact of altered miRNA levels on endogenous protein levels of

targets is often weak [81,82], we have also observed mild

inhibitory effects of miRNA 361-5p on the levels of secreted

VEGFA. A difference in VEGFA miR-361-5p MRE occupancy

by endogenous miR-361-5p between HaCaT and A431 cells could

potentially explain the differential effects of miR-361-5p mimic or

antisense inhibitor on the levels of secreted VEGFA in

unstimulated cells: A high occupancy (‘saturation’) of the MRE

in HaCaT cells, which express similar miR-361-5p but lower

VEGFA levels compared to A431, could account for the absence

of a significant decrease in VEGFA secretion upon the addition of

miR-361-5p mimic. Consistently, stimulated HaCaT cells, which

secreted.2-fold higher levels of VEGFA compared to unstimu-

lated cells, responded to elevated levels of miR-361-5p. Converse-

ly, a low occupancy of the MRE in unstimulated A431 cells could

Figure 4. Relative changes in expression of selected mRNAs andmature miRNAs in healthy skin and SCCs. For each group, five samples
were analyzed by qRT-PCR, representing ten individuals. Experiments were performed in quadruplicates. Data are based on CT values normalized to
ACTB and RNU6B for mRNAs and miRNAs, respectively. (A) Fold differences in expression relative to average of expression in healthy skin samples 6
S.D. are indicated for each assay on a logarithmic scale. The Mann-Whitney U test was used to calculate P values (two-tailed; the single asterisk
denotes a P value,0.05). (B) Based on the normalized expression levels, Spearman rank correlation coefficients (r) between relative expression levels
of VEGFA and each of the indicated miRNAs were calculated over all samples. P values (one-tailed) are indicated.
doi:10.1371/journal.pone.0049568.g004
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render the cells unresponsive to miR-361-5p inhibition. Likewise,

the absence of an effect of miR-361-5p inhibition on luciferase

reporter activity in HEK293 cells could also be explained by

a relatively low MRE occupancy. However, data obtained from

stimulated A431 cells, which express slightly more VEGFA than

HaCaT cells, yet proved responsive to miR-361-5p inhibition,

speaks against such a simple model. Moreover, in this scenario the

impact of increased miR-361-5p levels in unstimulated A431 and

miR-361-5p inhibition in unstimulated HaCaT cells should be

proportional to the amount of added miRNA mimic or antisense

inhibitor. The absence of such a miRNA dose-response could

indicate that one or more additional factors differentially modulate

miR-361-5p activity in the two cell lines, systemically or

specifically, by influencing the availability, accessibility or func-

tionality of the miRNA or its recognition element. The large set of

known post-transcriptional regulators of VEGFA expression [19–

52], as well as the extremely high density of predicted MREs in the

downstream conserved region of the VEGFA 39-UTR

(0.41 MREs/nucleotide, compared to 0.29 and 0.14 for the

upstream conserved and non-conserved regions, respectively,

Table S1), add particular weight to such a hypothesis, as it

implies the potential for a high degree of competition or similar

cooperative effects between miRNAs, or between miRNAs and

RNA-binding proteins. Indeed, such cooperation has already been

observed for other miRNAs regulating VEGF expression in vitro

[35]. Various studies have also demonstrated functional interplay

between miRNAs and RNA-binding proteins on a number of

targets [72], including VEGFA [30], and it has been proposed that

such crosstalk may be widespread [83].

Furthermore, the localization of the MRE so close to the

mRNA’s 39-terminus may render it particularly prone to in-

accessibility due to degradation or alternative polyadenylation.

Regarding the latter, it has recently been proposed that pro-

liferating cells may employ alternative polyadenylation to shorten

the 39-UTRs of transcripts and thus escape miRNA- and RNA-

binding protein-mediated post-transcriptional repression [84].

Indeed, it was found that the VEGFA transcript uses two different

polyadenylation sites in mice, although no differential usage of the

signals was observed between normoxic and hypoxic conditions

[85]. Similarly, our data indicate an apparent difference in

expression levels between the coding region and the downstream

region of the 39-UTR within but not in between both clinical

sample groups, suggesting that alternative polyadenylation may

indeed limit the availability of the miR-361-5p MRE (Figure S4).

However, slight differences in the amplification efficiencies of the

used gene expression assays may also account for these observa-

tions. Further studies into the differential regulation of VEGFA 39-

UTR length, the interplay between miRNAs, as well as the

crosstalk with other post-transcriptional regulators may shed light

on these issues.

It cannot be ruled out that the ELISA results are due to

secondary effects on non-targets or other miR-361-5p targets

acting in the same pathway, which could in turn lead to altered

VEGFA production/secretion. Indeed, while the reliability of

miRNA target prediction software is often questionable at the level

of individual targets, the strong enrichment of VEGFA-related

pathways among predicted miR-361-5p targets (Table S2, Table

S3, Figure S2) indicates that the miRNA may have potential roles

in regulating angiogenesis and other VEGFA-related functions,

both upstream and downstream of the VEGFA/VEGF receptor

axis.

We have shown that miR-361-5p is expressed in a number of

cell types derived from human skin. Interestingly, the epithelial,

VEGFA-secreting cells (A431 and HaCaT) express significantly

lower levels of this miRNA than the endothelial cells ‘‘targeted’’ by

VEGFA (LEC and BEC). This may indicate a potential role for

miR-361-5p in upholding the physiological balance of VEGFA

levels in the skin. Furthermore, we have shown that levels of miR-

361-5p, but not those of the known VEGFA-regulating miRNAs

miR-20b, -34a, -93, -126, and -205, inversely correlate with

VEGFA expression in SCC compared to healthy skin samples,

corresponding to previously reported findings [86]. Therefore, out

of the assayed microRNAs, miR-361-5p seems most likely to

contribute to elevated VEGFA mRNA levels in this type of cancer.

It is well established that VEGFA, secreted by cultured

keratinocytes, potently induces the proliferation of endothelial

cells [87], implying that suppressors of VEGFA secretion may

interfere with VEGFA-related functions in target cells. Moreover,

previous findings in an experimental SCC model, demonstrating

that elevated VEGFA levels were associated with increased tumor

cell invasion and angiogenesis [10], indicate an indirect mecha-

nism by which miR-361-5p might promote SCC progression. To

gain first insights into possible functions of miR-361-5p, we

analyzed the impact of altered miR-361-5p levels on proliferation

(Figure S5A/B) and migration (Figure S5C/D) of A431 and

HaCaT cells. However, the observed slight effects are likely not

correlated with its targeting of VEGFA and may be the result of

targeting other cancer related genes. Nevertheless, the presented

data may provide a starting point for future studies investigating

the potential roles of miR-361-5p on migration, proliferation and

angiogenesis in relevant cell lines and SCC models. Next to

a characterization of the miRNA’s functions in vitro, it may also be

of interest – given the importance of VEGFA-related processes for

wound healing and tissue regeneration – to study its function in an

appropriate in vivo model (e.g. cutaneous wound healing).

With regard to the potential involvement of microRNA 361-5p

in the etiology of SCC, an important question raised by our study

is how the expression of the miRNA is regulated. One possibility is

certainly that miR-361-5p transcription is dependent on its ‘‘host

gene’’ CHM. However, while the levels of miRNA and ‘host gene’

expression correlated fairly well among the clinical samples, CHM

and VEGFA levels did not. It is possible that additional regulation

at the various steps of miRNA processing, as has been shown for

a wide range of miRNAs [80], could lead to the observed

discrepancies in the correlation of the assumed primary transcript

(CHM) and the mature miRNA. Another possibility is that the

miRNA bears its own promoter elements that could uncouple

miRNA transcription from that of CHM. However, we are not

aware of any literature on the transcriptional regulation of CHM.

Therefore, detailed studies into the regulation of miRNA 361

should consider analyzing primary transcripts levels as well as

those of miR-361-5p and -3p, their precursors, as well as CHM/

Rab escort protein 1 protein levels. To our knowledge, CHM has

not been implicated in either SCC or other skin-related diseases.

However, there is some indication about a possible involvement of

VEGFA in the etiology of choroideremia, a degenerative disease of

the retina associated with the full or partial deletion of CHM and

predominantly occurring in males: Vascular abnormalities in the

endothelial cells of choroideremia patients have been previously

reported [88]. A more recent study further identified VEGFA as

one of a group of factors that is frequently expressed in a variable

manner in the monocytes of choroideremia patients, and its levels

correlated with disease severity [89]. Interestingly, many of the

observed mutations/deletions in the CHM alleles of patients also

affect miR-361-5p [90]. Loss-of-function mutations of miR-361-5p

may thus potentially contribute to the observed variations in

VEGFA levels. Finally, miRNA 361 is located on the 6
chromosome, which encodes 10% of all human miRNAs [91].
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Although the significance of this enrichment is yet unknown, it has

been proposed that the functions of X-linked miRNAs may

explain some of the gender difference observed in immunity and

related diseases, as well as cancers [92].

In conclusion, our findings further underline the presence of

cancer-specific miRNA profiles [93]. Through microRNAome-

wide expression profiling of cancers, it should therefore be possible

to develop specific, miRNA-based clinical markers for diagnosis

and the selection of treatment options for various types of cancers.

With regards to SCC, studies with larger sample numbers and

follow-up data should establish the value of miR-361-5p as

a diagnostic and prognostic marker. As comprehensive data on the

expression of miR-361-5p are currently unavailable, further

studies should also reveal its association with other tumor types

and targets, either acting in the same, or in different pathways.

Materials and Methods

Ethics Statement
The collection of specimens from clinically indicated excisions

for this study was explicitly approved by the institutional review

board (Kantonale Ethikkommission Zürich). Informed consent

(both written and verbal) was obtained from patients for the use of

their skin samples in this research project.

Plasmids
A fragment comprising nucleotides 43,753,225 to 43,754,253 of

human chromosome 6 (Build GRCh37/hg19, February 2009),

containing nucleotides 926 to 1925 of the 39-UTR of human

VEGFA (isoform a, NM_001025366.2), was amplified from HeLa

S3 genomic DNA using KOD Hot Start DNA Polymerase

(Novagen, Cat. No. 71086-3) and the following primer pair

(restriction sites are underlined): 59-TCACTC-

GAGGTCCCGGCGAAGAGAAGAG-39 (forward, containing

XhoI site) and 59-CATGCGGCCGCTCAATGGAGAAGGA-

GAAACCA (reverse, containing NotI site). The amplicon was

cloned into pCR-Blunt II-TOPO (Invitrogen, Cat. No. K2800-

20). The mutation in the putative miR-361-5p recognition element

was introduced using the QuikChange I site-directed mutagenesis

kit (Stratagene) according to the manufacturer’s recommenda-

tions. The following oligonucleotide and its reverse complement

were used (the sequence complementary to the miRNA seed

sequence is underlined): 59-GTGTGTATATATATATATA-

TATGTTTATGTATATATGTGATGATAAAATAGA-

CATTGCTATTCTGTTTTTTATATGTAAAAACAAA-39. Af-

ter sequence verification, wild type and mutated VEGFA 39-UTR

fragments were subcloned into psiCHECK-2 (Promega) via XhoI

and NotI restriction sites.

Cell Culture and Tissue Samples
Primary human dermal blood vascular endothelial cells (BECs)

and lymphatic endothelial cells (LECs) were isolated from neonatal

foreskin as previously described [78,79]. HEK293 [74], A431 [76]

(both from American Type Culture Collection, Cat. Nos. CRL-

1573 and CRL-1555, respectively), and HaCaT [77] (Cell Lines

Service, Cat. No. 300493) cells were cultured in Dulbecco’s

Modified Eagle Medium (DMEM; Invitrogen, Cat. No. 41966)

supplemented with 10% fetal bovine serum (Invitrogen, Cat.

No. 10270–106) and 1x antibiotic-antimycotic (Invitrogen, Cat.

No. 15240–062). BECs and LECs were grown in endothelial basal

medium (EBM; Lonza, Cat. No. CC-3121) supplemented with

20% fetal bovine serum, 1x antibiotic antimycotic, 2 mM L-

glutamine (Invitrogen, Cat. No. 25030024), 10 mg/ml hydrocor-

tisone (Sigma-Aldrich, Cat. No. H0396) and 25 mg/ml N-6,29-O-

dibutyryladenosine 39,59-cyclic monophosphate (Sigma-Aldrich,

Cat. No. D0627) for up to 11 passages in plastic dishes coated with

type I collagen (50 mg/ml in PBS; Advanced Biomatrix, Cat.

No. 5005-B). All cells were grown in 5% CO2 at 37uC.
Squamous cell carcinoma (SCC) samples were obtained at the

time of surgery. Normal skin was obtained from abdominoplastic

reductive surgery. All specimens’ diagnoses were confirmed by

a board-certified dermatohistopathologist. Four mm punch bi-

opsies from SCC or normal skin were placed in preheated PBS at

60uC for 45 seconds, and then chilled on ice in 0.1% PBS for one

minute, followed by mechanical separation of epidermis and

dermis by scratching. The epidermis was homogenized in TRIzol

reagent (Invitrogen, Cat. No. 15596–026) and stored at 280uC.
RNA was extracted according to the manufacturer’s recommen-

dations. Quantity and quality of extracted RNA was assessed by

spectrophotometry with a NanoDrop 1000 (Thermo Fisher

Scientific Inc.) and the 2100 Bioanalyzer (Agilent Technologies),

respectively. All RNA samples had an RNA Integrity Number

(RIN) of higher than 7.0.

Luciferase Reporter Assays
20,000 HEK293 cells were reverse transfected with 20 ng of the

indicated luciferase reporter constructs using polyethylenimine

(Polysciences, Inc., Cat. No. 23966). For complex formation, DNA

and polyethylenimine stock solution (1 mg/mL in water) were

diluted to 20 mg/mL and 60 mg/mL, respectively, in Opti-MEM I

(Invitrogen, Cat. No. 51985–026). Both solutions were incubated

for 10 min at room temperature, and then mixed at equal volumes

(mass ratio polyethylenimine to DNA=3:1; final polyethylenimine

concentration= 30 mg/mL). After incubation for 20 min at room

temperature, solutions were diluted 1:10 in DMEM (Invitrogen,

Cat. No. 41966) to achieve a final DNA concentration of 1 mg/
mL. 20 mL of the transfection mixes were added to each well of

a 96-well plate, followed by the addition of 80 mL of cell

suspension in DMEM (2.56105 cells/mL). 16 hours after trans-

fection of the luciferase reporter plasmid, the cells were further

transfected with 50 nM of Pre/Anti-miR-361-5p or Pre2/Anti-

miR Negative Control#1 (Applied Biosystems, Table S4) by using

siPORT NeoFX (Applied Biosystems) according to the manufac-

turer’s recommendations. All transfections were performed in

triplicate. After 48 hours, the medium was aspirated and cells were

lysed with a mixture of 15 mL Luciferase Assay Reagent II

(Promega) and 15 mL nuclease-free water (Invitrogen, Cat.

No. 10977). Firefly luciferase activity was measured after

10 min. Then, 15 mL Stop & Glo Reagent (Promega) were added

and Renilla luciferase activity was measured after 10 min.

Luciferase activity measurements were performed in an LMAX

II 384 luminometer (Molecular Devices), with 5 seconds in-

tegration time. For each triplicate, the mean Renilla/firefly ratio

was calculated.

ELISA
20,000 A431 or HaCaT cells were reverse transfected with 10,

30, 50 or 100 nM Pre2/Anti-miR-361-5p or Pre2/Anti-miR

Negative Control #1 (Applied Biosystems, Table S4) by using

siPORT NeoFX (Applied Biosystems) according to the manufac-

turer’s recommendations. Transfections were performed in

triplicate in 96-well plates. Where indicated, TNF-a (Peprotech,

Cat. No. 300–01A) was added at 10 ng/mL immediately after

transfection to induce VEGFA expression. 24 hours after trans-

fection, supernatants were collected and centrifuged to remove cell

debris (1000 g for 3 min at room temperature). VEGFA protein

levels were determined using the Human VEGF-A Platinum

ELISA kit (eBioscience, Cat. No. BMS277) according to the
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manufacturer’s recommendations. After subtraction of blank

values, triplicates were averaged and quantified using a standard

curve prepared from serial dilutions of purified VEGFA. Data

were normalized by cell number.

Flow Cytometry
125,000 A431, HaCaT or HEK293 cells were reverse

transfected with 10, 30 or 100 nM Cy3 dye-labeled Pre- or

Anti-miR Negative Control #1 (Applied Biosystems, Table S4), or

mock-transfected, using siPORT NeoFX (Applied Biosystems)

according to the manufacturer’s recommendations. Transfections

were performed in triplicate in 24-well plates. After 24 hours, cells

were de-attached with 0.05% trypsin-EDTA (Invitrogen, Cat.

No. 25300-054) and washed with PBS. Dye-labeled molecules

were excited with a blue laser (excitation wavelength= 488 nm)

and analyzed with a FACScan flow cytometer (Beckon Dickinson).

At least 5000 events were recorded for each sample. Data were

analyzed with WinMDI 2.8.

Quantitative Reverse Transcription PCR
For each reaction, cDNA was prepared from 10 ng total RNA

using the TaqMan MicroRNA Reverse Transcription Kit

(Applied Biosystems) for miRNA detection, or the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems) for mRNA

detection. MicroRNA and gene expression assays were purchased

from Applied Biosystems (Table S5). Quantitative PCR reactions

were performed in quadruplicates, using FastStart TaqMan Probe

Master (Rox; Roche) in an AB 7900 HT Fast Real-Time PCR

System (Applied Biosystems). Quantification was performed using

the 22DDCT method [94], with RNU6B and ACTB as references

for the normalization of miRNA and mRNA expression levels,

respectively. Based on the manufacturer’s assertions, equal

amplification efficiencies of close to 100% were assumed for all

assays, thus justifying the application of the 22DDCT analysis

method and the comparisons between different microRNA and

gene expression assays.

Monolayer Wound Healing and Proliferation Assay
For proliferation assays, 5,000 A431 or HaCaT cells were

reverse transfected with 50 nM Pre2/Anti-miR-361-5p or Pre-/

Anti-miR Negative Control #1 (Applied Biosystems, Table S4) by

using siPORT NeoFX (Applied Biosystems) according to the

manufacturer’s recommendations. Transfections were performed

in eight replicates per condition in black, clear-bottom 96-well

plates (Corning, Cat. No. CLS3603). Cells were incubated in

DMEM supplemented with 1% fetal bovine serum. 72 hours after

transfection, cells were incubated with 4-methylumbelliferyl

heptanoate (Sigma-Aldrich, Cat. No. M2514) as previously

described [95]. Fluorescence intensities were measured with

a SpectraMax Gemini EM microplate reader (Molecular Devices).

For monolayer wound healing assays, 125,000 A431 or HaCaT

cells were reverse transfected with 50 nM Pre-/Anti-miR-361-5p

or Pre-/Anti-miR Negative Control #1 (Applied Biosystems,

Table S4) by using siPORT NeoFX (Applied Biosystems)

according to the manufacturer’s recommendations. Transfections

were performed in triplicate in 24-well plates. Monolayer wound

healing assays were performed as previously described [96].

Briefly, 14 hours after transfection, the medium was replaced with

DMEM supplemented with 1% fetal bovine serum, and cells were

incubated for 12 hours. Cell monolayers were scratched crosswise

with a sterile 200 mL pipette tip and imaged at 56magnification

using an Axiovert 200 M microscope with an AxioCam MRm

camera (Carl Zeiss AG) immediately after scratching, as well as

after 18 hours of incubation. Open wound areas were quantified

using the TScratch software [96].

MicroRNA Target Gene Prediction and Pathway Analysis
Predictions of human miRNA targets were downloaded from

microRNA.org [54] (August 2010 release, http://www.microrna.

org/, accessed: August 12th, 2011; all predictions with mirSVR of

less than -0.1 were considered), TargetScan [55] (Release 5.2;

http://www.targetscan.org/, accessed: August 12th, 2011; all

predicted miRNA recognition elements were considered, regard-

less of conservation), DIANA-microT v3.0 [56] (Release 3.0,

http://diana.cslab.ece.ntua.gr/microT/, accessed: August 12th,

2011), miRDB [57] (Release 3.0, http://mirdb.org/miRDB/,

accessed: August 12th, 2011), and MicroCosm [58] (Release 5,

www.ebi.ac.uk/enright-srv/microcosm/, accessed: August 12th,

2011). The miR-361-5p sequence was obtained from miRBase

[97] (Release 17, http://www.mirbase.org/, accessed: May 5th,

2011). RNAhybrid [59] (http://bibiserv.techfak.uni-bielefeld.de/

rnahybrid/) was used online, with default settings and the

following sequences: UUAUCAGAAUCUCCAGGGGUAC

(miR-361-5p, microRNA) and UGUAUAUAUGTGAUUCU-

GAUAAA (VEGFA 39-UTR fragment containing the putative

miR-361-5p MRE, target RNA). For the pathway analysis,

predicted targets for miR-361-5p were converted to Entrez

identifiers using DAVID [98] (http://david.abcc.ncifcrf.gov/), if

not present in the respective outputs. Results were pooled and

filtered for unique records, and subjected to gene set enrichment

analysis with PANTHER [99] (http://www.pantherdb.org/tools/

compareToRefListForm.jsp). For VEGFA pathway analysis, the

KEGG PATHWAY database [100] (http://www.genome.jp/

kegg/pathway.html) was consulted. All services were used with

default settings.

Supporting Information

Figure S1 Overview of the human VEGFA 39-UTR, hsa-
mir-361 and their predicted hybrid structure. (A) UCSC

genome browser [101] view of the genomic locus encoding the

human VEGFA 39-UTR. Indicated are the terminal exon of the

VEGFA gene, PhyloP and PhastCons conservation scores, GC

content, the 39-UTR fragment common to all isoforms, and the 39-

UTR region subcloned downstream of the luciferase reporter used

in this study. Moreover, the relative locations of the recognition

elements for miRNAs demonstrated to be able to regulate either

human or mouse VEGFA (see introduction for details) are

highlighted. The miR-361-5p binding site analyzed in this study

is indicated in red. Please note that predicted MREs whose

activities have not been unambiguously identified by mutational

analysis are listed separately. (B) Secondary structure of the hybrid

between miR-361-5p and the putative miRNA recognition

element within the VEGFA 39-UTR, as predicted by RNAhybrid

[59]. The calculated free energy of the interaction is indicated.

(TIF)

Figure S2 Pathway analysis of predicted miR-361-5p
targets. Target predictions were obtained from the following web

services: microRNA.org [54], TargetScan [55], DIANA-microT

[56], miRDB [57], and MicroCosm [58]. Results were pooled and

converted to uniform gene identifiers using the DAVID web

service [98]. A manually curated representation of the VEGF

signaling pathway available at KEGG [100] was color-coded

according to the number of algorithms that predict an individual

gene to be targeted by miR-361-5p.

(TIF)
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Figure S3 MicroRNA mimics and antisense inhibitors
are readily taken up by HEK293, A431 and HaCaT cells.
Cells were transfected with either 0 (mock), 10, 30 or 100 nM of

Cy3-labeled Pre-miR or Anti-miR oligonucleotides and analyzed

by flow cytometry. Experiments were performed in triplicate. (A)

For each cell line, dot plots of mock-transfected cells (left panel)

indicate the populations subjected to fluorescence analysis. The

fluorescence distributions of gated cells are plotted for a single

replicate, both for Pre-miR (middle) and Anti-miR-transfected

cells (right). The fluorescence thresholds for positive cells are

indicated (M1). The efficiencies of transfection are represented as

the mean fractions of fluorescent cells (‘‘M1 positive cells’’) (B) and

the mean geometric means (C) within the gated populations 6

S.D.

(TIF)

Figure S4 Relative changes in expression of selected
mRNAs and mature miRNAs in healthy skin and SCCs.
For each group, five samples were analyzed by qRT-PCR,

representing ten individuals. Experiments were performed in

quadruplicates. Data are based on CT values normalized to ACTB

and RNU6B for mRNAs and miRNAs, respectively. (A) For each

of the indicated assays, the fold difference in expression with

regard to the reference is plotted for each of the healthy skin

samples. Horizontal bars represent means of all healthy skin

samples. (B) For each assay and for each of the cutaneous

squamous cell carcinoma samples the fold difference in expression

to the average of the healthy skin samples is indicated. Horizontal

bars represent means of all squamous cell carcinoma samples.

(TIF)

Figure S5 Effects of altered miR-361-5p levels on the
proliferative and migratory properties of skin-derived
cells. The effects of overexpression and inhibition of miR-361-5p

on proliferation and migration of A431 and HaCaT cells were

assessed with (A) 4-methylumbelliferone-based proliferation and

(B) monolayer wound healing (‘‘scratch’’) assays. Cells were

transfected with 50 nM of miR-361-5p mimics, antisense

inhibitors, or controls, and made responsive by exposition to

reduced serum concentrations (72 and 12 hours, respectively). (A)

72 hours after transfection, relative fluorescence intensities were

measured in eight replicates after incubating cells with 4-

methylumbelliferyl heptanoate. (B) Cell monolayers were

scratched and imaged after 0 and 18 hours. Relative differences

in open wound areas (in %) were automatically quantified using

TScratch [96]. For all assays, three independent experiments were

performed. Mean values 6 S.D. from a representative experiment

are plotted. Two-tailed, unpaired t-tests were used to calculate P

values (one and two asterisks denote P values,0.05 and,0.01,

respectively).

(TIF)

Table S1 MicroRNAs predicted to target VEGFA. A

comprehensive list indicating the miRNAs predicted to have

recognition elements in the VEGFA 39-UTR by any of the

algorithms used in this study are indicated in the first sheet. For

each MRE, the genomic coordinates, the 39-UTR region as

defined in the main text, the relative position to the start site of the

39-UTR, the particular algorithms and the total number of

algorithms predicting the MRE, as well as the total number of

algorithms for which target predictions for the corresponding

miRNA were available in the accessed information, are indicated.

For MREs previously subjected to experimental analysis, the

corresponding references are indicated. An analysis of the density

of predicted MREs in the whole 39-UTR as well as the defined 39-

UTR regions is given in the second sheet.

(XLSX)

Table S2 Predicted miR-361-5p targets. Target predictions
were obtained from the following web services: microRNA.org

[54], TargetScan [55], DIANA-microT [56], miRDB [57], and

MicroCosm [58]. Results were pooled and converted to uniform

gene identifiers using the DAVID web service [98]. For each gene,

the particular algorithms and the total number of algorithms

predicting it are indicated. Genes acting in the VEGF pathway

according to KEGG [100] are shown.

(XLSX)

Table S3 Gene set enrichment analysis of predicted
miR-361-5p targets. Target predictions were obtained from the

following web services: microRNA.org [54], TargetScan [55],

DIANA-microT [56], miRDB [57], and MicroCosm [58]. Results

were pooled and converted to uniform gene identifiers using the

DAVID web service [98]. Putative targets were compared to

a human reference gene list and analyzed for pathway enrichment

using PANTHER [99]. Pathways significantly enriched among

predicted miR-361-5p targets are given. For each pathway, the

number of genes from the reference list, the number of genes from

the putative target list, the number of genes expected by chance,

and the P value are indicated. P values are not Bonferroni-

corrected. The VEGF pathway is highlighted.

(XLSX)

Table S4 Overview of microRNA mimics and antisense
inhibitors used in this study. Ordering information and,

where applicable, identifiers and sequences of the mature miRNAs

are indicated.

(XLSX)

Table S5 Overview of quantitative reverse transcription
PCR assays used in this study. In addition to the ordering

information, identifiers of the targeted genes and assayed

transcripts are given. Where available, the binding regions of the

primers and probes as well as the amplicon lengths are indicated.

(XLSX)
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