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ABSTRACT: Generative models have been successfully used to synthesize completely
novel images, text, music, and speech. As such, they present an exciting opportunity for
the design of new materials for functional applications. So far, generative deep-learning
methods applied to molecular and drug discovery have yet to produce stable and novel 3-
D crystal structures across multiple material classes. To that end, we, herein, present an
autoencoder-based generative deep-representation learning pipeline for geometrically
optimized 3-D crystal structures that simultaneously predicts the values of eight target
properties. The system is highly general, as demonstrated through creation of novel
materials from three separate material classes: binary alloys, ternary perovskites, and
Heusler compounds. Comparison of these generated structures to those optimized via
electronic-structure calculations shows that our generated materials are valid and
geometrically optimized.

■ INTRODUCTION

Experimental research has long been the backbone of materials
science and discovery, but the cost, from both financial and
time perspectives, creates a bottleneck in the “design-to-
device” workflow.1,2 Materials research ultimately aims to
employ new materials for functional applications. A key part of
that process is the characterization of materials structure, upon
which properties and, therefore, applications are heavily
dependent. The ability to predict material structure from
basic first-principles information, such as the chemical
composition, is a long outstanding goal that has yet to be
achieved.3 The vast space of possible chemical compositions
and aforementioned cost in characterizing structures exper-
imentally makes it impossible to fully explore the composition-
structure space. To narrow down the search space of candidate
materials, researchers often employ ab initio methods, such as
Density Functional Theory (DFT).4 This allows for computa-
tional simulation of materials and their properties, thus
ensuring only the most promising candidate materials need
to be synthesized experimentally. These ab initio approaches
have had great success in advancing modern computational
materials discovery.
Efforts to harmonize computational materials science, by

compiling structures and properties into databases, have led to
a number of large public data repositories. The Materials
Project,5 Open Quantum Materials Database,6,7 Novel
Materials Database (NoMaD),8 Inorganic Crystal Structure
Database (ICSD),9 Cambridge Crystal Structure Data
(CCSD),10 and the Crystallography Open Database
(COD)11−14 all provide vast data sets of structures and their
properties. Exploration of these data could uncover structure−

property relationships and enable rapid progress across
multiple domains. However, with each containing hundreds
of thousands of data points, the abundance of data on
electronic structures now makes it impossible to perform
manual analysis of the entire space.
Fortunately, data-science methods are well suited to analyze

such large aggregations of data. Within this scope, the
exploration of high-dimensional data sets is a task highly
suited to machine learning. The rapid rise of machine learning
and deep learning in recent years, along with advances in
computational capability, has led to a number of projects
focused on applications in materials science.15,16 In particular,
various techniques have been employed toward data-driven
materials discovery, such as high-throughput computation,17,18

natural language processing,19−21 “design-to-device” pipe-
lines22,23 and deep learning.24,25

Outside of the scientific domain, deep-generative models
have successfully created novel instances of videos,26 images,27

text,28 and audio.29 These have created a swell of excitement
around the potential use cases in materials science and
biomedicine. Deep-learning models trained on existing
materials could produce new chemicals, molecules, and drugs
at a fraction of the cost of experimental and ab initio research.
Furthermore, the ability of Artificial Neural Networks (ANNs)
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to find patterns in highly complex feature spaces allows for
exploration of structure−property relationships far outside the
capability of human analysis.
Recently, several deep-learning methods for generating

plausible molecules and drugs have emerged. A typical
generative deep-learning pipeline involves learning a repre-
sentative data distribution and, subsequently, sampling from it
to generate novel examples. One popular approach is to use a
variational autoencoder (VAE),30 in which a log-likelihood is
optimized to approximate a posterior distribution of the data.
Other methods utilize Generative Adversarial Networks
(GANs). These circumvent the need to evaluate a log-
likelihood and instead optimize a game-theoretic mini-max
objective by adversarially training two competing neural
networks.31

Molecular Generative Models. All molecular generative
models follow the same approximate pattern. Molecular
structures are input to a deep-learning pipeline in any number
of plausible formats. The model is then trained to learn a latent
representation of molecules that can be sampled from to
produce new crystals. The variation in methods usually
surrounds the choice of representation and how to encode
meaningful properties into the latent space.
Using a VAE, Goḿez-Bombarelli et al.32 learned a mapping

between text-string representations of molecules, in simplified
molecular-input line-entry system (SMILES) format, and a
continuous latent space. By sampling from regions that were
far enough from the training data, they were able to produce a
large fraction of novel molecules with a high drug-likeness.
More recent methods improve on the shortcomings of this
work, particularly the use of SMILES representations as inputs.
For example, researchers have employed graph representations
that enforce chemical rules to generate molecules with
specifically tailored properties.33−35 Similarly, Lim et al.36

traded the vanilla VAE used by Goḿez-Bombarelli et al. for a
conditional-VAE, which conditions the encoded representation
on specific properties. As a result, their latent representation
consists of a combination of regions for molecular properties
and structures. By embedding the target properties in the
latent space together with molecular structures, they were able
to sample molecules with desired properties from specific
regions of the latent space. Kearnes et al.37 employed a graph
encoder but replaced the vanilla decoder with a reinforcement
learning-based graph decoder. Specifically, they utilized a Deep
Q-Network,38 which guarantees that molecules afforded by
their model are chemically valid.
Other studies have employed GAN architectures to avoid

the need to approximate intractable likelihoods during
optimization. A typical GAN architecture contains a generator
network, that produces novel samples, and a discriminator
network that attempts to distinguish between “real” samples
and “fake” samples produced by the generator. These are
trained jointly using an adversarial loss function to find an
equilibrium between the two networks. Such a method has
been used to generated two-dimensional graphene hybrids.39

Another notable example is MolGAN,40 in which De Cao and
Kipf use a generator network to produce graph representations
of molecules. Accordingly, a graph-convolutional neural
network attempts to discriminate between samples from the
training data and samples produced by the generator. They
also optimize the validity and novelty of the generated
molecules by jointly training a reinforcement-learning-based
reward network that assigns zero reward to molecules which

are invalid. While this mostly guarantees valid molecules, an
undesirable result is a constrained latent space with little
sample variability. Hybrid models, which combine the latent
space of autoencoders with the training procedure of GANs,
have also recently emerged. Prykhodko et al.41 trained an
autoencoder on SMILES inputs and used a GAN to
approximate a VAE latent representation.

Crystal-Structure Generative Models. While the liter-
ature related to the creation of novel molecules using
generative models has proliferated, similar works that strive
to do the same for inorganic crystal structures are less
common, but are on the rise. A notable variational method to
generate crystal structures is iMatGen,25 which uses 3-D image
inputs to learn a latent space of inorganic structures. This
latent space is further enhanced by training a binary-
classification formation-energy model on latent vectors of the
input crystals, to distinguish stable structures from unstable
ones. By performing a case study on VxOy compounds,
iMatGen has demonstrated its capabilities by rediscovering
existing structures when these compounds are not included in
the training data, as well as generating novel compounds which
are found to be stable, as validated by DFT. Hoffmann et al.42

extended this work to include a UNet segmentation
architecture to generalize the method to multiple material
classes but they were unable to produce stable crystal
structures.
The first approach to do so via a GAN was CrystalGAN,43

which employed a CycleGAN44 model to generate novel
ternary structures from known binaries. Although the authors
successfully demonstrated that CrystalGAN can generate novel
ternary compounds, it is unclear whether their method can be
generalized to more complex crystal structures. Kim and Noh
et al.45 similarly employed a GAN using point clouds as inputs,
to create a model which can generate structures conditioned
on crystal composition. Their model addresses the limitation of
iMatGen, which is limited by the requirement of a high-
dimensional 3-D image for each elemental type in the class of
structures being generated. They demonstrated that their
model could generate novel and stable compounds of a single
kind (Mg−Mn−O ternary compounds).
Nonetheless, the primary hurdle for production of stable and

chemically valid 3-D inorganic crystal structures is the choice
of computational representation. Ideally, we require a
continuous encoding of crystals that maintains periodicity,
conserves rotational and translation symmetry and is agnostic
to the unit-cell lengths or the number of atoms therein. It is
also desirable that such representations are reversible and
therefore easily converted to formats more widely used by the
scientific community. Although encodings and descriptors of
crystal structures do exist,25,42,46,47 there is, as yet, no single
encoding that meets all of the criteria above while providing a
convenient input for ANNs.

Material-Property Prediction. In addition to crystal-
structure prediction, material-property prediction is a vital part
of computational materials discovery. Without the ability to
predict the properties of new structures, existing tools are of
limited use since they still require existing property prediction
methods, such as DFT, to validate their materials. Modeling
structure−property relationships has recently been influenced
by the success of graph-neural networks (GNNs), in which
molecules or crystals are represented by undirected graphs.
Graphs, which consist of nodes and edges, are particularly
suited to representing molecules and crystal structures, since
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relationships between nodes (atoms) can be explicitly encoded

by the presence of edges (bonds). Similarly, the absence of an

interaction between two nodes is made explicit by a lack of an

edge between the two nodes. This representation provides

these powerful inductive biases which have recently been

exploited to prove the superiority of graph-neural network

models for many tasks including structure−property predic-
tion.48

GNNs operate under the assumption that nodes which are
connected via an edge, should propagate their information to
each other. Many examples of GNN methods have recently
emerged which successfully implement this process as
learnable transformations.49−58 Accordingly, variants of

Figure 1. Architecture of our Model. (a) Conditional deep-feature-consistent variational autoencoder (Cond-DFC-VAE). The network takes in
electron-density maps, M, with a corresponding property and produces reconstructed maps, M′. The encoder (decoder) architectures consist of
repeating Conv3D, BatchNorm, LeakyReLU, and MaxPool (Upsample) operations. (b) UNet converts the electron-density maps to segmented
species matrices. The architecture uses Conv3D, ReLU, and Batchnorm blocks with maxpooling or upsampling. (c) CGCNN starts with a single
dense layer and is succeeded by a graph convolution to project the input crystal graphs such that the underlying structure of the graph is preserved.
Following this, the input graphs are pooled, and projected by two dense layers to output target properties.
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GNNs have successfully been applied to estimate the
properties of molecules and crystals.59−63 Although previous
work on generative models for materials has employed
conditional or reinforcement-based models for properties, as
far as we are aware, no previous work combines the generative
models with dedicated property prediction that goes beyond
standard formation-energy calculations.
Overall, existing methods for crystal-structure generation via

representation learning are limited by the need for a priori
information. For instance, iMatGen requires a user-defined
chemical composition. This limits the generalizability of the
model and means that the size of the inputs scale linearly with
the number of distinct elements in the input crystals.
Furthermore, for materials design purposes, we feel that it is
desirable instead to condition the generation on properties
rather than the composition, thus allowing for targeted
generation of materials for functional applications.
Scope of this Work. We, herein, present a variational

deep-representation learning pipeline for the creation of novel
3-D inorganic crystal structures that also predicts the values of

eight associated properties. Using a voxelized crystal
representation based on iMatGen25 and Hoffmann et al.,42

we train a conditional deep-feature-consistent variational
autoencoder and UNet segmentation network to learn
representations of cubic binary alloys, ternary perovskites and
Heusler compounds. By using a conditional autoencoder, that
encodes the electron-density maps alongside the formation
energy per atom of the associated crystals, the VAE learns to
encode both structure and properties simultaneously. There-
fore, randomly sampling from the encoded space, subject to a
user-defined formation energy condition, produces new
examples of crystal structures. Furthermore, for each generated
crystal we predict eight associated properties using a GNN. We
validate our VAE-generated structures and GNN-generated
predictions by comparing them to those that are computed
with electronic-structure calculations. Overall, this enables
researchers to generate high-quality candidate materials orders-
of-magnitude faster than with experimental or ab initio
methods.

Figure 2. Latent encoding of 3-D crystal structures. (a) Kernel density estimate (KDE) plot of the VAE latent dimensions after training. The
majority of dimensions show approximately normal distributions. (b) Latent-space interpolations between electron-density maps. Each row
corresponds to a different formation-energy condition imposed on the latent space. (c) Crystals resulting from interpolation between rare-earth
chromite perovskites. Linear interpolation between CeCrO3 and YbCrO3 shows traversal of A-site atom along the lanthanides with consistent
crystal structures.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00464
J. Chem. Inf. Model. 2020, 60, 4518−4535

4521

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00464?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00464?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00464?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00464?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00464?ref=pdf


■ RESULTS AND DISCUSSION

The operational pipeline of our model architecture for this
work is given in Figure 1. It consists of three main system
components that together predict 3-D crystal structures and
their eight associated properties. We now briefly describe these
three main system components in sequence. We first represent
crystallographic unit-cells as voxelized electron-density maps.
The maps are used to train a conditional deep-feature-
consistent VAE (Cond-DFC-VAE) that learns a latent
encoding of the crystal structures and their properties.
Sampling of the latent space, with a user-provided property
condition, produces novel electron-density maps. The density
maps are then converted to atomic sites via a combination of a
UNet semantic segmentation network and morphological
transformations. Finally, a crystal-graph convolutional-neural
network (CGCNN) is used to predict eight associated
properties of these materials, namely, their formation energy
per atom, energy per atom, band gap, bulk and shear moduli,
Poisson ratio, refractive index, and dielectric constant.
We trained the VAE and UNet models independently on

78 750 crystallographic information files (CIFs) of computa-
tionally generated crystal structures of ternary perovskites,
binary alloys, and Heusler compounds which were obtained
from the Materials Project. We retained 14 000 of them for
out-of-sample validation. The CGCNN model was trained on a
general set of structures, not limited to the aforementioned
classes. A full description of the architecture and training
procedures are given in the Methods section.
The next four sections present the results of various

validation steps that were applied to verify this pipeline
operation. To this end, we demonstrate that the VAE latent
space is smooth, interpretable and can, therefore, be sampled
to produce high-quality electron-density maps. Second, out-of-
sample validation shows that the pipeline accurately
reconstructs atomic positions and unit-cell parameters. We
next show that our CGCNN implementation is able to
accurately predict DFT-calculated properties. In the fourth
section, we compare crystal structures produced by our

operational pipeline to pre-existing materials and use DFT to
geometrically optimize crystal structures of selected com-
pounds. The results confirm that the VAE-generated crystals
are valid and highly optimized.

Encoding of 3-D Electron-Density Maps: Interpreta-
tion of the Latent Space. The Cond-DFC-VAE aims to
learn a smooth and compressed encoding of electron-density
map features. For all tests herein, the Cond-DFC-VAE is
trained on the electron-density maps, while simultaneously
being conditioned on their formation energy per atom. From a
practical standpoint, this means that the formation energy per
atom of each crystal structure is quantized into deciles,
converted to a one-hot encoding and then concatenated onto
the VAE layers at the input and bottleneck as shown in Figure
1a.
The one-hot encoding of the property-condition vector was

chosen, herein, as it ensures the magnitudes of the vector
elements are in the [0, 1] interval, thereby matching the scales
of the 256-dimensional electron-density map encoding.
Furthermore, by having 10 dimensions for the property-
condition vector, greater emphasis in the latent-space is placed
on the properties of the crystal-structures (10 dimensions in
266), compared to encoding the property as a single value (1
dimension in 257). However, we note that the architecture can
be easily modified to encode the property-condition vector in
any form, including discrete or continuous representations.
Furthermore, the VAE can be trained on any property for
which data exist, including categorical variables. The formation
energy per atom was chosen, herein, since this property is most
readily available in our training set.
A smooth VAE encoding is required for the latent space to

be easily sampled and thereby produce realistic and novel
instances. Once trained, the dimensions of the latent space
were found to be sufficiently smooth, as evidenced via the
kernel density estimate (KDE) plot in Figure 2a: all 256
dimensions of the latent vectors show approximately unit
Gaussian profiles with slight variations in mean and variance
(the 256 latent dimensions show average mean and variances

Figure 3. t-SNE embedding of the Cond-DFC-VAE latent space. 5000 training structures were encoded with the Cond-DFC-VAE. The latent
space shows clustering according to the three structural types. The points in each cluster are colored according to the formation energy per atom,
with more intense colors corresponding to high formation energies. Distinctive clustering by both chemical composition and formation energy is
observed.
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of 0 and 0.99, respectively). This helps to ensure that the
training samples are confined to high-probability regions of the
latent space, thereby reducing the chance of sampling
unrealistic or blurry samples.
By enforcing continuity on the learned representation, it is

possible to interpolate between points in the latent space. This
permits an exploration into how different latent dimensions
affect the resulting samples. If the VAE has learned a
meaningful and smooth representation of the crystals, then
interpolations between points in the latent space will show
smooth transitions between states without crossing through
low-probability regions. Figure 2(b) shows midslices through
electron-density maps that result from linear interpolations
between 10 pairs of training compounds (with real samples at
both ends). Each row corresponds to a different condition of
formation energy per atom, with the lowest formation energy
pair (CsYbBr3 and NpTiO3), along the top and the highest
energy pair (Mn2CuSb and OsPtCl2) along the bottom. All
examples show smooth transitions and qualitatively reasonable
intermediate samples. This indicates that the latent space is
smooth across all property dimensions.

Most importantly, the latent space should be in some way
interpretable concerning the features of the crystal structures
that it represents. This allows for targeted sampling of the
latent space to produce specific materials. Figure 2c shows the
result of interpolating between two similar end members of the
rare-earth chromites, CeCrO3 and YbCrO3, whose A-site
atoms sit at opposite ends of the lanthanides. 1000 samples
were generated along the interpolation vector and segmented
to form new crystal structures. It is important to note that the
latent vectors produce intermediate chromite members, such
as HoCrO3, DyCrO3, and PmCrO3. These intermediate
samples have identical cubic perovskite structures to the end
members, except that the A-site material increases in atomic
number. This demonstrates the ability for ions to “traverse” the
periodic table between structural isotypes. Crucially, the
interpolations also produce chromites that do not appear in
the training set, revealing the ability to generalize patterns to
produce new materials.
The interpretability of the latent space is further highlighted

in Figure 3. The plot shows a t-SNE plot of 5000 crystal
structures encoded with the Cond-DFC-VAE. The latent space

Figure 4. Evaluation of unit-cell parameters and atomic coordinate predictions. (a−c) Distributions of the absolute errors of prediction for the a, b,
and c unit-cell parameters on the out-of-sample data set. The red dashed line indicates the mean absolute error (MAE). (d) Average earth-mover
distance (EMD) between predicted atomic sites and the ground truth, on the out-of-sample data set.
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shows a distinctive clustering of the structural types
corresponding to the binary alloys, ternary perovskites, and
Heusler compounds. The color intensity in Figure 3 illustrates
the formation energy per atom of individual structures, with
brighter colors showing higher formation energies and vice
versa. Accordingly, within clusters we find that similar
compounds are closer together. For instance, the carbon
binary compounds are clearly distinguished from the other
binaries, and the high-formation energy perovskites are well
separated from the low-energy examples. This partitioning of
the latent space therefore allows us to target specific regions of
it when generating new materials.
Evaluation of Predicted Unit-Cell Parameters and

Atomic Positions. VAEs have previously been shown to have
difficulty in determining Cartesian coordinates from images.64

For crystal-structure prediction, the dimensions of the unit-cell,
and associated interatomic distances, are vital in determining
chemical stability. Previous works in this domain have largely
neglected this aspect of crystal-structure generation. In this
work, a coordinate convolution technique, as introduced by
Liu et al.,64 is employed to resolve this problem. Before input
into the VAE, each voxel of the electron-density map is
concatenated with its 3-D Cartesian coordinates in the original
crystal geometry. As a result, the reconstructed electron-
density maps (M′ in Figure 1) contain implicit knowledge of
the unit-cell dimensions. With a simple deterministic trans-
form, it is possible to derive the unit-cell parameters, a, b, and
c. This means that the unit-cell parameters of the generated
crystals can be calculated solely from the electron-density map,
prior to segmentation by the UNet.
The efficacy of our coordinate-convolution technique

implementation was evaluated by comparing the predicted
unit-cell parameters of the out-of-sample data against the
ground-truth unit-cells, using the mean absolute error (MAE).
The results are shown in Figure 4a−c. The validation set
contains 1,300 unique crystal structures with unit-cell lengths
ranging in size from 2 to 10 Å. The average MAE values for a,
b, and c are 0.06, 0.06, and 0.06 Å, respectively. This is highly
encouraging as it reveals that the system is able to reconstruct
the unit-cell lengths accurately over the full range of sizes. The
pipeline has a slight tendency to overestimate the true unit-cell
lengths; however, the bias is consistently present across all
magnitudes. We attribute this bias to the finite grid resolution
that leads to slight rounding errors in the exact location of each
voxel. For instance, for a unit-cell of approximately 5 Å, the 32
× 32 × 32 grid resolution gives a voxel size of 0.15 Å;
therefore, any given coordinate can be offset from the voxel
center by this distance. Increasing the grid resolution would
likely reduce this bias and improve the resulting unit-cell
reconstructions. However, the finer resolution would also
greatly increase the computational requirements in terms of
both memory and model size.
The ability of the combined VAE-UNet pipeline to

reconstruct atomic positions was also evaluated. This
verification step considered the average earth-mover distance
(EMD) between the ground-truth atomic sites and predicted
atomic sites after encoding, decoding and segmentation. As
shown in Figure 4d, we see that, on average, atomic sites are
0.09 Å from their true locations. It is, therefore, clear that we
are able to reconstruct the unit-cells and atomic positions of
the crystals to a high degree of accuracy.
These results are better than those achieved by the iMatGen

system,25 which was trained on 10 980 real and augmented

VxOy-type materials. iMatGen achieved a root mean squared
error of 0.1 Å for the unit-cell parameters and 0.2 Å for the
atomic coordinate reconstructions.

Evaluation of Property Predictions. The CGCNN was
trained independently from the VAE and UNet architectures
on a data set of CIFs from the Materials Project to predict
eight DFT-calculated properties of each material. These are the
formation energy per atom, energy per atom, bulk modulus,
shear modulus, refractive index, dielectric constant, Poisson
ratio and the band gap. These properties were chosen as they
were the properties for which enough data points existed in the
Materials Project database. The predictive capabilities were
evaluated using out-of-sample test sets for each property in
terms of the MAE and the symmetric mean absolute
percentage error (SMAPE). The performance of each model
is outlined in Table 1.

In general, the models perform very well at predicting DFT
properties. The relatively high MAE and SMAPE for the band
gap property is visually evident in Figure 5, where the spike at
0 eV on the “True” axis indicates that several crystal structures
are predicted to have a band gap, while they are not estimated
to have a band gap in the Materials Project, cf. the “Pred” axis.
The errors in the DFT-calculated band gap data, used to train
our band gap model, are well documented in the Materials
Project wiki;5,65 they are primarily due to a derivative
discontinuity term in the true density functional, as well as
other approximations in the exchange-correlation functional. In
principle, it is possible to solve these issues and calculate more
accurate band gaps with DFT, as outlined by the Materials
Project.65 However, methods to do so are currently not
implemented by the Materials Project, and they stress that the
current computed band gaps “should be interpreted with
caution”.65

Generation of New Crystal Structures. It is clear from
the evaluation steps described above that the pipeline is able to
create novel electron-density maps, accurately transform them
back to atomic coordinates and predict their associated
properties to a high-level of accuracy. We now explore how
new crystal structures are generated by sampling from the VAE
latent space. By virtue of implementing a conditional
variational autoencoder architecture, whereby the latent
space of the VAE is concatenated with the decile-quantized
formation energy per atom of the individual crystal structures,
we are able to sample new crystal structures by providing a 10-
dimensional one-hot encoded property-condition vector and a

Table 1. CGCNN Property Predictiona

MAE
SMAPE
(%)

train
no.

test
no.

formation energy 0.102 (eV/atom) 27.70 35734 6700
total energy 0.114 (eV/atom) 2.51 35734 6700
bandgap 0.299 (eV) 137.73 35734 6700
bulk modulus* 0.186 (log(GPa)) 5.23 8724 1635
shear modulus* 0.306 (log(GPa)) 10.72 8192 1536
poisson ratio 0.051 16.72 8448 1585
refractive index 0.155 5.34 3744 702
dielectric constant* 0.115 6.49 3744 702
aMean absolute error (MAE) and symmetric mean absolute
percentage error (SMAPE) of each property, as well as the sample
sizes used to train and evaluate the models. Asterisk (*) indicates log-
scale.
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256-dimensional latent vector drawn from a standard normal
distribution, (0, 1). These are concatenated at the input of
the decoder (cf., Figure 1a), decoded to form a new electron-
density map and then segmented with the UNet to create a
new crystal structure.
We first examined crystal structures generated via pure

random sampling of the VAE latent space. For this, we
sampled 1000 latent vectors from (0, 1) (100 samples per
formation energy condition) and passed them through the
decoder-UNet segmentation pipeline. This yielded 760 (76%)
crystal structures that were valid in terms of interatomic
distances, as defined by the PyMatGen python package.65 This
algorithm checks the pairwise Euclidean distances of all sites in
the crystal structure and deems it as valid if all sites are
separated by more than a minimum distance threshold (taken
to be 0.5 Å herein). Figure 6a shows the distribution of the
top-10 most commonly generated crystal-structure types. We
observe that the system produces crystal structures beyond
those provided in the training set, such as A, AB2, ABC, ABCD,
and A2B3-type structures (examples of some of these crystal
structures are shown in Figure 6b). This demonstrates that the
system is able to generalize beyond the structures provided in
the training set.
Taking formation energy per atom as a crude estimate of

crystal structure stability, we found that of the 760 valid crystal
structures, 450 (59%) had a CGCNN-predicted formation
energy per atom below 0.0 eV/atom. Figure 6c shows boxplots
of the corresponding CGCNN-derived formation energy per
atom predictions for each crystal structure. Figure 6d also
shows the distribution of the top-15 most common individual
chemical elements in the VAE-generated set. The system has a
tendency to produce compounds that contain chemical
elements, which are most common in the training set, such
as Li, O, and Mg. However, in general, the system shows good
generalizability, producing compounds with rarely occurring
chemical elements, such as Ac, Pu, and Mo.
The validity of the randomly generated compounds was

explored by matching the chemical formulas against existing
cubic structures in the Materials Project database. Of the 760
valid crystal structures, we found 75 matches. For each, we
evaluated the MAE in predicted unit-cell lengths and formation

energy per atom. Overall, we found an MAE of 0.6 eV/atom
for the formation energy values and 0.85 Å for the unit-cell
lengths, a, b, and c, respectively. This shows that the system
produces unseen chemical compositions that are known to be
chemically valid to a high degree of accuracy.
This result shows that the system is able to generalize to new

crystal-structure types that are not present in the training set,
despite being trained on a small set of different crystal-
structure types. However, training the system on a more
diverse set of structures would further improve the general-
izability of the VAE samples. In this work, we limited our
training set to the three structure types owing to computational
constraints. Extension to more structure-types forms part of
the future work presented in the Conclusions and Future Work
section.

Ab Initio Validation of VAE-Generated Crystal
Structures. Although the VAE-generated compounds can be
sampled randomly from the entire VAE latent space (as shown
above), we believe that it is more useful and intuitive for the
user to sample the latent space around or between an existing
compound. This reflects more accurately the materials-
discovery process, where researchers often aim to find
materials that have similar characteristics to other known
materials. This follows from the VAE latent-space plot in
Figure 3, where we observe distinctive clustering of similar
materials by crystal-structure type, chemical composition and
formation energy per atom. This kind of targeted sampling has
also been shown to yield a higher success rate of generation in
the iMatGen system.25

To test the targeted sampling, we benchmarked VAE-
generated crystal structures against DFT-calculated structures.
A test set for DFT validation was generated by randomly
choosing 12 base compounds (4 per structure type) from the
VAE training set to form the latent-space points around which
novel samples would be generated. The latent space
surrounding the encoded form of each of the base compounds
was sampled, in turn, with a variance of 0.5, drawing 1000
samples from μ( , 0.5)base where μbase is the latent vector of
each base compound. In each instance, the formation energy
was conditioned on the one-hot encoded formation energy per
atom of the base compounds. The quality of these VAE-

Figure 5. Property prediction evaluation. Ground-truth property values versus CGCNN predicted values for all property-prediction models.
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generated structures was verified by benchmarking a subset of
them against crystal structures that have been geometrically
optimized using DFT. The quality control manifested as the
extent by which each DFT-generated crystal structure differed
from its cognate VAE-generated crystal structure.
Since 1000 VAE-generated crystal structures result from the

data sampling of each base compound, there may be a large
number of material “candidates” upon which to apply DFT.
The computational cost of performing DFT calculations on all
candidates would be too great. Therefore, a selection
procedure was needed to filter down the number of candidates
to a tractable effort of DFT calculations. A subset of the
candidates were selected according to the following criteria,
whereby each compound must

1. be present as a VAE-generated crystal structure in the
data sampled about the base compound

2. be valid in terms of interatomic distances
3. have the same stoichiometric formula as the base

compound
4. not exist in the VAE-UNet training set
5. have a formation energy within 20% of the base

compound

After performing these steps, duplicate samples were
removed and the sample compound with the lowest formation
energy per atom was retained. In cases where multiple
candidates passed the above criteria for a given base
compound, the 10 candidates closest to the base compound
in terms of formation energy per atom were selected to be
optimized via DFT. Because of the limitations of DFT when
applied to the electron-rich actinide elements, we were unable
to perform DFT on those candidates containing such elements.
This was no hardship since the radioactivity of the actinide

Figure 6. Results of crystal-structure generation via random sampling. (a) Distribution of the top-10 crystal structure types in the VAE-generated
set. (b) Examples of some generated crystals with structural types not present in the training set. (c) Box plots of the formation energy per atom of
the generated crystal structures by the top-10 most common structure types. Circular dots indicate outliers. (d) Distribution of the top-15
individual elements occurring in the VAE-generated set.
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elements makes them impractical for materials discovery that
leads to most functional applications. The filtering process
yielded a total of 76 candidates for DFT optimization. The full
list of candidates is given in Table S1.
Note that we opted for this filtering process to reflect the

case in which a user wishes to generate materials that have a
particular structural type and a particular property within a
desired range (formation energy per atom). This is the
opposite of the fully random-sampling process given above.
Table 2 shows the average number of candidates that meet

the above criteria at each stage of the filtering process. On

average, each run produces 20 unique and valid sample
compounds that meet the above criteria. We observe that the
targeted sampling yields 89% valid crystals in terms of
interatomic distances, compared to 76% for the random-
sampling process.
Examples of some VAE-generated crystal structures, one for

each material class, are illustrated in Figure 7. In general, we

observed the desired behavior that by sampling around a
particular base compound, the system generates crystal
structures that are chemically and structurally similar. For
example, sampling around CeCrO3 yields other perovskite
oxides. Accordingly, increasing or decreasing the sample
variance decreases or increases the probability of drawing
crystal structures that are similar to the base compound. This is
important as it allows us to target particular areas of the VAE
latent space and, thereby, increase the probability of generating
likely materials.
We performed DFT optimization on all of the 76 candidates

and compared the geometry-optimized crystal structures to the
VAE-generated crystal structures via three metrics: (1) the
percentage change in bond lengths as a percentage of the unit-
cell, (2) the absolute change in unit-cell parameters, and (3)
the difference between the CGCNN-predicted and DFT
calculated formation energy per atom. Table 3 shows these
results broken down by structural type.

First, we see that across all the candidates, the geometry-
optimization process engenders a modest change in the atomic
bond lengths of any VAE-generated material candidate; cf. the
overall average changes are 5.23%, 1.44%, and 10.88% for the
perovskite, Heusler, and binary candidates, respectively,
affording a total average percentage change of 6%. However,
as shown in Table S1 there is quite a bit of variation between
materials, from essentially 0.0% change to cases of binary
compounds that show bond-length changes of around 30%.
We attribute these large changes to the delocalized nature of
binary materials and the relative difficulty by which these
materials are geometry optimized owing to their tendency to
contain particularly heavy elements, such as Au and Sb.
All the candidates converged, but two candidates (Ho2AgAu

and Ho2CdPd) required too large a k-point grid to be
optimized using our architecture. None of the candidates
showed a change in unit-cell parameters (i.e., no change in the
lattice constants or angles were observed). For the vast
majority of candidates, the unit-cell relaxations converged in a
single iteration with no resulting change in unit-cell
dimensions. Three candidates, CoAs, Ho2YbCd, and
PrMgO3, required two iterations but yielded no change in
unit-cell parameters. Cell relaxation in DFT is traditionally
used to determine the quality of convergence of the key
parameters, such as the plane-wave cutoff and the k-point mesh
being used. It serves as a sanity check for the chosen
parameters and indicates that the stresses within the crystal-
structure have been minimized. This gives a strong indication
that the DFT-models are well optimized. Although there were
some instances of larger than average bond length changes,
almost all bond length changes were reductions in bond length.
This meant there was no added strain on the unit-cell
parameters resulting in no changes to the lattice constants,
angles, or cell volume. This is a particularly encouraging result
since it indicates that the coordinate-convolution method
employed in our Cond-DFC-VAE successfully allows for the
accurate generation of unit-cells which are locally stable. A full
description of the electronic-structure calculations can be
found in the Methods section.
The CGCNN-predicted formation energies also match

closely to the DFT calculated values. On average the
perovskites, Heuslers, and binaries show differences of 0.57,
3.34, and 2.65 eV/atom, respectively (see Table 3). This gives
an overall average of 1.99 eV/atom across all candidates (see
Table S1). There is again a significant variance with
compounds containing heavy elements showing the largest
divergence between the predicted and calculated values. This is
expected since the DFT-optimization of bond lengths and unit-
cell parameters can have a large effect on the resulting energies.
Furthermore, determination of formation energies in bulk rare-

Table 2. Success Rate of Crystal Structure Generation from
a VAE, Sampled around 12 Randomly Selected Base
Compounds

filtering step average no. samples cumulative total (%)

initial samples 1000 100
interatomic distance validation 890 89
stoichiometric formula 350 35
not in training set 250 25
within 20% of target Ef 60 6
unique composition 20 2

Figure 7. VAE-generated crystal structure from each of the three
material classes: binary alloy, NdAl; ternary perovskite, PmTiO3;
Heusler compound, MnAl2Cr.

Table 3. Comparison of DFT Calculations Performed on
Our 76 Material Candidates by Structural Typea

type no. candidates |δbonds| (%) |ΔEf| (eV/atom) |δcell| (%)

perovskites 30 5.23 0.57 0
Heusler 22 1.44 3.34 0
binaries 24 10.88 2.65 0

aThe geometry-optimized DFT results were compared against their
cognate VAE-generated crystal structures. Results are analyzed in
terms of difference in the absolute in formation energy, |ΔEf|, mean
absolute percentage change in bond lengths, |Δbonds|, and unit-cell
parameters, |Δcell|.
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earth metals and chalcogens can be difficult (as demonstrated
in Table S3). Regardless, an average absolute error of 1.99 eV/
atom across all material candidates shows that our pipeline is
able to produce VAE-generated crystal structures that are
comparable to DFT-generated crystal structures.
Most importantly, the system was able to produce 12 000

candidate materials in 12 h on a typical desktop workstation
with a single GPU. In comparison, DFT optimization on the
candidate structures took 20 000 h of CPU time using HPC
resources on the Intel Haswell cores of Cooley machines at
Argonne Leadership Computing Facility, IL, USA.
Comparison to Other Computationally Determined

Crystal Structures. In addition to the DFT validation above,
we found that 14 of our VAE-generated matched cubic crystal
structures that had been computed previously via DFT in the
Materials Project (and were not part of any model training
set). Accordingly, the VAE-generated structures and their
cognate CGCNN property predictions were compared to
those reported by the Materials Project. The results are shown
in Table 4. In general, we find very good correspondence
between the two sets of crystal structures, with unit-cell
parameters showing a MAE of approximately 0.45 Å. Similarly,
the property predictions for the formation energy per atom,
energy per atom, shear modulus, and Poisson ratio all show
very accurate results with average MAE values 0.16 eV/atom,
0.40 eV/atom, 19.6 GPa, and 0.09, respectively. The bulk
moduli predictions are less good, which we attribute to the
small training set size used to train the corresponding CGCNN
model. No calculated values were reported in the Materials
Project database for the band gap and dielectric constant
properties. We also note that the three worst candidates in
terms unit-cell reconstruction are all binary compounds as
noted earlier, and the unit-cell predictions of these are
significantly worse than the perovskites and Heuslers. This is
likely due to the fact that the binary compounds are the
smallest group of materials in the training set, and are therefore
more difficult to generate.
A further 16 candidates from our filtered VAE-generated set

of crystal structures were found to have noncubic polymorphs
in the Materials Project database (see Table S2). By
constraining our training set and thereby limiting the output
of our VAE-system, to cubic crystals, we are currently unable
to generate noncubic polymorphs which may be more
physically valid for a given chemical composition. However,

it is important to note that our VAE-UNet architecture has
correctly generated valid chemical compositions that have been
shown to exist either computationally or experimentally (cf.,
ICSD ID entries in Table 4).

■ CONCLUSIONS AND FUTURE WORK

In this work, we have demonstrated a full representation-
learning pipeline for 3-D inorganic crystal-structure generation
and property prediction. By employing several methods from
the computer-vision literature, such as a Deep Feature
Consistent VAE with coordinate convolutions, we have
successfully enabled meaningful encoded representations of
crystal structures and thus have afforded the ability to generate
crystals with desired properties using a conditional VAE.
Comparison of our VAE-generated crystal structures to those
geometrically optimized via DFT calculations shows that they
are highly optimized and quantitatively similar to experimen-
tally verified results. Geometry-optimized DFT calculations
converge in very few iterations, with little change to bond
lengths and unit-cell parameters.
The key distinction between this work and previous efforts

by others on crystal-structure generation is that our VAE-UNet
pipeline does not require any user-defined knowledge of the
constituent elements of a crystal structure or need to be trained
on all known structure types in order to generalize. We also
apply no postprocessing steps to the crystal structures in order
to increase the success rate. We have achieved this by
incorporating the UNet segmentation pipeline introduced by
Hoffmann et al.42 and adding element-specific parameters into
the electron-density map encoding. As shown in the Methods
section, this affords a considerable improvement in segmenta-
tion accuracy and coordinate reconstruction. Furthermore,
utilizing the DFC model greatly reduces the characteristic
“blurring” of samples that is often seen with VAE output. This
improves the accuracy of the atomic coordinate predictions
and therefore increases the likelihood of generating valid and
stable crystals.
There are still limitations to our approach that we aim to

resolve with future work. First, because of computational
limitations, we have confined the resolution of voxelization to
32 × 32 × 32 and limited our training data to crystal structures
with less than 40 atoms per unit-cell. Extension of this to
higher dimensions will allow for greater unit-cell complexity,
and improve the reconstruction accuracy. With greater

Table 4. Evaluation of MAE between VAE-Generated Candidates and Pre-existing Records in the Materials Project Database

candidate a (Å) b (Å) c (Å) Ef (eV/atom) energy (eV/atom) bulk modulus (GPa) shear modulus (GPa) poisson ratio ICSD ID

Lu2ZnAu 0.19 0.30 0.20 0.02 0.16 84.39 2.36 0.09
Ho2ZnAu 0.21 0.18 0.06 0.04 0.19
YbSmPd2 0.26 0.21 0.17 0.00 0.15 69.57 2.43 0.11
KWO3 0.05 0.06 0.15 0.03 0.11 184.78 57.78 0.06
CaBeO3 0.12 0.28 0.21 0.35 0.70
AlSiO3 0.22 0.05 0.07 0.45 0.46
TiAlO3 0.01 0.03 0.10 0.19 0.05 228.63 4.60 0.07
Sc2RuRh 0.47 0.34 0.20 0.16 0.05 137.26 55.71 0.00
PaSiO3 0.45 0.57 0.16 0.03 0.41
ZnAu 1.86 1.79 1.77 0.26 0.28 113.78 13.56 0.20 108022
NpAlO3 0.27 0.33 0.37 0.32 0.89
AcMgO3 0.20 0.10 0.46 0.12 0.40
LiCd 0.95 0.90 1.49 0.02 0.80 34.67 0.67 0.09 620101
NaTl 1.33 1.27 1.53 0.21 0.91 657524
MAE 0.47 0.46 0.50 0.16 0.40 121.87 19.59 0.09
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computational capacity, it would also become possible to train
the VAE-UNet pipeline in an end-to-end fashion, thereby
mitigating the need for a DFC model.
We also restricted our study to cubic crystal systems. It was

found here, and previously,25 that electron-density maps of
noncubic systems are distorted by the mapping of their
electron-density matrix to a cubic box. In iMatGen, this
distortion was used to accurately retrieve unit-cell angles by
inverting the density-map function. In this work, we are unable
to recover the unit-cell angles in the noncubic case due to the
differing radius of each site in the electron-density map.
However, by including an element-specific radius on each site,
we dramatically improve the segmentation accuracy and
therefore reconstruct atomic positions without the need for
multiple element-specific channels in our inputs (see the
Comparison of Model Performance section). Further work will
look at modifying the electron-density map encoding to better
handle noncubic crystals.
We have focused herein on training our pipeline on a limited

set of crystal-structure types from the Heusler, perovskite, and
binary alloy families of materials. This was primarily due to the
computational resources required to train the large VAE and
UNet models. Although, as demonstrated here, it is not
necessary to train a new VAE-UNet pipeline for each new
crystal-structure type, doing so may improve the quality of
generated samples that are outside of these structure types.
Our operational system also makes no distinction between
stable and unstable materials beyond basic analysis of
formation energies. Therefore, to produce materials for
functional applications, it will likely be necessary to incorporate
analysis of phase stability.
A key limitation of all crystal-generation methodologies is

the reliance on DFT-generated data. Although widely accepted
as a high-quality model for materials and their properties, DFT
is known to have difficulty in certain specific cases. These
quirks manifest themselves in the results presented above. For
instance, DFT tends to underestimate band gap energies and
struggles to geometrically optimize ionic materials or
compounds containing heavy-elements or chalcogens. By
training on DFT-generated data that contain these biases,
our model also reflects the same problems. This highlights the
need for large repositories of experimentally verified crystal
structures that are concerted with their cognate properties.
Future work will explore the use of transfer learning on
experimental data to refine our models in these cases.
Overall, this work presents an important step forward in the

way that materials discovery of crystalline compounds can be
performed using deep-learning methodologies. With the
method presented herein, tens of thousands of new samples
of VAE-generated crystal structures can be generated in an
order of minutes, with their associated DFT-calculated
property predictions issuing a high degree of confidence. As
a result, end users are able to generate multiple new candidate
materials for potential device applications orders-of-magnitude
faster than methods which adopt adaptive optimization or
high-throughput experimental or computational approaches.
Thus, our methods will enable users to better guide their
research, whereby they could more efficiently employ the more
expensive techniques, such as DFT and experiments, on only
the most viable material candidates. Conversely, our method
could form the basis of an adaptive-optimization scheme,
whereby VAE-generated crystal structures of material
candidates are automatically input to DFT calculations, with

the results fed back to the VAE via a reinforcement-learning
feedback loop that is conditioned in a fashion that tailors user-
desired properties. Overall, our advances contribute to the
prospect of improving the capabilities of materials-discovery
platforms, and dramatically improving their “design-to-device”
timeline.

■ METHODS
Data Preparation and Formatting. The core data used

for this work are crystallographic information files (CIFs)
containing atomic positions and unit-cell parameters of 3-D
crystalline materials. There are multiple open-source reposito-
ries of experimentally and computationally derived crystal
structures. For all results presented herein, we use crystal
structures that were obtained from The Materials Project.5

The Materials Project API was used to source 7189 CIFs for
three material classes of interest, namely, cubic binary alloys
(AB), ternary perovskites (general formula ABX3), and Heusler
compounds (ABX2). The crystal structures were encoded into
a format based on the works presented by Noh et al.25 and
Hoffmann et al.42 Thereby, each crystal structure is
represented by a 32 × 32 × 32 voxelized electron-density
map. We chose this representation as it is agnostic to the
number of atoms and can easily be augmented to handle
rotational symmetries.
For each crystal structure, five matrices were created: (i) a

32 × 32 × 32 density matrix, M, representing the local
electron-density of atoms, (ii) a 32 × 32 × 32 species matrix, S,
that assigns to each voxel the atomic number of the contained
atom (including a zero-class for those containing no atoms),
(iii) the corresponding binary species matrix, SB, that labels
each voxel as being occupied or not, (iv) a 1 × 3 lattice-
parameter vector, l,⃗ representing the crystallographic unit-cell
lengths (a, b, c), and finally, (v) a 32 × 32 × 32 × 3 coordinate
grid, C, giving the Cartesian (x,y,z) coordinate of each voxel.
M is computed using eq 1, whereby the value of the voxel, v,

is given by
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where Zi is the atomic number of site i, ri is the corresponding
ionic radius and d(i,⃗ and v⃗) is the Euclidean distance between
site i and voxel v. Thus, the value of each voxel is a sum of
Gaussian electron-densities, where the contribution is depend-
ent on nearby ions. This is a modified form of the
implementations by Noh et al.25 and Hoffmann et al.42 such
that the standard deviation of each Gaussian distribution is
represented by the corresponding ionic radius rather than a
fixed parameter. This is to assist the segmentation pipeline in
identifying the atomic species. Furthermore, by encoding all
ions into a single electron-density map, we negate the need for
multiple element-specific channels in our input data. As such,
the encoding is agnostic to the material class and does not
scale-up linearly with the number of distinct elements.
The corresponding species matrix is defined by
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where each voxel is labeled with the atomic number of site i
provided v is within the ionic radius. In cases where the voxel
lies within the label radius of multiple ions, it is assigned to the
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closest ion. In addition, the binary mask of the species matrix,
SB, was created according to
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0, otherwise
B

i

(3)

We augmented all these matrices by applying a number of
random 90° rotations around the x-, y-, and z-axes to better
learn the rotational invariance of the crystal structures. To
reduce the complexity of the model, we focused only on cubic
unit-cells that contain ≤40 atoms. We attempted to train our
model on noncubic systems; however, distortions to the
electron-density maps occurred in these cases which reduced
performance dramatically. Extending the model to noncubic
systems is a goal for further work on this project. In total, this
processing pipeline results in 78 588 data points for the three
aforementioned material classes. These data were split: 80%
were used for training and 20% were retained for out-of-sample
validation.
For the property prediction CGCNN, we trained on

structures from a wide variety of crystal classes (including all
structures used to train the VAE and UNet). To learn a general
purpose structure−property prediction model. We outline the
number of training samples used for each property model in
Table 1. The crystal structures are prepared as per Xie and
Grossman60 (full details are provided in the SI).
Model Architecture. The architecture of our overall

model can be broken down into three main components, as
summarized in Figure 1. In step 1, we learned a latent space of
crystal structures from electron-density maps using a Condi-
tional Deep Feature Consistent Variational Autoencoder
(Cond-DFC-VAE).66,67 In step 2, a 3D UNet was used to
segment electron-density maps into atomic-number segmenta-
tion maps, from which we recovered the atomic coordinates of
a given structure. Finally, a Crystal Graph Convolutional
Neural Network (CGCNN) was used to predict properties
from structure.
During training, all three models were trained independ-

ently. When generating new structures, we first sampled the
autoencoder latent space (conditioned on a desired target as
outlined in the following section). The sampled latent vector
and condition vector were concatenated and decoded by the
decoder to produce an electron-density map. Subsequently, the
UNet was employed to convert this electron-density map into
an atom segmentation map, from which the Cartesian
coordinates of the atoms were obtained via morphological
transformations. Finally, the generated crystal structures were
passed through a multitarget CGCNN to predict the values of
eight target properties (formation energy, energy per atom,
band gap, bulk modulus, shear modulus, Poisson ratio,
refractive index, and dielectric constant). Further details of
each component are provided below.
Conditional Deep-Feature-Consistent Variational Au-

toencoder for 3-D Crystal Structures. A vanilla VAE is a
probabilistic latent variable model that estimates an intractable
posterior distribution using a deep-neural network.30 The
architecture consists of an encoder network, E, and decoder
network, D, that are jointly trained to encode and reconstruct
the inputs. In our case, the combined model was trained to
reconstruct input electron-density maps, M, such that the
latent vector, z, at the bottleneck, encoded semantically
meaningful characteristics of the crystal structures.

Instead of estimating the posterior p(z|M) directly, the
encoder network approximates it via a Gaussian distribution.
This approximate posterior q(z|M) is therefore paramaterized
by a mean μ and diagonal covariance Σ. It follows that to
generate novel samples, ϵ ∼ (0, 1) is sampled, and
reparametrized by z = μ + ϵΣ. The decoder network unravels
the result to produce a new electron-density matrix.
During training, an attempt is made to minimize the

reconstruction error between the input samples, M, and
reconstructions, M′, while simultaneously encouraging the
latent vector, z, to be normally distributed. The latter is
controlled via incorporation of the Kullback−Liebler diver-
gence (KLD)68 between the approximate posterior and the
unit normal. In our model, the trade-off between continuity of
the latent space and quality of reconstructions was controlled
via a β-weighting on the KLD loss term.69 Thus, the β-VAE
loss is given by

β= ′ +β‐L M M LMSE( , )VAE KLD (4)

where the MSE is the mean-squared error between the real and
reconstructed electron-density maps and LKLD is the KLD loss.
The β-weighting parameter regularizes the degree of
correlation between samples in the latent space.
The goal was to train a VAE that is able to produce samples

of new crystal structures, which exhibit properties that are
tailored to a given functional application. This goal was
achieved by using a method introduced by Sohn et al.,67

whereby the VAE was conditioned on a desired property. In
the work presented herein, we conditioned the VAE on the
formation energy per atom as retrieved from the Materials
Project via its Application Programming Interface (API). This
energy metric was chosen since it is present for all data points
and it is a rough indicator of material stability.
In practice, conditioning on a target property value was

achieved as follows. Since the properties that our model
predicts are continuous, we discretized them into deciles, and
created a 10-dimensional one-hot condition vector that is zero
everywhere except for the index corresponding to the property
decile. During training of the VAE, the property value is known
for each training sample (due to supervised learning). We
therefore created the condition vector and concatenated it to
the latent vector produced by the encoder. We then allowed
the decoder to reconstruct the electron-density map using this
augmented latent vector. This is shown in Figure 1a. Adding
these extra dimensions had the effect of manually partitioning
the latent space of the VAE by the property values. During
generation of new crystal structures, we constructed the
condition vector based on the property value that we desired,
and concatenated this to the sampled latent vector. Decoding
this augmented latent vector thus produced an electron-density
map corresponding to a structure which possessed the desired
property value.
Vanilla VAEs (with or without β-weighting) have been

shown to produce samples in a variety of domains.70−72

However, owing to the enforced continuity of the latent space,
generated samples tend to be visually blurry, or suffer from
edge artifacts. Similarly, VAEs have been shown to exhibit poor
performance when attempting to reconstruct Cartesian
coordinates from images.64 Owing to these problems, the β-
VAE is unsuitable for use in 3-D crystal-structure generation
where high-fidelity structures with defined Cartesian unit-cell
lengths are required.
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Two adaptations to the β-VAE implementation were
employed in this work, in order to overcome its unsuitability
for 3-D crystal-structure generation. First, the blurriness is
reduced through the use of a deep-feature-consistent VAE
(DFC-VAE) technique.66 In a DFC-VAE, not only are M and
M′ compared via the MSE, they are also compared at
individual layers of a separate perceptual model. The aim is to
minimize the difference between the features embedded in the
perceptual model and the overall image. In our model
architecture, the hidden layers of the UNet are used (vide
infra). At each layer, ϕp of the UNet, the electron-density
matrices are encoded to a feature embedding. By comparing M
and M′ at each of these layers, good reconstructions are
enforced across all features, thus reducing the blurriness of the
final image. The DFC-VAE loss function incorporates a third
term that describes the degree of difference between the real
and reconstructed samples across multiple feature spaces. The
overall loss function is then given by

∑α ϕ ϕ= + ′β‐L L M MMSE( ( ), ( ))
p

p pDFCV VAE
(5)

where the coefficient α controls the degree of dependence on
the perceptual model.
The second adaptation responds to the fact that previous

work on creating stable and physical crystal structures has
neglected the importance of the crystal-lattice parameters and
relative positions of atoms in Cartesian space. We employed
the coordinate-convolution method described by Liu et al.64 to
encode these features into our model. Thereby, at input, the
electron-density matrix, M, is concatenated with a coordinate
grid, C, that maps each voxel to Cartesian coordinates. This
means the input and output matrices of the Cond-DFC-VAE
have four channels, corresponding to the electron-density and
three coordinates at each voxel.
We trained the Cond-DFC-VAE for 50 epochs and observed

that a KLD loss of O(102) provides a good balance between
high-quality samples and reconstructions. The minimum out-
of-sample MSE was 0.013, compared to 0.05 without the DFC
model (see below for a comparison of the various models).
3-D Multiclass Atom Segmentation. A traditional UNet

architecture was employed to determine the atomic species
from the electron-density maps and convert them back to
atomic sites in Cartesian coordinates. This problem was
treated as one of semantic segmentation,73 whereby each voxel
of the electron-density map is individually classified as
pertaining to a certain atomic site. Given an electron-density
map M′, the UNet generates a species matrix, S′, with Natoms
channels, where Natoms is the number of unique atoms in the
data set, and also a binary segmentation matrix, SB′ .

′ ′ = ′S S M, UNet( )B (6)

The class (species) of each voxel is then taken as the argmax
of the output layer activation function. During training, the
UNet attempts to minimize the weighted categorical cross-
entropy loss and binary cross-entropy loss defined by

∑= ̅ ′ − ′ − − − ′L wS S S S S Slog( ) log( ) (1 )log(1 )U
v

(7)

where w̅ is a vector of weights on each atom species and the
sum is over all voxels. Incorporation of class-dependent
weights is due to the imbalanced class distribution within the
species matrices. For example, it is common in our study on 3-

D crystal structures for the background class (class-zero) to
make up approximately 90% of the matrix. For all experiments
presented herein, each class was weighted inversely propor-
tional to the number of voxels of each in the training set. The
weight of the zero-class was set to zero to mitigate the large
class imbalance.
We trained the UNet for 50 epochs and achieved an out-of-

sample Categorical Crossentropy (CCE) loss of 2.75,
corresponding to an F1 classification score of 99%. Owing to
the sparsity of the data, the recall for nonzero classes peaks at
87% on the out-of-sample data, indicating that we correctly
classify atomic species on a per-voxel basis in nearly 90% of
instances.
After segmentation, S′ contains regions of labeled voxels

corresponding to the approximate location of atomic sites.
These need to be converted into atomic coordinates, which
was achieved by finding the centroids of these regions using
morphological clustering based on the Watershed algorithm74

(for a full description of the algorithm see Supporting
Information). This segmentation process overcomes the need
for any user-defined knowledge in inversion of the crystal-
structure representation.

Comparison of Model Performance. To summarize, we
have herein employed three adaptations to a vanilla VAE-UNet
pipeline. First, we have included the Cartesian coordinates of
the crystal structures into the VAE inputs via the coordinate
convolution method.64

As shown in the Evaluation of Predicted Unit-Cell
Parameters and Atomic Positions section, this implementation
allowed us to accurately reconstruct the unit-cell lengths of the
crystal structures up to the resolution limit of voxelization.
Second, we employed a DFC perceptual model during training
of the VAE, by comparing the input crystal structures and the
corresponding reconstructions at separate layers of the UNet.
This enabled a reduction in the blurring of the VAE output
samples. Third, during creation of the electron-density maps,
we used the ionic radius of the atoms as the variance of the
Gaussians centered on each atomic site (cf., eq 1).
Table 5 highlights the efficacy of these adaptations, by

comparing three different models: (1) A vanilla VAE-UNet

pipeline (without a DFC perceptual model) with the electron-
density Gaussians fixed to a variance of σ2 = 1.0, (2) A DFC-
VAE-UNet pipeline with σ2 = 1.0 and (3) the DFC-VAE-UNet
pipeline with σ2 set to be the ionic radius of each atom, ri. The
models were compared in terms of four evaluation metrics, the
MSE of VAE reconstruction, the nonzero classification recall of
the UNet, the average EMD between the ground truth and
predicted atomic sites and the average difference in true and
predicted number of sites per unit-cell, |ΔNsites|. For each test,

Table 5. Comparison of VAE-UNet Performance before and
after Inclusion of the Deep-Feature-Consistent (DFC)
Model and Ionic Radius (ri) in Electrondensity Mapsa

system
VAE

MSE (Å)
UNet nonzero
recall (%)

Mean
EMD (Å)

Mean
Δnsites

VAE without DFC
with σ = 1.0

0.012 55 0.150 1.0

DFC-VAE with
σ = 1.0

0.013 55 0.112 0.25

DFC-VAE with σ = ri 0.013 87 0.090 0.198
aThe performance of our full Cond-DFC-VAE-UNet model is shown
in bold formatting.
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the VAE and UNet were trained until losses ceased to improve
using the same hyperparameters given in Table 6.

First, we note that inclusion of the ionic radius dependence
improved classification recall by over 30%, increasing from
55% for the σ2 = 1.0 case to 87% for the σ2 = ri case. This
confirmed our assumption that, by including the ionic radius
into the electron-density map, the UNet is able to more easily
identify the correct atom species. Similarly, we saw that
inclusion of the DFC model improved the ability of the system
to determine the atomic sites in the unit-cell. The average
EMD between predicted atomic sites improved from 0.198 Å
for the no-DFC model to 0.15 Å for the DFC-VAE.
Accordingly a similar improvement was also seen in the
predicted number of sites per unit-cell, with the no-DFC
model mispredicting by approximately one site per unit-cell,
whereas the DFC model improved this to 0.2 sites per cell.
This is consistent with the notion that the DFC model reduces
the blurriness of the generated samples, allowing the UNet to
better identify individual atomic sites.
Crystal-Property Prediction via Graph Neural Networks.

We employed GNNs to estimate eight physical properties of
the crystal structures that were generated by our VAE. The
inputs to the GNN were computed directly from CIFs, and are
a node-feature matrix, an edge-feature tensor, and a node-
neighbor index matrix. Each model began with a single fully
connected layer, followed by a graph convolution layer, which
we present in the framework of message passing.61 The graph
convolution layer consisted of the application of message and
node-aggregation/update functions, constituting the message-
passing graph-convolution phase of the model. This was
followed by a readout function which, from the updated node-
feature vectors, computes a single global feature-vector,
producing the final graph representation of the input crystal
structures.
In more detail, our model produced a graph representation

of each crystal structure through a series of graph convolutions.
We used the node message and update functions of Xie and
Grossman60 to update the node features of our input graphs.
The message function in layer l takes as input each node v,

its neighbors denoted by ∈v v( )j i , and the edge features
between those nodes ei,j. The indices i and j denote the index
of a node and the index of its neighbor in the crystal graph,
respectively. These features are concatenated (denoted by ∥)
to form the feature vector of a node which contains
information about itself, its neighbors and the connections
between them

= =z v v e v v emessage( , , )i j
l

i
l

j
l

i j i
l

j
l

i j,
( ) ( ) ( )

,
( ) ( )

, (8)

The update function subsequently updates each node by
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where σ = + −x( )
e

1
1 x is the sigmoid function,W, b are learnable

weight parameters,Ws is a self-weight matrix,60 and g(x) = ln(1
+ ex) is the Softplus activation function.
By chaining several of these crystal-graph convolution layers,

each taking as input the node-feature matrix from the output of
the previous layer, a graph representation is produced in which
each node is some abstract representation of a neighborhood
of projected atomic- and bond-feature vectors. In our models,
we used a single graph-convolution layer, as we empirically
found that this produced the best overall predictive capability
and minimized overfitting when training on properties with
fewer training examples. As our readout function, we applied
node-wise average-pooling which served to reduce the
dimensionality and produced the final graph representation

∈ h F .

∑= =h v v
N

readout( )
1L

i

N

i
L( ) ( )

(10)

where vi
L is the output of the final graph-aggregation layer with

layer index L. Eq 10 is simply the node-wise average over all
projected node features in the input graph, and produces a
single global node-feature vector as output. Two linear layers
are then used to map the graph representation h to the
property being estimated. While each property is estimated
using a separate model, all models (except formation energy
and energy per atom) are trained by transfer-learning and fine-
tuning, whereby a single GNN layer which has been pretrained
on the formation energy property is used to improve
performance and prevent overfitting. Details of the transfer-
learning and fine-tuning procedures are outlined in the
Supporting Information. This method allowed us to produce
a robust and property-agnostic crystal-graph feature-extractor
in advance, which can be fine-tuned for subsequent structure−
property mapping tasks.
During prediction, all eight properties were initially

predicted. However, in instances where a zero band gap was
predicted for a crystal structure, the dielectric constant and
refractive index predictions were discarded and set to NaN,
considering that a nonzero band gap is necessary for a crystal
structure to exhibit these properties.75,76

Model Parameters. All of the Cond-DFC-VAE, UNet, and
CGCNN models were implemented and trained using the
Keras77 python package with the Tensorflow backend.78

Training procedures were performed using the ADAM
optimizer and used the hyper-parameter values outlined in
Table 6.

Electronic-Structure Calculations. Periodic plane-wave
DFT calculations were performed using the Quantum
Espresso79 suite of programs with norm-conserving pseudo-
potentials used throughout. All potentials were fully relativistic
except for the rare-earth metals where scalar-relativistic ones in
the 3+ configuration were used instead with the f-electrons
frozen in the core. All calculations employed the PBE
functional80 and the Grimme DFT-D2 method.81 Initially,
the wave function cutoffs were optimized, followed by a

Table 6. Hyperparameters of Our Model Used for All
Training Procedures and Validation Steps

parameter value

α 1.0
β 0.0005
VAE learning rate 0.0001
VAE batch size 20
UNet learning rate 0.000003
UNet batch size 10
CGCNN learning rate 0.001
CGCNN batch size 256
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Brillouin zone sampling using the Monkhorst−Pack scheme.
The calculations were considered to be optimized when the
total energy converged to within a tolerance of 0.00005 eV per
atom. The atomic geometry and unit-cell relaxations were
considered converged when the energy between successive
optimization steps was within 10−4 Ry and the forces within
10−3 Ry/Bohr. The unit-cell optimizations allowed for the
relaxation of the unit-cell dimensions. Gaussian smearing was
used throughout the calculations. The formation energy, Ef,
was calculated by finding the difference between the total
energy of the crystal and the sum of the energies of its
constituent atoms in their bulk state. This was achieved
following the same optimization procedure described above.
Calculations required 20 000 CPU-hours on the Intel Haswell
cores of Cooley machines at Argonne Leadership Computing
Facility, IL, USA.
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