
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 10 2005, pages 2502–2509
doi:10.1093/bioinformatics/bti344

Databases and ontologies

Object-oriented biological system integration: a SARS
coronavirus example
Daniel Shegogue1 and W. Jim Zheng1,2,∗
1Department of Biostatistics, Bioinformatics and Epidemiology and 2Bioinformatics Core Facility,
Hollings Cancer Center, Medical University of South Carolina, 135 Cannon Street, PO Box 250835,
Charleston, SC 29425, USA

Received on September 15, 2004; revised on January 20, 2005; accepted on February 17, 2005

Advance Access publication February 24, 2005

ABSTRACT
Motivation: The importance of studying biology at the system level
has been well recognized, yet there is no well-defined process or con-
sistent methodology to integrate and represent biological information
at this level. To overcome this hurdle, a blending of disciplines such
as computer science and biology is necessary.
Results: By applying an adapted, sequential software engineering
process, a complex biological system (severe acquired respiratory
syndrome-coronavirus viral infection) has been reverse-engineered
and represented as an object-oriented software system. The scalab-
ility of this object-oriented software engineering approach indicates
that we can apply this technology for the integration of large complex
biological systems.
Availability: A navigable web-based version of the system is
freely available at http://people.musc.edu/∼zhengw/SARS/Software-
Process.htm
Contact: zhengw@musc.edu
Supplementary information: Supplemental data: Table 1 and
Figures 1–16.

INTRODUCTION
A paradigm shift is occurring with the study of individual cellular
components progressing toward the study of the cell at the sys-
tem level (Ideker et al., 2001). However, no well-defined process
or effective integration methodology, in combination with a widely
accepted system representation has been developed to provide a
comprehensive view of a biological system. Biological systems are
currently presented in a variety of forms, such as relational data-
bases (Galperin, 2004), diagrams (Kohn, 1999; Peleg et al., 2002),
ontology (Ashburner et al., 2000) and markup language (Hucka
et al., 2003), but they are integrated through an ill-defined, informal
process. This assortment of information integration methods can
hamper biological studies, especially of large complex systems.
A well-defined process and integration technology can orchestrate
system-level integration efforts by biologists, computer scientists
and engineers, and provide consistency and manageability during
integration.

Current advanced engineering systems and biological systems
have followed a convergent evolution (Csete and Doyle, 2002).

∗To whom correspondence should be addressed.

This resemblance is particularly evident in a comparison between
object-oriented software and typical biological systems (Table 1 and
Supplemental Table 1). Both systems are based on components and
protocols, and their layered control mechanisms allow them to effi-
ciently handle complexity. This complexity is further managed by
subsystems, both in biological and object-oriented software sys-
tems. Furthermore, these systems contain static time-independent
and dynamic time-dependent relationships. This resemblance has
led to a very similar architecture and system-level organization, mak-
ing it possible to represent a biological system as an object-oriented
software system.

To effectively construct a high-quality object-oriented software
system, three components are necessary. First, a well-defined soft-
ware engineering process, such as the waterfall model, Rational
Unified Process, agile process, etc. (Graham, 2001), is needed to
specify stepwise activities and define what should be accomplished
during software development. Second, object-oriented technology,
a paradigm of software development, including object-oriented
programming, analysis, design and database centered on the object
concept, is vital for object-oriented software development. This
technology is used to dissect real-world problems and create an
object-oriented software system to solve these problems. Third, a
widely accepted object-oriented modeling language, such as the
Unified Modeling Language (UML) (Rumbaugh et al., 1999), should
be used to represent this object-oriented system. This visual repres-
entation can help to organize and communicate a complex software
system as small, manageable pieces without losing system integrity.
While these components were specifically designed for successful
software development, they can be adapted for biological system
information integration.

The similarity between biological and object-oriented software
systems at the system organization level indicates that we can
represent one by another. Therefore, the integration of biological
information at the system level can be approached by reverse
engineering the biological system into an object-oriented software
architecture. Following a well-defined software development process
to reverse engineer a biological system offers significant advantages.
Although simple systems can be easily modeled by an indiscrim-
inate approach, a formal approach is necessary for the creation of
complex system models, such as those found in biology. Moreover,
when this methodology is applied to biological system modeling, the
distinct phases of software development allow tasks best suited for

2502 © The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

http://people.musc.edu/

Object-oriented modeling of the SARS coronavirus

Table 1. Correspondence between biological system and object-oriented software concepts

Category Concepts in object-oriented Concepts in biological system Commonalities
software system (Graham, 2001)

Basic component Objects Cellular components
(proteins, genes, etc.)

Both can be modeled as having intrinsic
attributes and external functionalities or
behavior

Component organization Aggregation, composition Protein complex
formation/protein–protein
interaction

Relationships among individual components

High-order components Subsystems (also in the form of
objects)

Organelles, individual
pathways, cell, etc.

Both are complex modules built from basic
components

Protocol for component
interactions

Message passing Interaction, signaling,
modification

Information passing in both situations

Hierarchical relationship Inheritance is-a relationship (most
enzymes are one kind of a
protein)

Specialized components share common
features

Multifunctionality Polymorphism Enzymes catalyze different
substrates, etc.

One component can operate on different
types of other components of the system
with different processes and outcomes

Observed behavior without
knowing underlining
mechanism

Encapsulation/information hidinga Experimental observations
without known mechanism

Both situations define the observed behavior
without exposing the underlying
mechanism

Controls Call-back functions, observer/visitor
patterns (Gamma et al., 1997)

Feedback controls One part of the system originates a signal
that affects the behavior of the other
components of the system and this
interaction in return affects the behavior of
the subsystem where the signal originated

Component dynamics Life cycle of individual objects Life cycle of individual
proteins

The birth and death of individual
components

aSee also Discussion section.
The concepts of biological system and object-oriented software systems are compared and the commonalities among these concepts are listed. We only used the cell system to
represent a typical biological system in this table. This comparison focuses on the system organization and functionality. We provide correlations between the main object-oriented
concepts (i.e. object, composition, inheritance, polymorphism and encapsulation). However, biological and object-oriented system concepts are not necessarily a one-to-one mapping.
Modeling of some of the biological system components and a further explanation of object-oriented concepts can be found in the main text.

biologists or computer scientists to be divided and coordinated. In
addition, applying a well-defined software engineering process and
object-oriented methodology provide an effective means to capture
specifications from experimental data and integrate the biological
system information. Finally, this process provides a guideline for the
development of an integrated biological system, represented as an
object-oriented software architecture, in a widely accepted object-
oriented modeling language (such as UML), which can facilitate
communication about complex systems among software engineers,
biologists and other users. Recently, biologists have also begun to
develop and specify processes for biological data integration, such
as the one used for the TRANSPATH database (Schacherer et al.,
2001), but this activity has been fairly limited and has not gained
the community-wide acceptance comparable with popular software
engineering processes.

To demonstrate the efficacy of a well-defined software engineering
process in the translation of a biological system to a model grounded
in object-oriented principles, we used UML in the development of
a severe acquired respiratory syndrome-coronavirus (SARS-CoV)
model. SARS-CoV, which killed nearly 800 people and infected
8000 worldwide, consists of 28 structural and non-structural proteins.
Although the viral infection and replication process is not entirely

resolved, some details have emerged. Briefly, the virus binds to the
cellular ACE2 receptor via its spike (S) protein, then fuses with
the host cell membrane (Li et al., 2003). Genomic RNA is released,
and gene one, encoding the non-structural replicase proteins is trans-
lated. The replicase proteins are cleaved by the papain-like proteinase
(Rota et al., 2003) and 3C-like protease (Fan et al., 2004) also
contained within gene one. The replicase produces the structural
protein mRNAs from the remaining genome, which are subsequently
translated. The structural proteins (Ying et al., 2004) consist of the
membrane (M) (Rottier et al., 1986) and envelope (E) (Yu et al., 1994)
proteins, which form the viral envelope, the S protein that binds the
cellular receptor (Xiao et al., 2003) and nucleocapsid (N) protein,
which associates with the viral RNA to form the ribonucleoprotein
(Ying et al., 2004). The recently identified transmembrane proteins
U274 and U122 may also serve as structural proteins (Fielding et al.,
2004; Tan et al., 2004). The virus assembles in an intermediate
compartment between the Golgi and endoplasmic reticulum (Lai
and Cavanagh, 1997), and is released via the constitutive exocytic
pathway (Lai and Cavanagh, 1997). In this paper, we demonstrate
that a complex biological system can be reverse-engineered, and the
resulting software representation can capture the static and dynamic
relationships contained with the system.

2503

D.Shegogue and W.J.Zheng

MATERIALS AND METHODS

Requirement-gathering phase
Information collection To define the requirements and collect the inform-
ation necessary for model generation, two approaches were necessary. First,
annotations of the SARS viral gene products were obtained through an auto-
mated pipeline, GeneAtlas, implemented by Accelrys, Inc. (Kitson et al.,
2002). This pipeline can efficiently identify the function of a gene or a pro-
tein through homology searches and structural analysis (Yan et al., 2003).
Second, an extensive literature review was manually conducted. Detailed
information about the SARS-CoV and viral infection were collected. Because
of the relatively recent appearance of SARS-CoV, when information was not
available, functions and relationships were extrapolated from homologous
genes in other viruses.

CRC card generation The attributes and the interactions of the viral pro-
teins were captured using CRC cards as described by Shegogue and Zheng
(2004) (for an example of a CRC card, see Supplemental Figure 1).

Use case development Based on the information gathered, a use case was
developed to reflect the viral infection process (see Supplemental Figure 2).
The use case also serves to define the boundary and scope of the SARS-CoV
model. Therefore, although the infection process may involve other elements
such as the immune system, this study was limited, as defined in the use
case, to those events that directly involve the interaction between the virus
and the cell.

Analysis phase
Use case diagram generation To define the high-level interaction
between the SARS-CoV and the cell, a UML use case diagram was gener-
ated (see Supplemental Figure 3). This diagram was based on the boundaries
defined in the use case. This and other UML diagrams in this study are gen-
erated using Microsoft Visio Pro. For a review on UML models see http://
bdn.borland.com/article/0,1410,31863,00.html

Conceptual model generation To provide an overview of the system
and its interrelationships a conceptual model, or simplified class diagram,
was generated based on the information defined in the requirement-gathering
phase. This conceptual model integrated biological information, and rep-
resented the viral and cellular components involved in viral infection and
their relationships in UML notation (see Supplemental Figure 4). By apply-
ing object-oriented analysis, the SARS virus and the cellular components
involved were decomposed into objects and the component relationships
were realized. However, information regarding component properties is
hidden. This intermediate artifact defines the organization of the bio-
logical system and provides an overview of the components and their
relationships.

System sequence diagram generation To capture the sequence of events
occurring between the SARS-CoV and cell at the system-level, a system
sequence diagram was created (see Supplemental Figure 5).

Design phase
State diagram generation State diagrams were created to capture the
transitions and different states that a cellular component can exist. In addi-
tion, multiple concurrent states can be illustrated using this UML notation.
An example of a state diagram for the M protein is shown in Supple-
mental Figure 6. Additional state diagrams for the S, E and N proteins
can be found at http://people.musc.edu/∼zhengw/SARS/State%20Diagrams/
web%20page/Statechart_index.htm

Sequence, activity and class diagram generation Sequence, activ-
ity and class diagrams have been used as an example to demonstrate the
feasibility of generating an object-oriented representation of the SARS-CoV
and cell system. To generate these diagrams, objects representing corres-
ponding bioentities are created and their essential attributes are captured.

Interactions among objects are also identified. For each interaction, a corres-
ponding method is generated. The nature of the interaction determines the
method parameters. To generate sequence diagrams the sequence of events
is captured. Scenarios are also generated for object interactions and used to
generate activity diagrams. The information captured in the sequence dia-
gram and activity diagrams are used, along with the bioentities attributes, to
generate class diagrams.

Model validation Models are validated by referring back to the CRC cards
and use case to determine if the requirements set forth in the requirement-
gathering phase have been met.

Web-based implementation These diagrams, along with CRC cards
for objects in the system, were incorporated into a web-based system
to deliver our object-oriented representation to the users (http://people.
musc.edu/∼zhengw/SARS/Software-Process.htm).

RESULTS

Software engineering process
To capture the static and dynamic relationships that occur between
SARS-CoV and a cell, models were constructed by following
an adapted, linear, sequential software process containing distinct
phases of requirement gathering, analysis and design (Fig. 1). This
approach is suitable because of the relative simplicity of the viral
infection process. Since the major activities (such as requirement
gathering, analysis and design) of this sequential software process
serve as the foundation for other advanced software engineering
processes, these advanced processes can be applied to modeling
more complex biological systems. The requirement-gathering phase
entails collecting all available information about the system, gener-
ating CRC cards (see Supplemental Figure 1) to capture biological
entity (bioentity) functions and collaborators, and defining a use
case (see Supplemental Figure 2). The analysis phase is used to
dissect the interrelationships among components involved in viral
infection and serves as a basis for the detailed models generated in
the design phase. Here, the gathered information is used to cre-
ate a use case diagram (see Supplemental Figure 3), conceptual
model (see Supplemental Figure 4) and system sequence diagram
(see Supplemental Figure 5). In the design phase, information from
the analysis and requirement-gathering stages is incorporated to
develop a detailed model, which represents the static (class dia-
gram, see Supplemental Figures 14–16 and Figure 4) and dynamic
(for state diagram see Supplemental Figure 6, for sequence diagram
see Supplemental Figures 7–9 and Figure 2, and for activity dia-
grams see Supplemental Figures 10–13 and Figure 3) nature of the
SARS-CoV genome and infection process. Together, these diagrams
provide a comprehensive software representation of the biological
system.

Sequence diagram generation
The major events of SARS-CoV infection include virus bind-
ing, membrane fusion, viral RNA replication, structural proteins
translation, viral assembly and release. Sequence diagrams were
created to capture the dynamic nature of these processes as an
object-oriented software system. A high-level representation of
the SARS viral infection is reflected chronologically in Figure 2.
Simple (such as proteins) or complex (such as viral replicase or
virus) bioentities, identified by literature searches, are modeled
as objects, which are represented by rectangles with vertical life-
lines. Object functions, which are implemented by the methods

2504

http://
http://people.musc.edu/
http://people

Object-oriented modeling of the SARS coronavirus

Fig. 1. A linear, sequential software process used for reverse engineering the SARS viral infection. Processes (at the top) are ordered in a time-dependent
manner. Vertical lines extending from the processes indicate the process stage in which a model (at the bottom) is generated, and do not imply a time dependence.
Major dependences among models are indicated.

contained within the objects, are used to represent the functions
of these bioentities. For example, a viral replicase can take a
viral RNA as a template and generates a new viral RNA through
replication. Similarly, the Viral_Replicase object function, rep-
licate(), takes a viral RNA as a template and generates new
Viral_RNA.

To capture interactions between objects, one object can call
a method of another object by connecting object lifelines in the
sequence diagram (Fig. 2). This invocation of an object func-
tion by another is described as one object sending a message to
another object. In this way, real-world processes may be captured
using an object-oriented approach. For instance, the cell object
can call the translation machinery to translate the viral replicase
by sending a message translate(in: Positive_Genomic_RNA), where
the value after the ‘in’ is an object, Positive_Genomic_RNA, that
must first be passed into the method. To complete the process, the
translation machinery will use this Positive_Genomic_RNA as a
template to translate and create a ‘viral replicase’ object, which
is sent back to the cell. The cell now contains a copy of the
viral replicase for later use. Together, this message passing cap-
tures the cellular process of translation of a viral RNA into a viral
replicase.

Alternatively, a message need not be passed between objects.
A self-call may include self-checks or autoactivation signals. In
the case of the assembleVirus() function call, the cell requires
two components, structural protein and viral RNA, to generate the
virus. However, a self-call might only indicate whether an event
has occurred and not accept any parameters. For example, the
bindVirus() method only indicates whether a virus has bound the
cell. Together, the events leading to the creation of a virus can be
chronologically ordered and can mimic the viral infection process.
Additional details that reflect the RNA replication process, trans-
lation of the structural proteins and viral assembly are available
in Supplemental Figures 7–9. Collectively, these diagrams demon-
strate that the activities of a biological system can be represented
as part of the dynamic processes of an object-oriented software
system.

Activity diagram generation
To capture additional features of the dynamic architecture, activity
diagrams were created to reflect the SARS-CoV and viral infection
process. Unlike the sequence diagram, which captures best-case
scenario events, the action sequence or flow of the activity dia-
gram can portray alternative outcomes. For instance, as shown in
Figure 3, a virus may bind a receptor if one is available, or else this
action ends and the flow is directed to the final state. Once bound,
if the S protein undergoes a conformational change that exposes the
fusion peptide, then the virus can fuse with the cellular membrane.
Alternatively, the virus may detach from the cell, or if a neighboring
cell is available cell–cell fusion may be initiated or the flow may
be directed to the final state, indicating that infection failed. If the
virus is able to fuse with the membrane, release of the N protein
will decoat the positive genomic RNA, or else this action will also
end. Once decoated, the viral RNA is replicated after which the
virus is assembled and released. These subactivities are presented
in greater detail in Supplemental Figures 11–13. In addition, Sup-
plemental Figure 10 illustrates a high-level view reflecting only the
major stages of the viral infection process. Overall, these activity
diagrams define the main success and alternative scenarios that may
occur during viral infection.

Class diagram generation
Complex bioentities and their relationships are contained within
the biological system encompassing the cell and SARS-CoV. These
relationships include SARS-CoV binding to the cell receptor, viral
protein interacting with the translation machinery and RNA inter-
acting with the viral replicase. To capture this static architecture,
class diagrams were generated that model the components, opera-
tions and interrelationships that occur between the SARS-CoV and
cell. Specifically, Figure 4, a high-level class diagram, captures the
major components of the SARS virus and viral infection as objects
and their associations using an object-oriented representation. These
objects, where applicable, were given attributes that describe import-
ant characteristics, or if changed, might alter the function of a

2505

D.Shegogue and W.J.Zheng

Fig. 2. A high-level sequence diagram for major SARS viral infection events. Bioentities (cell, virus, translation machinery and viral replicase) are modeled
as objects. These objects are shown at the top of the diagrams with vertical lifelines (), representing extensions of the objects below. Functions and events
associated with these bioentities are modeled as messages sent to the corresponding objects. These message calls, indicated by solid arrows, are made between
objects via connection of their lifelines. Messages contain a message name followed by parameters, which must be passed into the object and/or outputted from
the object, e.g. translation machinery executes its function of translating viral mRNA by receiving a translate message ‘translate (in: Positive_Genomic_RNA)’
from the cell. This message accepts a Positive_Genomic_RNA as a template, indicated by ‘in: Positive_Genomic_RNA’, then a ‘Viral_Replicase’ is created
and returned. These return values are displayed below the message call as a named dotted arrow extending in the opposite direction as the original message
call. Where return values are not explicitly indicated, as in an object calling itself (), an ‘out’ followed by a return value is substituted. Events in gray boxes
are shown in more detail in Supplemental Figures 7–9.

component. The object functions, which parallel bioentity functions,
were generated from the sequence diagrams. These functions or oper-
ations are a declaration of the methods that an object may use. In
addition, protein complexes can be represented, as in the case of
the viral replicase, as complex objects, which are composed of many
other objects (see Supplemental Figure 15). Similarly, utilizing com-
position allows the virus object to mimic a real-world virus, which
contains structural proteins, positive genomic RNA and a membrane
(Fig. 4). Larger systems such as organelles and pathways can also
be contained within the object-oriented software system in the form
of modules, subsystems or packages. In this way, class diagrams
allow a biological system to be captured as a layered system, e.g. the
cellular translation machinery may be represented as a single object,
even though it has a very complex mechanism and regulation. This

complexity could also be captured in a subsystem that specifically
focuses on the cellular translation machinery. This layered structure
indicates that the object-oriented technology can be used to represent
the layered structure of complex biological systems.

In addition, the UML notation provides a mechanism to specify
inheritance, which may be used to indicate an object that is the found-
ation for other objects. For instance, structural protein and Gene1
viral protein precursor inherit the properties of the viral protein object
(Fig. 4). Binary associations are also used to capture associations
between objects. These associations may contain cardinalities, which
indicate how many of one object interacts with another. For instance,
a virus can infect one cell and a cell can be infected by one to many
viruses (Fig. 4). Additional class diagrams showing a higher level
of detail and focusing on the interactions and components of the

2506

Object-oriented modeling of the SARS coronavirus

Fig. 3. Activity Diagram for SARS viral infection emphasizing the infection
process. The infection process consists of three major events; bind cellular
ACE2 receptor, fuse with the cell membrane and release its genomic RNA by
uncoating. The process of RNA replication, assembly and viral release are
detailed in Supplemental Figures 10–13. All activity diagrams have a pseudo-
start () and pseudo-end () states. Action states, represented by rounded
rectangles () are captured during different time periods. This diagram
can represent sequential as well as concurrent events. Concurrent events are
represented by forks () and merges (). This architecture signifies that
multiple events are possible simultaneously and the occurrence of at least one
of these events is enough to continue the flow of control. In contrast, the flow
of control may also be conditional, e.g. decision diamonds () represent
a point at which alternative events can occur. At these decision diamonds,
guard conditions must be satisfied for the flow of control to continue, or else
the flow of control follows an alternative route.

structural proteins, replicase complex and viral replication process
are available in Supplemental Figures 14–16. These class diagrams
demonstrate that the static structure of a biological system can be rep-
resented as an object-oriented model. Together, the models generated
using the described object-oriented methodology yield a software
system representation of a biological system, capturing both static
and dynamic relationships.

DISCUSSION
Here, we have demonstrated that a complex biological system can
be modeled following a systematic, well-defined software engineer-
ing process. We have leveraged the power of the UML to construct
our object-oriented software representation of the SARS-CoV and
its infection process. Even though UML has been proposed as a
tool to model biological systems (Bornberg-Bauer and Paton, 2002;

Roux-Rouquie et al., 2004), and an overview of the modeling pro-
cess used in the development of biological simulation software is
available (Johnson et al., 2004), without a well-defined method-
ology and software-engineering process, such as object-oriented
analysis and design, transforming biological information into UML
becomes an ad hoc activity. However, by applying object-oriented
analysis and design, biological entities and related information can
be systematically transformed into an object-oriented system by this
well-defined methodology. Furthermore, UML is created to repres-
ent object-oriented software systems. If a biological system itself is
directly represented by UML, but not as an object-oriented soft-
ware system, this representation may be confusing and the full
capabilities of UML may not be achieved. Reverse engineering a
biological system into an object-oriented system ensures that the
object-oriented system can be accurately and completely represented
by UML. Additional tools such as class-responsibility-collaboration
cards (Wilkinson, 1998), which can be used to capture the attrib-
utes, collaborators and functions of the annotated object, may also
be employed to capture data not fully represented by the UML
notation.

One major problem for modeling and integrating biological
information is the lack of information: experimental observations
without known underlining mechanisms. This challenge can be met
by applying object encapsulation: defining the behavior of an object
through its operations that are accessible to other objects, but hiding
the underlining mechanism of the operations and object attributes
from other objects (Graham, 2001). For example, to communic-
ate that the translation machinery translates a viral protein does
not require that every component of the translation machinery be
detailed. Specifically, to capture this information we gave the transla-
tion machinery a function called ‘translate’. This function will create
a viral protein from the viral mRNA without defining the real process
of how the viral protein is created. This approach can encapsulate the
unknown cellular process inside a well-known function or behavior,
and model the biological system without understanding every detail
of the system.

Object-oriented models have additional applications in the con-
struction of biological systems. The layered structure of the object-
oriented model allows one to capture various levels of detail such as
population, organism, organ, pathway or cell system. This layering
can be used to create compartments, which define spatial rela-
tionships between cellular components. Webb and White (2003)
have recently modeled these compartments as classes. However,
the compartment issue may be addressed using packages or sub-
systems. The flexibility of the object-oriented model and UML tool
also allow an assortment of biological information to be captured
and subsequently translated into mathematical models. It has been
shown by Priami et al. (2001) and Webb and White (2003) that
rate equations can be generated using UML sequence and state dia-
grams. Together, an object-oriented approach is capable of modeling
enzymatic reactions and metabolic pathways (Freier et al., 2003).
However, challenges still exist for fully representing a biological
system as an object-oriented system.

Significantly, because the breadth and depth of biological systems
make a complete description of biological systems intractable,
a collaborative effort is essential. To integrate new informa-
tion into existing models, a system, such as a web portal,
will have to be implemented that also allows experts to con-
tribute to model maturation. The Alliance for Cellular Signaling

2507

D.Shegogue and W.J.Zheng

Fig. 4. High-level class diagram of SARS virus and viral infection. Major components of SARS virus and viral infection and their associations are modeled
as objects. These objects are represented by rectangles within the diagram. Rectangles are divided into three parts. The first part contains the object name;
the second part contains the attributes of the object; and the final part contains the functions an object can perform. Lines with solid diamonds () at
the end indicate composition. These are read from the diamond end, e.g. as Virus contains Structural_Proteins. Lines with open triangles () represent
generalizations. These are read from the triangle end, as Viral_Protein is a general type of Structural_Protein. Other interactions are represented as named,
binary associations (). Interactions may contain cardinalities at their ends indicating the number of objects that interact with another object. As an example
from above, one virus can infect one cell and one cell can be infected by one to many viruses. Grayed objects and interactions are shown in more detail in
Supplemental Figures 14–16. Viral components (orange); cellular components (blue).

(http://www.signaling-gateway.org/) has already set a precedence
for such a collaboration. This approach is especially suitable for
object-oriented system development, since the modular nature of an
object-oriented system allows the modification of individual com-
ponents without affecting other parts of the system. Together, these
approaches will distribute the burden of creating these models.
Because portions of a model might be derived from information that
contains varying degrees of confidence, in the future, UML models
might benefit from the addition of a confidence indicator to indicate
whether portions of a model are derived from experimental data or are
based on hypothesis and speculation. While this study has focused
on the construction of a web-based system for navigation of the
layered structure of a biological system, future work will also strive to
integrate information into a searchable database, and implement soft-
ware systems to simulate biological processes. Finally, to extend this
application to a more complex biological system, it will be necessary
to adopt an advanced iterative process, such as the Rational Unified
Process (Kruchten, 2003), or apply advanced techniques, such as
Façade pattern (Gamma et al., 1997), in object-oriented design to
reduce the complexity of the system. This will allow the develop-
ment of more sophisticated methods to reverse engineer biological
systems and significantly enhance the study of biological complexity
at a system level.

We demonstrate that by applying an adapted, sequential soft-
ware engineering process, a complex biological system (SARS
viral infection) can be reverse-engineered and represented as an
object-oriented software system. Similar to software engineering
projects, the well-defined software process makes the biological
system information integration repeatable, controllable, scalable
and manageable. The resulting object-oriented system not only
captures information about individual components but also dis-
plays the system-level architecture and interrelationships among
system components. Furthermore, this object-oriented model cap-
tures system dynamics, in that the key events and the process of
viral infection are also described. Our research demonstrates that
object-oriented analysis and design can be employed as an effect-
ive methodology to integrate biological information, and the UML
representation is a comprehensive approach to capturing the com-
plexity of biological systems, integrating biological information
and facilitating communication between biologists and computer
scientists.

ACKNOWLEDGEMENTS
We thank E. Voit for critical reading of this manuscript. D.S. is sup-
ported by NLM training grant 5-T15-LM007438-02. W.J.Z is partly

2508

http://www.signaling-gateway.org/

Object-oriented modeling of the SARS coronavirus

supported by a grant (DE-FG02-01ER121) from the Department of
Energy.

REFERENCES
Ashburner,M. et al. (2000) Gene Ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat. Genet., 25, 25–29.
Bornberg-Bauer,E. and Paton,N.W. (2002) Conceptual data modelling for bioinformat-

ics. Brief Bioinformatics, 3, 166–180.
Csete,M.E. and Doyle,J.C. (2002) Reverse engineering of biological complexity.

Science, 295, 1664–1669.
Fan,K. et al. (2004) Biosynthesis, purification, and substrate specificity of severe

acute respiratory syndrome coronavirus 3C-like proteinase. J. Biol. Chem., 279,
1637–1642.

Fielding,B.C. et al. (2004) Characterization of a unique group-specific protein (U122)
of the severe acute respiratory syndrome coronavirus. J. Virol., 78, 7311–7318.

Freier,A. et al. (2003) iUDB: an object-oriented system for modelling, integration and
analysis of gene controlled metabolic networks. In Silico Biol., 3, 215–227.

Galperin,M.Y. (2004) The Molecular Biology Database Collection: 2004 update, Nucleic
Acids Res., 32 (Database issue), D3–D22.

Gamma,E., Helm,R., Johnson,R. and Vlissides,J. (1997) Design Patterns. Addison-
Wesley Publishing Company, Reading, MA, pp. 185–193, 331–349.

Graham,I. (2001) Basic concepts. In Object-oriented Methods, Principles & Practice.
Addison-Wesley, Harlow, UK, pp. 1–37, 461–494.

Hucka,M. et al. (2003) The Systems Biology Markup Language (SBML): a medium
for representation and exchange of biochemical network models. Bioinformatics, 19,
524–531.

Ideker,T. et al. (2001) A new approach to decoding life: systems biology. Ann. Rev.
Genom. Hum. Genet., 2, 343–372.

Johnson,C.G. et al. (2004) Simulating complex intracellular processes using object-
oriented computational modeling. Prog. Biophys. Mol. Biol., 86, 379–406.

Kitson,D.H. et al. (2002) Functional annotation of proteomic sequences based on
consensus of sequence and structural analysis. Brief Bioinformatics, 3, 32–44.

Kohn,K.W. (1999) Molecular interaction map of the mammalian cell cycle control and
DNA repair systems. Mol. Biol. Cell, 10, 2703–2734.

Kruchten,P. (2003) The Rational Unified Process: An Introduction, 3rd edn. In Grady
Booch,I.J. and Rumbaugh,J. (eds). Addison-Wesley Harlow, UK, 336 p.

Lai,M. and Cavanagh,D. (1997) The molecular biology of coronaviruses. Adv. Virus
Res., 48, 1–100.

Li,W. et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the
SARS coronavirus. Nature, 426, 450–454.

Peleg,M. et al. (2002) Modelling biological processes using workflow and Petri Net
models. Bioinformatics, 18, 825–837.

Priami,C. et al. (2001) Application of a stochastic name-passing calculus to rep-
resentation and simulation of molecular processes. Inform. Process. Lett., 80,
25–31.

Rota,P.A. et al. (2003) Characterization of a novel coronavirus associated with severe
acute respiratory syndrome. Science, 300, 1394–1399.

Rottier,P. et al. (1986) Predicted membrane topology of the coronavirus protein E1.
Biochemistry, 25, 1335–1339.

Roux-Rouquie,M. et al. (2004) Using the unified modelling language (UML) to guide
the systemic description of biological processes and systems. BioSystems, 75, 3–14.

Rumbaugh,J. et al. (1999) The Unified Modeling Language Reference Manual. Addison-
Wesley, Reading, MA, chapter xvii, 550 p.

Schacherer,F. et al. (2001) The TRANSPATH signal transduction database: a knowledge
base on signal transduction networks. Bioinformatics, 17, 1053–1057.

Shegogue,D. and Zheng,W.J. (2004) Capturing biological information with
class-responsibility-collaboration cards. Bioinformatics, doi:10.1093/
bioinformatics/bti005.

Tan,Y.J. et al. (2004) A novel severe acute respiratory syndrome coronavirus protein,
U274, is transported to the cell surface and undergoes endocytosis. J. Virol., 78,
6723–6734.

Webb,K. and White,T. (2003) UML as a cell and biochemistry modeling language.
Technical Report CUCSTR 2003-05, Carleton University Cognitive Science.

Wilkinson,N.M. (1998) Using CRC Cards: An Informal Approach to Object-Oriented
Development. 2nd edn. Cambridge University Press, Cambridge, UK, 252 p.

Xiao,X. et al. (2003) The SARS-CoV S glycoprotein: expression and functional
characterization. Biochem. Biophys. Res. Commun., 312, 1159–1164.

Yan,L. et al. (2003) Assessment of putative protein targets derived from the SARS
genome. FEBS Lett., 554, 257–263.

Ying,W. et al. (2004) Proteomic analysis on structural proteins of severe acute respiratory
syndrome coronavirus. Proteomics, 4, 492–504.

Yu,X. et al. (1994) Mouse hepatitis virus gene 5b protein is a new virion envelope protein.
Virology, 202, 1018–1023.

2509

