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Abstract Noggin (NOG) is an important regulator for the signaling of bone

morphogenetic proteins. In this study, we sequenced the complete coding sequence

of the canine NOG gene and characterized the nucleotide polymorphisms. The

sequence length varied from 717 to 729 bp, depending on the number of a 6-bp

tandem repeat unit (GGCGCG), an insertion that has not been observed in other

mammalian NOG genes investigated to date. It results in extensions of (Gly–Ala)3–5

in the putative NOG protein. To survey the distribution of these tandem repeat

polymorphisms, we analyzed 126 individuals in seven dog breeds. We identified

only three alleles: (GGCGCG)3, (GGCGCG)4, and (GGCGCG)5. Although the

allele frequencies were remarkably different among the breeds, the three alleles

were present in all seven of the breeds and did not show any deviation from Hardy–

Weinberg equilibrium.
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Introduction

Noggin (NOG) is a member of the bone morphogenetic protein (BMP) family and a

major extracellular antagonist of the BMP. NOG regulates dorsal induction and joint

formation in embryonic development by blocking BMP signaling (Smith and

Harland 1992; Zimmerman et al. 1996; Brunet et al. 1998; McMahon et al. 1998;

Canalis et al. 2003). NOG also controls bone regeneration and homeostasis in adults

(Canalis et al. 2003; Canalis 2009). The coding sequences of mammalian NOG

genes are contained in a single exon and are highly conserved among species

(Valenzuela et al. 1995). Nucleotide and amino acid sequence similarities are more

than 90% among humans, mice, and other mammals (Valenzuela et al. 1995). In

humans, several point mutations in the NOG gene have been linked to congenital

skeletal malformations, for example, proximal symphalangism or multiple synos-

toses syndrome (Gong et al. 1999; Marcelino et al. 2001; Hirshoren et al. 2008).

Therefore, the NOG gene is a potential candidate for involvement in congenital

skeletal malformations in domesticated dogs. Partial DNA sequences at this locus

have been defined by the Canine Genome Project (NW_876332; Canis familiaris
chromosome 9 genomic contig). To the best of our knowledge, no nucleotide

polymorphisms have been described in the canine NOG gene. In the present study,

we first determined the DNA sequence of the complete coding sequence of the

canine NOG gene, to scan for all the possible nucleotide polymorphisms encoded at

this locus. We subsequently surveyed the allelic distribution of the variable number

of tandem repeats (VNTRs) that were identified in the canine NOG gene.

Materials and Methods

Tissue and nail samples from non-sibling dogs were collected at veterinary hospitals

and dog-grooming shops in Japan; 127 samples were obtained from 24 long-haired

Miniature Dachshunds, 25 long-haired Chihuahuas, 23 Miniature Poodles, 19 Shih

Tzus, 13 Papillons, 12 Malteses, 10 Yorkshire Terriers, and 1 Beagle. Genomic

DNA was extracted from tissue or nails by a standard phenol–chloroform extraction

method (Sambrook et al. 1989) or using the QuickGene DNA tissue kit (Fuji Film,

Tokyo, Japan).

Amplification and Sequencing of Canine NOG Coding Sequence

Four animals from three breeds were selected for DNA sequence determination of

the complete coding sequence for the canine NOG gene (one Beagle, two Miniature

Dachshunds, and one Chihuahua). Primers for polymerase chain reaction (PCR) and

sequencing were designed from dog genome draft sequences (chromosome 9,

NW_876332); rat (NM_012990), mouse (NM_008711), and human (NM_005450)

NOG gene sequences (Table 1). The primer sets of CanNOG-F1 and CanNOG-R1
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produce about 1.1 kbp DNA products, whereas the primer sets of CanNOG-F2 and

CanNOG-R2 produce about 700 bp. The two products overlapped with one another

in the canine NOG coding sequence.

The PCR was performed according to the manufacturer’s instructions for

PrimeStar HS DNA polymerase with GC buffer (Takara Biotechnology, Shiga,

Japan). The program included first denaturation at 98�C for 2 min; 35 cycles of

denaturation at 98�C for 20 s, annealing at 55�C for 5 s, and extension at 72�C for

60 s; and final extension at 72�C for 3 min. The amplified products of each reaction

were cloned into the plasmid pCR-Blunt II-TOPO using the Zero Blunt TOPO PCR

Cloning kit (Invitrogen, Carlsbad, USA). At least five clones were isolated from

each individual and sequenced using the Big Dye Terminator version 3.1 Cycle

Sequencing Kit and ABI 3100 sequencer (Applied Biosystems, Foster City, USA)

with M13 universal primers and additional sequencing primers (Table 1).

Detection of the VNTR Polymorphisms in the NOG Coding Sequence

In order to survey the distribution of the VNTR alleles in dog breeds, we analyzed

126 animals from seven breeds (Table 2). The 300 bp DNA products of the canine

NOG gene, including the 6-bp tandem repeats (GGCGCG), were PCR-amplified

Table 1 Primers for canine NOG gene

Primer Sequence (50 to 30) Position on NW_876332a

CanNOG-F1 TGGTGATGGAGCTGAAAGTG 13273923–13273942

CanNOG-R1 ACCACAGCCACATCTGTAACTTC 13274986–13275008

CanNOG-F2 ACCCGGACCCTATCTTTGAC 13274685–13274704

CanNOG-R2 TTTCTGGCTACAGAGACCTAGCT 13275418–13275440

CanNOG-S1b GAAGTTACAGATGTGGCTGTGGT Reverse complement of R1

CanNOG-S2b GTCAAAGATAGGGTCCGGGT Reverse complement of F2

a Canis familiaris chromosome 9 genomic contig, whole genome shotgun sequence
b Primers used only for sequencing

Table 2 Genotype and allele frequency of (GGCGCG)n VNTR in canine NOG gene among seven dog

breeds

Breed (number of animals sampled) Genotype Allele frequency

3 4 5 3/4 3/5 4/5 3 4 5

Miniature Dachshund, long hair (24) 1 7 0 7 7 2 0.333 0.479 0.188

Chihuahua, long hair (25) 3 0 6 5 7 4 0.360 0.180 0.460

Miniature poodle (23) 2 2 2 5 6 6 0.326 0.326 0.348

Shih Tzu (19) 9 0 2 3 4 1 0.658 0.105 0.237

Papillon (13) 5 0 0 2 4 2 0.615 0.154 0.231

Maltese (12) 2 1 0 0 6 3 0.417 0.208 0.375

Yorkshire Terrier (10) 8 0 0 1 1 0 0.900 0.050 0.050
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using primer sets of CanNOG-F2 and CanNOG-R1 and then purified with the High

Pure PCR Product Purification Kit (Roche Applied Science, Mannheim, Germany).

Purified DNAs were sequenced directly with the primer CanNOG-F2 as described

above. Heterozygous individuals that had a different number of tandem repeats were

genotyped from their electropherograms.

Results and Discussion

In four domestic dogs, we sequenced the entire coding region of the NOG gene,

which included an unidentified region of 91 nucleotides in NW_876332. These

nucleotide sequences were entered into the DDBJ, EMBL, and GenBank nucleotide

databases with accession numbers AB544074–AB544077. After multiple alignment

of canine sequences with human NOG (NM_005450) and mouse Nog (NM_008711),

we found that the coding sequence of the canine NOG gene is longer than that of

humans and mice. The coding sequence of the human and mouse genes is

consistently 699 bp in length. The coding sequence in the four dogs showed three

polymorphisms, of 717, 723, and 729 bp, caused by inserted sequences of 18, 24, and

30 bp, respectively. These inserted sequences in the canine NOG gene were

constructed by different numbers of the 6-bp tandem repeats (GGCGCG) unit

(Fig. 1). These GGCGCG tandem repeats immediately preceded the inserted

sequences. Thus, these sequence-length polymorphisms are the result of the

duplicated insertion of this repeat unit. The insertions of tandem repeats were aligned

with the reading frame of the NOG gene and found to encode a Gly–Ala repeat

Fig. 1 The coding region of the canine NOG gene and polymorphisms detected in this study. a Structure
of the coding region of the canine NOG gene. The solid upper line indicates the partial sequence of canine
chromosome 9 (NW_876332), and the broken line represents the undeciphered region in NW_876332.
The start codon of canine NOG was located in the unidentified region, -91 bp from position 13274612 on
NW_876332. The white blocks of the diagram represent the canine NOG coding sequence, and the shaded
block indicates the region of the inserted sequence. b The nucleotide and amino acid sequences around
the canine-specific insertion. The repeating units are ruled off by vertical lines. The numbers at the bottom
indicate the number of repetitions. Repetition of GGCGCG was translated into the amino acids Gly–Ala
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(Fig. 1). These (Gly–Ala)3–5 insertions are located in the polyglycine loop which is

present only in mammalian Noggin (Fig. 2). The polyglycine loop is the most

flexible part of the mammalian Noggin protein, as a complex with the BMP ligand

(Groppe et al. 2002). Excluding these inserted-sequence regions, the coding

sequence of the canine NOG gene displayed 96.7% sequence similarity with the

nucleotides of human NOG and 94.0% with mouse Nog. No other polymorphic sites

were found among the four canine NOG sequences, except the above-mentioned

inserted sequences.

We sequenced part of the NOG gene, including the tandem repeat (GGCGCG)n,

in 126 dogs from seven breeds, and identified three alleles, (GGCGCG)3,

(GGCGCG)4, and (GGCGCG)5, among these individuals (Table 2). The genotypic

and allelic frequencies of these VNTR alleles did not deviate from Hardy–Weinberg

equilibrium among the seven breeds. Although the three alleles of the VNTR were

present in all the dog breeds analyzed in this study, distributions varied widely

among the breeds. (GGCGCG)4 had the highest frequency in the Miniature

Dachshund, whereas (GGCGCG)3 was extremely high in the Shih Tzu, Papillon,

and Yorkshire Terrier (Table 2). Since the three NOG VNTR alleles were

distributed widely among various dog breeds, these sequence-length polymorphisms

arose long before the modern dog breeds were established several hundred years

ago.

Because we collected DNA samples from visibly healthy dogs, each VNTR allele

in the canine NOG gene did not appear to be linked to fatal outcomes and severe

pathological phenotypes in young dogs. Considering the important role of NOG in

bone regeneration and homeostasis in adults (Canalis 2009), however, the three

canine NOG variations theoretically could be associated with susceptibility to bone

or joint disorders in the lifetime of the domestic dog. Nevertheless, the

polymorphisms are most likely silent with respect to function given that (1) the

additional residues encoded by the repeats were inserted in the most flexible portion

of the Noggin protein, (2) the segment is well removed from the ligand-binding

interface, (3) the loop is expanded in other mammals with no apparent loss of

function, and (4) the inserted residues are small and functionally inert in the context

of a disordered loop (Supplementary Fig. 1). In contrast, polymorphisms resulting

in insertion of tracts of polyglutamine in transcription factors can have a toxic

Fig. 2 Comparison of partial amino acid sequences of vertebrate Noggin. Asterisks indicate the
conserved amino acids among the six species. The gray box encloses the polyglycine loop (Gly–Gly–
Gly–Gly–Gly–Ala–Ala) insertion, which is present only in mammalian Noggin (Groppe et al. 2002). The
highlighted letters indicate extension of the Gly–Ala repeat in the canine Noggin. The Gly–Ala repeat is
connected to the polyglycine loop. Citation of sequences: human NM_005450, mouse NM_008711, pig
NM_001143691, dog AF544077, chicken NM_204123, and Xenopus NM_00185644
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gain-of-function effect in neurodegenerative disorders, triggering conformational

changes that disrupt gene regulation (Riley and Orr, 2006) or culminate in formation

of amyloid-like fibrils (Robertson et al. 2011). Indeed, insertion of glutamine repeats

in Runx-2 protein, a transcription factor that regulates osteoblast differentiation, can

have dramatic effects on canine skeletal morphogenesis (Fondon and Garner 2004).

Introduction of amide-containing side-chains, with two functional groups capable of

hydrogen bonding, can enhance interactions within multiprotein transcriptional

complexes, leading to upregulation of target genes involved in skeletogenesis.

Therefore, although polymorphisms within domestic dog breeds can have

pronounced effects on development, the structural context and nature of the side-

chain of the inserted residues appears to dictate whether the effect is functionally

silent, accumulating over evolutionarily large time spans, or pronounced, capable of

generating rapid diversity of form.
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