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Background: Multidrug resistance (MDR) to chemotherapy drugs remains a major challenge in clinical
cancer treatment. Here we investigated whether and how ginsenoside Rg5 overcomes the MDR mediated
by ABCB1 transporter in vitro and in vivo.
Methods: Cytotoxicity and colon formation as well as the intracellular accumulation of ABCB1 substrates
were carried out in MDR cancer cells A2780/T and A549/T for evaluating the reversal effects of Rg5. The
expressions of ABCB1 and Nrf2/AKT pathway were determined by Western blotting. An A549/T cell
xenograft model was established to investigate the MDR reversal activity of Rg5 in vivo.
Results: Rg5 significantly reversed ABCB1-mediated MDR by increasing the intracellular accumulation of
ABCB1 substrates without altering protein expression of ABCB1. Moreover, Rg5 activated ABCB1 ATPase
and reduced verapamil-stimulated ATPase activity, suggesting a high affinity of Rg5 to ABCB1 binding
site which was further demonstrated by molecular docking analysis. In addition, co-treatment of Rg5 and
docetaxel (TXT) suppressed the expression of Nrf2 and phosphorylation of AKT, indicating that sensi-
tizing effect of Rg5 associated with AKT/Nrf2 pathway. In nude mice bearing A549/T tumor, Rg5 and TXT
treatment significantly suppressed the growth of drug-resistant tumors without increase in toxicity
when compared to TXT given alone at same dose.
Conclusion: Therefore, combination therapy of Rg5 and chemotherapy drugs is a strategy for the adju-
vant chemotherapy, which encourages further pharmacokinetic and clinical studies.

© 2018 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

binding cassette family of membrane transporters which were
overexpressed in cancer cells and pump anticancer drugs out of the

Although chemotherapy is one of the most effective ways for
treating patients with cancer now, drug resistance leads to chemo-
therapy failure which is associated with the death of a great majority
of patients [1]. The chemotherapy resistance induced by one drug
usually are cross-resistant to multidrugs (named as multiple drug
resistance, MDR) [2]. Numerous mechanisms have been explored to
explain MDR, including transporter-based classical MDR mecha-
nisms and nonclassical mechanisms which are related with alter-
ations in the cancer cell biochemistry [3]. The classical MDR
mechanisms are related to the adenosine triphosphate (ATP)-

cell resulting in drug concentrations below the effective concentra-
tion for therapy [4]. The first to third generations of MDR reversal
agents were inhibitors of ABC transporters. Even third generation
reversal agents are currently evaluated in clinical trials; however,
none of them have yielded any applicable clinical results so far [5].
Therefore, finding new compounds to overcome MDR with high ef-
ficacy and low toxicity is still one of the major goals in cancer
research all over the world [6,7].

Currently, researchers are stepping toward natural products for
searching potential MDR antagonists based on the increasing
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knowledge on their safety and efficacy [8,9]. Moreover, studies car-
ried out recently for exploring the mechanisms of reversing MDR by
natural products suggested they act on multiple targets to achieve
their biological activities such as modulation of drug efflux trans-
porters and induction of apoptosis [10,11]. Ginsenosides, also called
ginseng saponins, are the major pharmacologically active ingredients
of ginseng (Panax ginseng) with promising chemoprevention and

A Rg5

HO.

HO

anticancer activities. It has been demonstrated that ginsenosides
could modulate the MDR [12]. For example, protopanaxadiol ginse-
nosides Rh2 and Rg3 from red ginseng could reverse P-glycoprotein
(ABCB1, P-gp)-mediated MDR [13—15].

Ginsenoside Rg5 (Fig. 1A, C42H70012) is one of the main con-
stituents of red ginseng and also belongs to protopanaxadiol gin-
senosides [16]. It has been reported that Rg5 has antiinflammatory,
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Fig. 1. Chemical structure and cytotoxicity of Rg5 in MDR cancer cells. (A) Chemical structure of Rg5. (B) Cytotoxicity of Rg5 alone in pairs of A2780/T or A2780 cells. (C) The cells
were treated with various concentrations of docetaxel (TXT) for 48 hours in pairs of A2780/T or A2780 cells. (D) Cytotoxicity of Rg5 alone in pairs of A549/T or A549 cells. (E) The
cells were treated with various concentrations of TXT for 48 hours in pairs of A549/T or A549 cells. Cell growth was determined using the SRB assay (n > 3).

MDR, multidrug resistance; SRB, Sulforhodamine B.
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anticancer, and neuroprotective activities [17,18]. However, the
reversal effect of Rg5 against the chemotherapy resistance has not
been studied so far. Therefore, in this study, we investigated the
effects of Rg5 in ABCB1 (P-gp)-mediated MDR at nontoxic con-
centrations and analyzed underlying molecular mechanisms.

2. Materials and methods
2.1. Reagents and cell culture

Rg5 was isolated and purified in our lab, and its structure and
purity were confirmed by LC-MS (data were not shown). Pacli-
taxel (PTX), doxorubicin (DOX), docetaxel (TXT), 5-fluorouracil (5-
FU), daunorubicin (DON), quinidine (QND), verapamil (Ver),
propidium iodide (PI), aprotinin, leupeptin, phenyl methyl sul-
fonyl fluoride, and other chemicals were purchased from Sigma-
Aldrich (St. Louis, MO). Extracellular signal-regulated kinases
(ERK) 1/2 and actin antibodies were purchased from Santa Cruz
Biotechnology; ABCB1 (P-gp) antibodies were purchased from
Calbiochem, USA; Nrf2 antibodies were purchased from Abcam,
Hong Kong; other antibodies such as AKT, P-AKT, and P-ERK1/2
were purchased from Cell Signaling Technology, Inc.

Human ovarian cancer cells A2780, human nonsmall cell lung
cancer (NSCLC) A549 and their PTX-resistant cell line A2780/T, and
A549|T were purchased from KeyGen Biotech Co., Ltd, Nanjing,
China. The expression of P-gp at mRNA and protein level was
confirmed in A549/T and A2780/T cells (Supplementary Fig. 1).
Roswell Park Memorial Institute (RPMI)-1640 medium supple-
mented with 10% fetal bovine serum (GIBCO, Paisley, Scotland) was
used as media for culture cancer cells at 37°C with a humidified 5%
CO2 atmosphere. To maintain drug resistance, PTX (0.94uM for
A2780/T and 0.24uM for A549/T) was added to the culture medium.

2.2. Cell cytotoxicity and colony formation assay

The degree of resistance was estimated by cytotoxicity using
Sulforhodamine B (SRB) assay [19] and by colony formation assay
[20] in human ovarian cancer cells A2780, NSCLC A549, and their
PTX-resistant cell line A2780/T and A549/T (KeyGen Biotech Co.,
Ltd, Nanjing, China). In brief, after an incubation period, cell
monolayers are fixed with 10% (wt/vol) trichloroacetic acid for 60
min, after which the excess dye is removed by washing repeatedly
with 1% (vol/vol) acetic acid. The protein-bound dye (0.4% SRB) is
dissolved in 10 mM tris buffer for determination at 490 nm using a
plate reader (Spectra MAX 250; Molecular Devices, Sunnyvale, CA).
The reversal of resistance was calculated by dividing the half
maximal inhibitory concentration (ICsg) for cells with the drugs in
the absence of Rg5 to that obtained in the presence of Rg5.

In colony formation assays, Rg5 in different concentration
(containing 1.2 uM TXT) were added to A2780/T cells (1200 cells/
well) in 6-well plates for 8 days. After experiments, cells were fixed
with 70% ethanol and stained with crystal violet (0.5% in ethanol).
The plates were rinsed with phosphate buffered saline (PBS), and
the colony numbers were counted using the software of Quantity
One colony counting.

2.3. Cell cycle analysis and apoptosis analysis by flow cytometry

For cell cycle analysis and apoptosis analysis, A2780/T cells were
harvested after treatment, stained, and analyzed by flow cytometry
as previously described [20]. Briefly, after incubation, the cells were
harvested, washed with cold PBS, fixed, and permeabilized with
70% ice-cold ethanol overnight at 4°C or 2 h at —20°C. After another
wash, staining solution containing PI (50pug/ml) and RNase A
(200pg/ml) is incubated with cells for 1 hour in the dark. The cell

cycle distribution of each sample was then determined using a flow
cytometry BD FACS Aria (BD Biosciences, San Jose, CA) after pel-
leted, washed, and resuspended in PBS to a final concentration of
1 x 10%/ml.

Apoptosis analysis were performed by double supravital stain-
ing with 5 pl recombinant fluorescein isothiocyanate—conjugated
Annexin-V and 5 pl PI (50 pg/ml) for 15 min with apoptotic cells
after treatment at room temperature in the dark and analyzed by
flow cytometry BD FACS Aria with Flow]Jo software.

2.4. Drug combination assay

To evaluate the synergistic therapeutic effect between Rg5 and
TXT, the Chou—Talalay methods were used according to the liter-
ature [21,22]. In brief, single drugs or premixed drug combinations
were administered to A2780/T cells for 48 h. Drug dilutions in single
or in combination were prepared by 2-fold serial dilutions with
concentrations above or below its ICsg for evaluating cytotoxicity by
SRB method as above description. Combination index (CI) was
calculated for quantitatively defining synergism (CI < 1), additive
(CI'=1), or antagonism (CI > 1) effect in drug combination by using
CalcuSyn software v. 2.1 (Bio-soft). Moreover, synergism (CI < 1)
include synergism (CI = 0.3—0.7), strong synergism (CI = 0.1-0.3),
and very strong synergism (CI < 0.1).

2.5. Intracellular accumulation of DOX and Rho123

The accumulation of Rho123 (5uM) and DOX (10uM) in A2780
or A2780/T cells were measured in the absence or presence of
Rg5 (2, 4, 8uM) or 20uM QND (a known ABCB1 inhibitor) as a
positive control by flow cytometry analysis as described previ-
ously [20]. For fluorescent observation, cells were fixed in 4 wt%
formaldehyde (Sigma-Aldrich) and stained with 1ug/mL blue-
fluorescent 4’,6-diamidino-2-phenylindole (DAPI) (1 mg/mL in
H20 stock solution; Invitrogen D1306) for nuclear DNA after
treatment. For flow cytometry analysis, cells were then detached,
resuspended in PBS after they were washed three times with cold
PBS, and analyzed by flow cytometry BD FACS Aria.

2.6. Transport assay performed in Caco-2 monolayer model

For the transport assays, human colon carcinoma Caco-2 cells
(ATCC) were plated in transwell at the density of 1.7 x 105/mL in 6-
well plate for 21 days. The bidirection transport and efflux behavior
of rhodamin123 (Rho123, 5uM) were evaluated in the Caco-2 cells
in the absence or presence of Rg5 (8uM) or QND (20uM) as
described previously [23]. Before and after experiments, trans-
epithelial electrical resistance (WPl EVOM2 Epithelial voltohm-
meter, FL, USA) was detected for evaluating the integrity of cell
monolayer. At appropriate times (30, 60, 90, and 120 min), 100-pl
aliquots of the apical/basolateral side were collected and replaced
by fresh medium. Each sample was immediately detected for the
fluorescence intensity using a microplate reader (infinite M200
PRO, TECAN, Switzerland).

2.7. ABCB1 ATPase activity assay

The impact of Rg5 on P-gp ATPase activity and the inhibitory
effects of Rg5 against a Ver-stimulated ABCB1 ATPase activity were
estimated with Pgp-Glo™ assay systems (Promega, USA) following
manufacture’s instruction [20].
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2.8. Molecular docking analysis for P-gp transporter

The crystal structure of P-gp with a bound inhibitor QZ59-RRR
(PDB ID 4M2S) was used for molecular docking. All the residues
in P-gp were protonated at pH 7.0. Partial charges of the atoms were
assigned by the Sybyl force field. The protomol which represents a
set of molecular fragments to characterize the active site was
generated by a ligand-based approach, and the bound ligand was
utilized for protomol generation. The proto_thresh and proto_bloat
parameters represent how much the protomol can be buried in the
protein and how far the protomol extends outside the cavity,
respectively, which were assigned by the default value 0.5 and 0.
For the reliability of the molecular docking method, the bound
inhibitor QZ59-RRR was redocked back to the protein with the
average root-mean-square deviation (RMSD) less than 1.5 A for the
docking poses compared with the original one.

2.9. A549/T xenograft model

All animal studies were approved by the Animal Care and Use
Committee at Guangzhou University of Chinese Medicine (No #
ZYYL20150807). A549/T tumor bearing nude mice model was
modified from A549 NSCLC xenograft models reported in the
literature [24]. When the tumors grow to approximately 100 mm?>,
mice were randomly divided into six groups (9-10 for each group).
Saline, TXT (10 mg/kg), Rg5 (50 mg/kg), mixture of TXT (10 mg/kg)
plus low dosage Rg5 (10 mg/kg), mixture of TXT (10 mg/kg) plus
middle dosage Rg5 (30 mg/kg), and mixture of TXT (10 mg/kg) plus
high dosage Rg5 (50 mg/kg) were intraperitoneal injection every 3
days to a total of nine injections, and tumor volume was measured
every 3 days until it reached 2,000 mm?>. The animals were sacri-
ficed on the 27th day and all tumors were immediately detached
and weighed. The tumor volume was calculated using the following
equation: volume = (width? x length)/2.

2.10. Western blot analysis

Western blot was performed as preciously described [20]. Cells
were washed with ice-cold PBS and were lysed in radio-
immunoprecipitation assay (RIPA) buffer supplemented containing
protease inhibitor mixture (1x) (Roche life Science, IN, USA). Equal
amounts of proteins (30ug/lane) were resolved in 10% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto polyvinylidene difluoride (PVDF) membranes
(Millipore, Darmstadt, Germany). After blocking with 10% nonfat dry
milk powder in tris-buffered saline (TBS) containing 0.1% Tween20,
membranes were incubated with primary and secondary antibodies
and visualized using a chemiluminescence ECL system (Super Signal
West Femto, ThermoScientific). f —Actin was used as loading control.

2.11. Statistical analysis

Each experiment was repeated at least three times and pre-
sented as the mean =+ standard deviation unless noted otherwise.
Statistical analysis was calculated using one-way analysis of vari-
ance or Student t test with GraphPad Prism software, version 5.00,
and the level of significance was set at a P value of <0.05(*), <0.01
(**), or <0.001(***).

3. Results
3.1. Rg5 reverses ABCB1-mediated MDR

The ICs values of Rg5 were 64.59 and 54.36uM for resistant
A2780/T cell (without adding 0.94 pM PTX to culture medium) and

sensitive A2780 cell, respectively (Fig. 1B). This compound showed
antitumor effects against both resistance and sensitive human
ovarian and lung cancer cell lines, but its cytotoxicity is much lower
than that of PTX, TXT, DOX, and etc (Fig. 1C). As Rg5 did not inhibit the
growth of MDR cell lines at concentration of 8uM, therefore, the
maximum concentration of Rg5 used in the reversal assays was 8 uVL.

As the cytotoxicity curves shift left (Fig. 2B), treatment with Rg5
significantly enhanced the antitumor effects of TXT by decreasing
the IC5¢ in a dose-dependent manner in A2780/T cells. Specifically,
treatment with 2, 4, and 8 pM Rg5 reduced the ICs of TXT by 1.95-,
4.55-, and 17.38-fold, respectively. However, Rg5, at tested con-
centrations, did not affect the IC5g of TXT in the sensitive A2780
cells (Fig. 2A). In addition, as shown in Table 1, Rg5 (8 uM) also
sensitizing PTX, DOX, and DON to A2780/T cells with reversal fold of
6.68, 6.38, and 5.31, respectively; however, it also enhanced the
effects of 5-FU (nonsubstrate of ABCB1) with a reversal fold of 6.67.

Moreover, another ABCB1-overexpressing MDR A549/T cells and
its parental A549 cells were used to demonstrate the reversal ef-
fects of Rg5 to TXT and other chemotherapy drugs (Table 1). In
Fig. 2C, Rg5 at dosage of 2, 4, and 8 uM significantly reduced the ICsq
of TXT with reversal fold of 1.58, 4.47, and 11.22, respectively
(Fig. 2D). Rg5 did not affect the ICsp of TXT in the sensitive A549
cells at same concentrations (Fig. 2C).

Colony formation assays, a gold standard for measuring the ef-
fects of cytotoxic agents on cancer cells in vitro, were used to
evaluate the long-term reversal effects of Rg5. As expected, treat-
ment with 1.2 pM TXT and Rg5 completely inhibited colony for-
mation of MDR cancer cells (Fig. 2E). Either 8 uM Rg5 or 1.2 uM TXT
alone did not affect the colony formation. All these results sug-
gested that Rg5 significantly sensitized MDR cancer cells to
chemotherapy drugs.

3.2. Rg5 potentiates apoptosis induced by TXT

Consistent with the results of cell growth, apoptosis was
significantly enhanced by cotreatment of TXT and Rg5 as shown in
Fig. 3A, while TXT (1.2 uM) or Rg5 (8 uM) alone did not induce cell
apoptosis. Notably, we found that the inhibition of Rg5 at 2 uM with
TXT (1.2 pM) on the cell growth is same as that of 14.22 uM TXT
(IC50 of TXT in A2780/T) in A2780/T cells.

Since it has been recently reported that Rg5 (100 uM) induced
cell cycle arrest in GO/G1 phase [25], we then evaluated whether
cell cycle arrest is related to sensitizing effect of Rg5. Cell cycle
progressions were examined by flow cytometry in asynchronously
growing A2780/T cells and its sensitive A2780 cells treated with
TXT in the absence or presence of Rg5.

There were 71.9% of cells at G1 phase and 17.1% of cells at G2
phase after incubated with 1.2uM TXT, which is similar to the phase
ratios in vehicle group. Exposure to TXT (14.22uM) for 48 hours
resulted in G2-M arrest (>60%) in A2780/T cells (Fig. 3B). We
observed that cells treated with Rg5 and TXT (1.2uM) significantly
shifted to 37.9% of G1 and 41.8% of G2 phase (Fig. 3B). This pattern
was evident at 24 h after cotreatment and persisted over to 72 h.
However, cell cycle distribution of A2780/T was not changed after
treatment with Rg5 (8 uM) alone. Therefore, Rg5 significantly en-
hances the cell growth inhibition, G2ZM cell cycle arrest, and
apoptosis induced by 1.2uM TXT, although A2780/T cells were
remarkably resistant to 1.2uM TXT.

3.3. Synergistic effects of Rg5 and TXT against MDR cells

To evaluate the synergistic cytotoxic effects of Rg5 and TXT
against A2780/T cells, CI based on the median-effect method were
determined at 50% effective dose (EDsg) and 90% effective dose
(EDgp) [22]. We found that the CI values of Rg5—TXT combination at
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Fig. 2. Rg5 recovered sensitivity to docetaxel. Cells were treated with the indicated drugs for 48 hours and subjected to SRB assay. Rg5 reduces the ICso of TXT in resistant cancer
cells (A2780/T) (B) and A549/T (D) but not in drug sensitive (A2780) (A) and A549(C). (E) Rg5 inhibited the colony formation of TXT in resistant cancer cells A2780/T in a dose-

dependent manner. #* **p < 0.01, #*#***p < 0,001 vs absence of Rg5.
TXT, docetaxel; SRB, Sulforhodamine B.
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Table 1

Rg5 sensitized the chemotherapy Drug Paclitaxel, docetaxel, 5-fluorouracil,
daunorubicin, and doxorubicin to ABCB1-Mediated Drug resistance A2780/T Cells.

J Ginseng Res 2020;44:247—257

Table 2

The values of CI and the synergism dose of Rg5 and TXT at Fa 0.5 (EDsp) and Fa 0.9

(EDgp).

Drug A2780/T A549|T CI value Dose Rg5(uM) Dose TXT(uM)
ICs0 + SD (uM) Fold reversal 1Csg & SD (uM) Fold reversal Data for Fa = 0.5

Paclitaxel 3.55 + 0.88 1.00 3.35+0.38 1.00 55(?1_ ; ?9'56 /]6 02
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+8uM Rg5 0.53 + 0.36** 6.68 0.60 + 0.26** 5.62 Re5 ) / 6.29 /

Docetaxel 14.22 + 1.31 1.00 841 +1.17 1.00 T;g(T / /' 18

+2uM Rg5 7.28 + 0.75* 1.95 531 +0.84 1.58 :

+4uMRg5  3.13 + 0.66™* 455 1.88 + 0.76* 447 Rg5+TXT 0.05 018 0.04
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+4uM Rg5 1.87 + 0.66* 3.59 2.25 +0.56 1.58 represent a synergistic combination, CI values equal to 1 are additive and CI
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o

of TXT to 1.79 uM which is an 8.95-fold decrease compared with
TXT given alone (Table 2). The quantitative diagnostic graphics for
this synergistic effect between Rg5 and TXT were shown in
Supplementary Fig. 2. In addition, we evaluated the cytotoxicity of
Rg5 and TXT singly or in-combination and noticed that Rg5 did not
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Fig. 3. Effects of Rg5 on the apoptosis and cell cycle of MDR cancer cells. (A) The cells were treated with different concentrations of Rg5 and/or TXT (1.2uM) for 48h, stained with
annexin V—FITC and PI, and analyzed by flow cytometry. (B) The cell cycle distribution profiles of the cells treated with Rg5 and/or TXT (1.2uM) were determined by flow cytometry.

The data are representative of three different experiments and are shown as mean + SD (n

= 3). ¥ ““p < 0.001 vs

the control group.

FITC, fluorescein isothiocyanate; MDR, multidrug resistance; PI, propidium iodide; SRB, Sulforhodamine B; SD, standard deviation; TXT, docetaxel.
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affect cytotoxicity of TXT in normal BEAS-2b

(Supplementary Fig. 3).

lung cells

3.4. Intracellular accumulation of DOX and Rho123

To explore the underlying mechanism of this phenomenon, the
intracellular accumulation of P-gp substrates such as DOX and
Rho123 in sensitive A2780 cells and drug resistant A2780/T cells
were performed with flow cytometry analysis.

As shown in Fig. 4, accumulation of DOX and Rho123 in A2780
indicated with fluorescence were much higher than that in A2780/
T. When the drug-resistant cells were treated with 8 uM Rg5 or 20
uM QND (a reference P-gp inhibitor), the intracellular accumulation
of Rho123 (Fig. 4A) and DOX (Fig. 4B) were significantly increased
in A2780/T compared with vehicle control. In contrast, Rg5 did not
affect the intracellular levels of DOX and Rho123 in the sensitive
A2780 cells. Therefore, our results indicated that Rg5 enhanced the
antitumor effects of chemotherapy agents in MDR cancer cells by
significantly increasing their intracellular accumulation.

3.5. Rg5 inhibits ABCB1-mediated efflux in Caco-2 cells

To confirm the effect of Rg5 on the function of ABCB1 transporter
(P-gp), Caco2 monolayer cell model which has been widely used for
predicting human drug absorption and efflux activity of transporters
[26] were used to evaluate the efflux ratio of the P-gp substrate Rho
123 in the presence or absence of Rg5. Notably, Rg5 increased the
values of Papp (A-B) of Rho 123 (Fig. 5A) and reduced efflux ratio of
Rho123 (>50%) dose dependently after 2 hours incubation (Fig. 5B).
These results confirmed that Rg5 inhibited ABCB1 transporter lead-
ing to increased Rho 123 accumulations in MDR cells.

3.6. Rg5 activates the ATPase activity of ABCB1

Transporters use ATP hydrolysis to pump molecules across the
membrane; therefore, we evaluated the effects of Rg5 on the

A
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ABCB1-mediated ATP hydrolysis. As shown in Fig. 5C, there is a
three-fold increase over the basal activity for the ATPase activity of
ABCB1 after treatment with Rg5 with ECsg at 9.75uM, indicating
that Rg5 might interact at the drug—substrate binding site as a
substrate of ABCBI1.

We also examined the inhibition effects of Rg5 on Ver-stimulated
ABCB1 ATPase activity for further understanding the interaction of
Rg5 on the ABCB1 binding site. Ver, an ABCB1 inhibitor and substrate
for transport, could competitively interfere with transportation of
other ABCB1 substrates. Here, we showed Rg5 significantly reduced
the ATPase activity stimulated by Ver with an ICsg value of 9.16uM
(Fig. 5D), which suggested that Rg5 was an ABCB1 inhibitor and
competitive bound to the ABCB1trasnporter.

3.7. Molecular docking analysis

To understand the binding mechanism between Rg5 and P-gp,
Surflex-dock embedded in Tripos Sybyl X 2.0 was performed using
the crystal structure of QZ59-RRR bound to P-gp (PDB ID: 4M2S).
The selected pose of Rg5 fitted the binding site pocket of P-gp well
with the docking score (Total_Score) of 5.95, which is close to that
(6.01) of the reference compound QND. Our docking result indi-
cated that Rg5 formed several kinds of specific interactions with P-
gp (Fig. 6). Rg5 formed four hydrogen bonds with Tyr306, GIn721,
and Tyr949 (Fig. 6B). The m-c interaction was also observed be-
tween Rg5 and P-gp. Besides these interactions, Rg5 also formed
Van der Waals interactions and hydrophobic interactions with such
residues as Met68, Phe331, Phe332, Leu335, Ile336, Phe339,
GIn343, Phe724, and Phe979 in the binding pocket (Fig. 6C). All
these interactions contributed to the putative binding pattern of
Rg5 in P-gp.

3.8. Rg5 does not affect the expression of ABCB1

Reducing ABCB1 expression or inhibiting the function of ABCB1
transporter are the most common mechanisms for the sensitizing
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Fig. 4. Effects of Rg5 on the intracellular accumulation of Rho123 and doxorubicin (DOX) in MDR ovarian cancer cells. (A) A2780 cells or A2780/T cells treated with 5pM
Rho123 for 8 hours in the absence or presence of Rg5(2,4,8:M), and 20uM quinidine (positive control) as indicated. (B) A2780 cells or A2780/T cells treated with 10pM DOX for 8
hours in the absence or presence of Rg5(2,4,811M), and 20uM quinidine (positive control) as indicated. Intracellular DOX and Rho123 accumulation were evaluated by measuring
fluorescence with flow cytometry as described in Method. The experiments were repeated for at least 3 times, presented are representative images.

DMSO, dimethyl sulfoxide; MDR, multidrug resistance; QND, quinidine.
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Fig. 5. Effects of Rg5 on the efflux ratio of Rho123 and DOX as well as the P-gp ATPase activity. (A) Rg5 increased the directional transport of Rho123 (5uM) and (B) decreased
the efflux ratio of Rho123 (5uM) in Caco2 cells. WMAP— BL transport, (JBL— AP transport. (C) ECso measurements for stimulating the P-gp ATPase activity by Rg5 or verapamil
(positive control). (D) ICso measurements for inhibiting 200uM verapamil-stimulated P-gp ATPase activity. Luminescence was read on a luminometer, and data were analyzed as
described in Material and Method. **p < 0.05, ##, *p < 0.01 vs absence of Rg5.

P-gp, P-glycoprotein; DOX, doxorubicin; Ver, verampil; QND, quinidine.

A

Fig. 6. Molecular docking analysis of binding pattern of Rg5 with P-gp protein. (A) Molecular docking analysis of Rg5 with P-gp. The putative binding pattern of Rg5 (yellow)
and P-gp (green) is shown in the binding site. (B) The interactions between Rg5 and P-gp. Hydrogen bonds are depicted in dashed yellow lines. (C) Two-dimensional interaction
mode between Rg5 and P-gp. Hydrogen bonds and m-7t/c-7 interactions are shown in green and blue lines. Green and purple bubbles represent hydrophobic and polar amino acid
residues, respectively.
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effect on efflux transporter—mediated MDR. Here, we also evalu-
ated the effect of Rg5 on the expression of ABCB1. Interestingly, Rg5
did not alter the protein level of ABCB1 (Fig. 7A) in A2780/T cells at
the reversal concentrations. Therefore, Rg5 inhibited ABCB1
transporter function but not affect the expression of ABCB1.

3.9. Rg5 inhibits Nrf2/AKT pathways

Recently studies indicated that activation of Nrf2/PI3K/AKT, ERK
pathways was closely associated with resistance to chemotherapy
drugs [27,28]. Moreover, it has been reported that antitumor drugs
inhibited these signaling pathways and could enhance tumor cell
sensitivity to chemotherapy drugs [29,30]. Hence, we also explored
the expression of total and phosphorylated AKT and ERK after
treatment with Rg5. Our data indicated that phosphorylated AKT
was significantly increased in A2780/T cells compared with A2780
cells. Rg5 (24uM) alone or in combination with TXT significant
inhibited the expression of phosphorylated AKT, but not the
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Fig. 7. Effects of the combination treatment of TXT and Rg5 on the expression of
ABCB1 and AKT/ERK/Nrf2 pathway. (A) Combination treatment of TXT and Rg5 did
not influence P-gp expression levels in A2780/T cells, but (B) reduced the phosphor-
ylation of AKT and the expression level of Nrf2 which are significantly increased in
A2780/T cells by compared with A2780 cells (marked with red lines).

P-gp, P-glycoprotein; TXT, docetaxel.

expression of total AKT, ERK, and phosphorylated ERK (Fig. 7B).
Therefore, inhibition of PI3K/AKT pathways was related with the
enhanced cytotoxic response by combination treatment with Rg5
and TXT in ABCB1-mediated MDR cancer cells.

Moreover, it was demonstrated that blockade of transcription
factor Nrf2 could sensitize a variety of cancer cells to chemotherapy
drugs [31,32], indicating that the activation of Nrf2 enhances che-
moresistance [33]. Here, we observed a remarkably higher level of
Nrf2 in A2780/T cells than that of A2780 cells, while combination
treatment of Rg5 with TXT suppressed the expression of Nrf2
(Fig. 7). These results indicated that MDR reversal effect of Rg5 to
chemotherapy agents was also caused by inhibition of Nrf2/PI3K/
AKT pathways.

3.10. Rg5 overcomes TXT resistance in nude mice bearing A549/T
cells tumor

We next evaluated whether Rg5 could overcome TXT resistance
in A549/T xenograft model. Based on the literature, an effective dose
(10 mg/kg) was chosen for the TXT [34,35], which is within the
safety range and well tolerated in our study (Fig. 8A). As shown in
Fig. 8B, TXT alone has no effect on treating MDR tumors at 10 mg/kg
as there is similar tumor progression between TXT treated group and
vehicle control group. However, treatment with both TXT and Rg5
significantly inhibited the growth of drug resistance tumor in a
dose-dependent manner, indicating considerable therapeutic effi-
cacy. Notably, high dose of Rg5 (50mg/kg) with TXT greatly dimin-
ished the growth of tumors by 48% in A549/t xenograft model.

At the end of the experiment, tumors were carefully removed
and weighed (Fig. 8C—D). The smallest tumor weight was observed
with the group given TXT and high dose of Rg5, which was 2.3-fold
smaller than that of the vehicle group and nearly two-fold smaller
than that of TXT or Rg5 treated groups. Moreover, weight loss was
not observed in the combination treatment groups indicating Rg5
did not increase toxicity of TXT. All results demonstrate that com-
bination therapy of Rg5 with TXT overcomes the ABCB1-mediated
resistance in vitro and in vivo.

4. Discussion

TXT has been used as first-line chemotherapy drug since 2004,
but the occurrence of resistance to TXT has been a major reason
leading to the treatment failure of cancer. Currently, scientists are
aimed on discovering more efficacious and less toxic compounds
from natural products to reverse MDR. Pilot studies in small animal
and human clinical trials indicated that Rg5 had a favorable safety
profile and significant effects in reducing cisplatin-induced neph-
rotoxicity, antioxidant, antiapoptotic, and antiinflammatory effects
as well as treating diabetes [16,36]. Although the pharmacokinetic
behavior of Rg5 has not been investigated, other protopanaxadiol
ginsenosides such as Rh2 and Rg3 from red ginseng have relative
high plasma concentrations. For example, the average maxima
concentration of Rg3 was 36.4mg/L (46.5uM) in tumor-bearing rats
and 81.6 mg/L (104.2uM) in rats after oral administration at the dose
of 50 mg/kg of ginsenoside Rg3 [37]. Considering its appropriate
structure and safety, we investigated whether Rg5 could sensitize
the ABCB1-overexpression MDR cancer cells to chemotherapy
agents in vitro and in vivo, as well as the underlying mechanisms.

In this study, for the first time, we found that Rg5 at non-
cytotoxic concentrations significantly potentiated the antitumor
effects of chemotherapy agents including DOX, PTX, TXT, and DON
to MDR cell lines A2780/T, and A549/T, but not affect the toxicity in
sensitive cells. Moreover, Rg5 and TXT significantly inhibited the
growth of drug resistance tumor by 48% in the A549/T xenograft
model, which is comparable with the in vivo MDR effects reported
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in literature for the third generation P-gp inhibitors such as 0C144-
093 [38] and LY335979 [39]. The underlying mechanism study
indicated that Rg5 inhibits the efflux activity of ABCB1 transporter
leading to the intracellular accumulation of drugs in MDR cancer
cells but not in sensitive cells, which was illustrated clearly by
docking analysis as the ligand Rg5 was well-fitted into a druggable
cavity of ABCB1 transporter with a similar affinity as QND.

As energy used by ABCB1 transporter comes from ATP hydro-
lysis, we also investigated the ATPase activity of ABCB1 transporter
to confirm our previous assumption. Our results indicated that Rg5
might be a substrate of ABCB1 as it stimulated the activity of
ATPase. Moreover, it inhibited the ATPase activity stimulated by
Ver, indicating it bound to the ABCB1 transporter with high affinity
and left little place for other agents bind to the transporter, which
resulted in decreased activity of ABCB1 transporter.

Moreover, recent studies suggested that the MAPK/ERK, PI3K/
AKT, and Nrf2 signaling pathways is important for multiple drugs
resistance [28] as downregulating the AKT/ERK and Nrf2 signaling
pathways could overcome MDR to drugs such as PTX, DOX, and
5-FU [30]. In this study, inhibition of AKT/ERK and Nrf2 pathways
are associated with the sensitizing effect of Rg5. These results not
only elucidate the multiple targets for the therapeutic effects of
Rg5 but also was helpful for explaining the reversal effect of Rg5
against 5-FU which is not a P-gp substrate. Moreover, as Nrf2
expression could be induced via upregulation of PI3K/AKT and/or
MAPK/ERK signaling pathways [40], the sensitizing effect of Rg5 to
MDR could be caused by downregulating the PI3K-Akt pathways
which reduced the Nrf2 expression.

Although Nrf2 has emerged as an important contributor to
chemoresistance, how Nrf2 plays such a role still remains un-
known. A growing amount of evidence indicates that Nrf2 tran-
scription promotes ROS detoxification and carcinogenesis though
metabolic rewiring to support the antioxidant systems, leading to
cancer cell growth and proliferation [41—43]. In addition, Nrf2-
mediated regulation of ABCC2 and ABCG2 expression confers che-
moresistance via enhancing drug efflux [44,45]. Recently, over-
expression of Nrf2 and ABCB1/P-gp were observed in colorectal
cancer patients [46], and Nrf2 overexpression is associated with P-
glycoprotein upregulation in gastric cancer [47] which is consistent
with our observation in A2780/T cells and A549/T cells. However, in
this study, Rg5 could downregulate Nrf2 signaling but not change
P-gp protein level in A2780/T cells, indicating that inhibition of Nrf2
expression can improve the efficacy of chemotherapeutic agents in
addition to inhibiting P-gp mediated drug efflux.

In conclusion, this study demonstrated that Rg5 effectively
overcomes ABCB1-mediated drug resistance by inhibiting ABCB1
transporter and suppressing the chemoresistance-related AKT/Nrf2
pathways. In addition, Rg5 did not affect the expression of ABCB1
transporter. Considering the safety of Rg5, we believe that Rg5 may
be a good combination therapy candidate for ABCB1-medicated
drug resistance.
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