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Comparing genomes is an essential preliminary step to solve many problems in biology. Matching long similar segments between
two genomes is a precondition for their evolutionary, genetic, and genome rearrangement analyses. Though various comparison
methods have been developed in recent years, a quantitative assessment of their performance is lacking. Here, we describe two
families of assessment measures whose purpose is to evaluate bacteria-oriented comparison tools. The first measure is based on
how well the genome segmentation fits the gene annotation of the studied organisms; the second uses the number of segments
created by the segmentation and the percentage of the two genomes that are conserved. The effectiveness of the two measures
is demonstrated by applying them to the results of genome comparison tools obtained on 41 pairs of bacterial species. Despite
the difference in the nature of the two types of measurements, both show consistent results, providing insights into the subtle
differences between the mapping tools.
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1. Introduction

With the dramatic increase in the number of sequenced
genomes, comparative genome analysis has become increas-
ingly common. Evolutionary, genetic, and genome rear-
rangement studies require as a first step the comparison of
two whole genomes, referred to as genome mapping or whole
genome alignment, with subsequent analyses dependent on
the quality of the mapping [1–3]. This mapping (Figure 1)
usually consists of a segmentation of the two genomes
into fragments, and the matching of fragments between the
two genomes according to type of evolutionary relations:
for example, orthology, paralogy, segmental deletions and
insertions (segmental indels), or rearrangement [4–6].

Though numerous mapping procedures have been pro-
posed in recent years, few objective criteria have been
suggested for quantitatively assessing them. Early methods
relied mainly on gene annotation for building the mappings:
for example, [7] was based on P-quasi grouping, [8–
10] tried to identify contiguity and gene clusters, [11]
used an alignment-like approach, and [12] relied on gene
correspondence. Later methods utilized the increase in the
available genomic sequences resulting from advances in
genome assembly techniques [13]: examples are BlastZ [14]

which was applied on the mouse and human genomes
[15], and the genome-rearrangement approaches in [16–
19]. Methods that addressed bacterial genomes include
Mauve [20], its predecessor GRIL [21], MAGIC [22] (see
Section 2 for details), and [23]. Methods were recently
developed to evaluate the accuracy of alignments on the
whole genome level [2]. In contrast, we describe two
methods that evaluate the quality of the mapping as a
whole, including its induced segmentation of the genomes
and the inferred relations between the resulting fragments
(Figure 1).

We present two families of simple, biologically intuitive
measures for quantitatively assessing the quality of bacterial
genome mapping. The first family relies on the assumption
that evolutionary changes are not likely to disrupt genes;
hence, a better genome mapping should have fewer gene
disruptions and its induced segmentation should show a
better fit to known gene annotations. The second family uses
two factors: segmentation size (the number of fragments in
the mapping), and whole genome conserved percentage (the
number of exact base matches in the global alignment of the
mapping’s induced fragments divided by the genome size).
Clearly, a mapping with more fragments will have a higher
conserved percentage.
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Figure 1: A schematic illustration of a genome mapping result.
Each genome (illustrated as a straight line) is broken into segments
or fragments (the labeled rectangular blocks), and each segment
is mapped to a corresponding one in the other genome. The
breakage of the genome into segments is referred to as segmen-
tation. Segments with an identical label but different signs have
reversed orientation. Note that a segmentation may leave regions
outside of the blocks. Those regions are considered segmental
insertions/deletions and are not included in the mapping between
the genomes.

The power of the measures is demonstrated by applying
them to the results of the genome mapping tools MAGIC
[22] and Mauve [20] on 41 pairs of bacterial species.
Both MAGIC and Mauve were designed specifically for
bacterial genome mapping. (Tools designed for eukaryotic
genome mapping—for example, CHAIN-NET [15], FISH
[24], GRIMM-Synteny [19], SLAGAN [16], TBA [25], and
the more recent approach of [18]—are geared toward han-
dling much larger genomes possessing extremely different
characteristics.) As we will show, the measures are capable
of discriminating between the results of the mapping tools,
and providing quantitative estimates on their performance.

2. Materials and Methods

2.1. Mapping Tools. The following is an overview of MAGIC
and Mauve. Detailed descriptions are given in [20, 22]
and on the websites http://magicmapping.sourceforge.net/
for MAGIC and http://gel.ahabs.wisc.edu/mauve for Mauve.
MAGIC C/C++ implementation version 1.0 and Mauve
version 2.2.0 were used (the most recent versions at the time
the comparisons were performed).

A brief sketch of the two algorithms. Procedures for
mapping between genomes can be conceptually divided into
two phases: a pre-processing phase aimed at finding maximal
local similarities between the genomes, and a mapping phase
aimed at inferring one-to-one correspondences out of these
similarities. In MAGIC, a linear pipeline of global and
local alignments is used to compute a comprehensive set of
maximal similar regions in the two genomes. This phase is
initialized with a set of anchors between the two genomes.
Normally, MAGIC uses annotated genes as anchors, but
here anchors were provided from Mauve (see below) in
order to avoid bias in the assessment scores. The result of
the pre-processing phase is then iteratively clustered into
reorder-free (RF) regions, while resolving conflicts between
its different entries based on contextual hints. In Mauve,
the pre-processing phase calculates maximal unique matches
(MUMs) and filters them according to their lengths. Then, in
the mapping phase, overlaps between the MUMs are resolved

in a pairwise fashion, and locally collinear blocks (LCBs)
are calculated based on iterative breakpoint analysis. Out of
the final set of LCBs, Mauve calculates its backbones—one-
to-one LCB correspondences containing no big gaps. These
backbones were used here also as anchors for MAGIC.

MAGIC and Mauve use different approaches to filtering
mobile DNA elements or mobilome [26, 27]. Mobile DNA
content is high in some of the compared bacteria, reaching
up to 20% (e.g., in Streptococcus pyogenes [22]). To make
handling mobile DNA as comparable as possible, MAGIC’s
mobile DNA filtering step was deactivated, and its length
threshold for discarding entries at the beginning of the
mapping phase was increased from 200 bp to 1000 bp (see
[22] for details). This change is disadvantageous to MAGIC
as it forces it to deviate from the native settings. In addition,
both MAGIC and Mauve were run with their default
parameters. On average, MAGIC’s run takes 118 seconds,
while Mauve’s takes 35 seconds.

2.2. Gene Annotation and Gene Disruptions (GDs). Gene
annotations for the different prokaryotic organisms are
obtained through KEGG (Kyoto Encyclopedia of Genes and
Genomes) [28].

To reduce the sensitivity of the GD scores to gene end
annotation errors, we counted a breakpoint induced from the
mapping as disrupting a gene only if it was located inside
the gene and at a considerable distance (>10% of the gene’s
length) from its end.

2.3. Conserved Percentages. The end result of MAGIC and
Mauve is a mapping between rearrangement-free segments
in one genome to their counterparts in the second genome.
To calculate conserved percentages for our purposes, these
segments were globally aligned in a post-processing step and
orthologous segments were identified using the procedure
for calculating backbones described in [20]. The conserved
percentage was defined as the number of base matches
in these fragments divided by the size of the genome
(Section 3.2).

2.4. Statistical Tests. The differences observed in the mea-
sures defined in Section 3 are quantified by two statistical
tests: the one-sided sign (binomial) test [29] and the one-
sided Wilcoxon signed-rank test [30] (see also [31] for more
details). The null hypothesis for these tests states that the
results of Mauve are at least as good as those of MAGIC. The
significance level is set to 0.05 for both tests.

3. Results

We present each measure and its results. More details about
the mapping tools, gene annotations, and statistical tests can
be found in Section 2.

3.1. Gene Annotation-Based Measure. Given a mapping
between two genomes, we used the induced segmentation
in each of the genomes to evaluate the quality of the
mapping. Each of the two segmentations was assigned a
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Table 1: The 41 bacteria pairs. Pair: number of the pair. Organism: names of the organisms. Size: genome size in base pairs. MAGIC:
MAGIC’s results. Mauve: Mauve’s results. Seg.: segmentation size. Ratio: conserved percentage. The pairs are sorted in alphabetical order.
For each pair, the best obtained scores are marked in bold.

Pair Organism Size
MAGIC Mauve

Seg. Ratio Seg. Ratio

1 Anaplasma marginale St. Maries 1197687
74 0.35 94 0.37

Anaplasma phagocytophilum HZ 1471282

2 Bacillus cereus ATCC 14579 5411809
63 0.77 260 0.77

Bacillus cereus E33L (zebra killer) 5300915

3 Blochmannia floridanus 705557
1 0.67 1 0.67

Blochmannia pennsylvanicus 791654

4 Bacteroides fragilis YCH46 5277274
58 0.87 146 0.88

Bacteroides fragilis NCTC 9343 5205140

5 Bartonella henselae Houston-1 1931047
12 0.73 37 0.74

Bartonella quintana Toulouse 1581384

6 Bordetella pertussis Tohama I 4086189
147 0.79 189 0.8

Bordetella bronchiseptica RB50 5339179

7 Buchnera aphidicola APS 640681
1 0.76 2 0.76

Buchnera aphidicola Sg 641454

8 Campylobacter jejuni subsp. jejuni NCTC 11168 1641481
3 0.9 8 0.9

Campylobacter jejuni RM1221 1777831

9 Clostridium perfringens 13 3031430
9 0.82 94 0.83

Clostridium perfringens SM101 2897393

10
Cyanobacteria bacterium Yellowstone A-Prime (Synechococcus
sp. JA-3-3Ab)

2932766
330 0.67 561 0.71

Cyanobacteria bacterium Yellowstone B-Prime (Synechococcus
sp. JA-2-3B′a(2-13))

3046682

11 Dehalococcoides ethenogenes 195 1469720
20 0.7 47 0.71

Dehalococcoides sp. CBDB1 1395502

12 Ehrlichia ruminantium Welgevonden (South Africa) 1516355
2 0.96 13 0.96

Ehrlichia ruminantium Gardel 1499920

13 Francisella tularensis subsp. tularensis SCHU S4 1892819
54 0.96 67 0.96

Francisella tularensis subsp. holarctica OSU18 1895727

14 Haemophilus influenzae Rd KW20 (serotype d) 1830138
13 0.87 34 0.87

Haemophilus influenzae 86-028NP (nontypeable) 1913428

15 Helicobacter pylori 26695 1667867
25 0.87 67 0.87

Helicobacter pylori J99 1643831

16 Listeria monocytogenes EGD-e (serotype 1/2a) 2944528
14 0.79 47 0.79

Listeria innocua CLIP 11262 (serotype 6a) 3011208

17 Legionella pneumophila Lens 3345687
14 0.86 64 0.86

Legionella pneumophila Paris 3503610

18 Mycoplasma genitalium G-37 580076
6 0.56 13 0.56

Mycoplasma pneumoniae M129 816394

19 Mycoplasma hyopneumoniae 232 892758
16 0.94 37 0.94

Mycoplasma hyopneumoniae 7448 920079

20 Mycobacterium tuberculosis H37Rv, laboratory strain 4411532
3 0.99 10 0.99

Mycobacterium tuberculosis CDC1551, clinical strain 4403837

21 Neisseria meningitidis MC58 (serogroup B) 2272351
14 0.83 321 0.87

Neisseria meningitidis Z2491 (serogroup A) 2184406

22 Nitrobacter winogradskyi Nb-255 3402093
109 0.52 301 0.53

Nitrobacter hamburgensis X14 4406967
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Table 1: Continued.

Pair Organism Size
MAGIC Mauve

Seg. Ratio Seg. Ratio

23 Psychrobacter arcticum 273-4 2650701
27 0.69 148 0.69

Psychrobacter cryohalolentis K5 3059876

24 Pseudomonas fluorescens Pf-5 7074893
182 0.54 391 0.55

Pseudomonas fluorescens PfO-1 6438405

25 Prochlorococcus marinus SS120 (subsp. marinus CCMP1375) 1751080
32 0.46 84 0.48

Prochlorococcus marinus MIT 9312 1709204

26 Rhodopseudomonas palustris CGA009 5459213
170 0.59 392 0.61

Rhodopseudomonas palustris HaA2 5331656

27 Rickettsia prowazekii Madrid E 1111523
16 0.69 27 0.7

Rickettsia felis URRWXCal2 1485148

28 Streptococcus agalactiae 2603 (serotype V) 2160267
12 0.9 20 0.9

Streptococcus agalactiae A909 (serotype Ia) 2127839

29
Staphylococcus aureus subsp. aureus N315, meticillin-resistant
(MRSA)

2814816
13 0.93 83 0.93

Staphylococcus aureus subsp. aureus MW2 2820462

30 Shigella flexneri 301 (serotype 2a) 4607203
22 0.98 38 0.98

Shigella flexneri 2457T (serotype 2a) 4599354

31 Staphylococcus haemolyticus JCSC1435 2685015
95 0.49 175 0.51

Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305 2516575

32 Streptococcus pneumoniae TIGR4 2160842
8 0.92 110 0.92

Streptococcus pneumoniae R6 2038615

33 Streptococcus pyogenes MGAS8232 (serotype M18) 1895017
23 0.91 130 0.93

Streptococcus pyogenes SSI-1 (serotype M3) 1894275

34 Streptococcus thermophilus CNRZ1066 1796226
6 0.96 31 0.97

Streptococcus thermophilus LMG18311 1796846

35 Salmonella enterica serovar Typhi CT18 4809037
4 0.99 8 0.99

Salmonella enterica serovar Typhi Ty2 4791961

36 Synechococcus sp. WH 8102 2434428
188 0.11 323 0.11

Synechococcus elongatus PCC6301 2696255

37 Thermus thermophilus HB27 1894877
7 0.92 32 0.93

Thermus thermophilus HB8 1849742

38 Tropheryma whipplei Twist 927303
2 0.98 37 0.98

Tropheryma whipplei TW08/27 925938

39 Xanthomonas campestris pv. campestris ATCC 33913 5076188
57 0.68 254 0.68

Xanthomonas campestris pv. vesicatoria 5178466

40 Xylella fastidiosa 9a5c 2679306
25 0.86 266 0.86

Xylella fastidiosa Temecula1 2519802

41 Yersinia pestis CO92 4653728
23 0.87 48 0.99

Yersinia pestis KIM 4600755

Gene Disruption (GD) score denoting how many genes the
segmentation disrupts. We say that a segmentation disrupts a
gene if it has a segment end within the gene that is sufficiently
far from the gene’s ends (see Section 2.2 ). The GD-score of
the mapping is defined as the sum of the GD-scores of both
segmentations.

The GD-scores for the 41 pairs (Table 1) are summarized
in Figure 2(a). In 37 pairs, either MAGIC or Mauve was

assigned a non-zero GD-score. MAGIC did not disrupt any
genes in five pairs, and Mauve in four. MAGIC’s GD-scores
ranged from 0 to 333, while Mauve’s GD-scores ranged from
0 to 974. MAGIC’s score was lower than or equal to Mauve’s
on all pairs: MAGIC had lower scores in 37 pairs, and in the
four remaining pairs both methods were assigned a score of
0. The results were significantly in favor of MAGIC (P-value
7× 10−12; sign test). The mean GD-score values were 44 and
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Figure 2: (a) GD-scores and (b) their normalization by segmenta-
tion sizes for both MAGIC and Mauve. The X-axis lists the pairs (as
in Table 1), with MAGIC and Mauve results represented in the left
and right bars, respectively, of each pair. The Y-axis is the scores.
The rightmost column is the mean score for the method.

198 for MAGIC and Mauve, respectively; the difference is
statistically significant (P-value 6× 10−8; Wilcoxon test).

3.1.1. Dependency of Scores on Segmentation Size. Because
a mapping with more segments can disrupt more genes,
we analyzed the GD-score dependency on the segmentation
size (the number of fragments in the mapping) by first
normalizing the score according to the segmentation size,
and then linearly fitting the score to the segmentation size.

Figure 2(b) presents the results for the normalization.
Here, the scores were divided by the segmentation size. The
normalized GD-scores of Magic and Mauve ranged from 0 to
3. (The maximum possible value of 4 occurs if two mapped
segments disrupt two genes in each of the genomes.) MAGIC
had lower normalized scores in 32 pairs, while Mauve had
lower ones in 5 pairs. MAGIC’s advantage was significant
(P-value 4 × 10−6, sign test). The mean normalized GD-
scores of MAGIC and Mauve were 1 and 1.4, respectively; the
difference is significant (P-value 4× 10−6, Wilcoxon test).

Figure 3 shows a linear fitting of the scores to the
segmentation sizes. The linear fitting is constrained to pass
through the origin (0 segments imply 0 score). The estimated
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Figure 3: The GD-scores as a function of segmentation size for
MAGIC and Mauve. TheX-axis is the segmentation size. TheY-axis
is the GD-scores. Least-squares estimated linear fittings are shown
as straight lines.
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Figure 4: The difference between Mauve and MAGIC in segmenta-
tion size and matching percentage.

slopes are 0.9 ± 0.07 and 1.6 ± 0.1 for MAGIC and Mauve,
respectively (R2 = .82 and .86, resp.).

3.2. Segmentation-Matching Based Measure. This measure
assesses the coverage of the mapping and its accuracy at the
single base level. The conserved percentage of a genome is
defined as the number of exact base matches in the segments’
alignments—as dictated by the mapping—divided by the
genome size. The conserved percentage of a pair of genomes
is the mean of their conserved percentages. Increasing the
number of segments in both genomes allows more freedom
in the correspondence between them, which can improve
their conserved percentage. Hence, a mapping with both a
smaller segmentation size and a greater conserved percentage
is deemed superior.

Table 1 gives the segmentation sizes and conserved
percentages obtained for MAGIC and Mauve. Figure 4 plots,
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Figure 5: The conserved percentage divided by the segmentation
size.

for each pair, the difference between the values of Mauve and
MAGIC for the two criteria. The average MAGIC and Mauve
segmentation sizes were 46 and 122 respectively. There are
22 pairs on which MAGIC dominates Mauve, and one pair
(#3) on which both methods reported equal results. On the
rest of the pairs, MAGIC reported a smaller segmentation
size and a smaller conserved percentage. On these pairs, the
difference in the segmentation size could be as high as 307 in
favor of MAGIC (average of 78). The difference in conserved
percentages, on the other hand, could be as high as 12% in
favor of Mauve (average of 2%).

Figure 5 gives the conserved percentages divided by
the segmentation sizes. MAGIC’s ratios were greater than
Mauve’s in 40 pairs, a statistically significant result (P-
value 2 × 10−11, sign test). Their means were .12 and
.05, respectively, a significant difference (P-value 1 × 10−9;
Wilcoxon test).

Finally, to further investigate cases where neither method
dominated the other, we artificially constrained MAGIC to
output a mapping as close in size as possible to Mauve’s
on the 18 nonconclusive pairs. In this exercise, MAGIC
dominated Mauve on 5 pairs and Mauve dominates MAGIC
on 2 pairs (out of the 18 nonconclusive pairs). In total,
MAGIC dominated Mauve on 27 pairs (along with the
previous 22 pairs), a result that is statistically significant (P-
value 0.02, sign test).

4. Discussion

We presented two types of measures for assessing genome
mapping results. Both are very simple, biologically intuitive,
and easy to compute. Unlike other evaluation methods that
try to estimate the accuracy of genome alignments, such
as [2], the criteria presented here aim to provide global
measures of the mapping quality. As the results show, the
measures consistently discriminate between the two mapping
methods that we tested, favoring MAGIC over Mauve.

The GD-score G is a function of the segmentation size
S and the imprecision I of the mapping tool: G = f (I , S)
(the higher the segmentation size or the imprecision, the
higher the GD-score). The imprecision I is a property of the
mapping tool, and is independent of the compared pair. It
reflects the tool’s tendency to either miscalculate fragment

ends or to report erroneous correspondences between seg-
ments. The segmentation size S, on the other hand, depends
on both the tool and the compared pair. Though G and S
are directly measurable, I is hidden. Estimating it is possible
thanks to the reasonable linear fit between the GD-score
and the segmentation size, which implies that f (·, ·) can be
well approximated with a linear function. The estimation is
then carried out by normalizing the GD-score and by linear
regression. In general, the GD-score may also be affected
by minor gene end annotation errors. This effect, however,
was minimized by counting only gene disruptions that occur
considerably inside the annotated gene region (Section 2),
which also increases the tolerance of the measure to subtle
mapping errors near the fragment ends.

Our results on the benchmark set of 41 bacteria pairs
suggest that the GD-score is capable of discriminating
between the two tools: MAGIC reports lower regular and
normalized GD-scores (both with statistical significance)
and also has a smaller slope in the linear fit.

The GD-scores linear fitting and the normalization
results indicate that MAGIC and Mauve disruption rates
(genes disrupted per segment) are below 1.7, compared to
a theoretical maximum of 4. Given the high density of
genes in bacterial genomes (after the correction discussed in
Section 2, genes encompass more than 67% of the studied
genomes), the disruption rate under a random model
assumption is expected to be greater than 2.6. Thus, the GD-
scores indicate that, as expected, the results of both MAGIC
and Mauve are better than random.

The segmentation-matching measure provides an addi-
tional estimate of the quality of the mapping. Unlike the
GD-score, it requires no external information other than the
mapping. Yet, like the GD-score, it reflects the imprecision of
the mapping tool. Here, inaccuracy in identifying the frag-
ment ends results in a smaller conserved percentage, while
an erroneous correspondence between segments increases
the segmentation size. For pairs where the measure provides
no clear preference for one of the two compared tools, we
suggest dividing the conserved percentage by the segmenta-
tion size. This ratio reflects the imprecision of the mapping,
as it decreases when additional inaccuracies are introduced
at fragment ends or when erroneous correspondences are
made.

The dominance criterion for this measure, that is, favor-
ing mappings with smaller segmentation size and greater
conserved percentage, is fulfilled by MAGIC on 22 pairs.
On one pair (#3) both methods report equal results, and
on the remaining 18 pairs the results are not conclusive:
MAGIC has both smaller segmentation size (a difference
of 78 on average) and smaller conserved percentage (2%
on average). When the conserved percentage is divided by
the segmentation size, MAGIC fares better in 40 out of
the 41 pairs (with statistical significance). When MAGIC is
constrained to output a mapping of size as close as possible
to Mauve’s, analysis of the nonconclusive pairs leads to
similar conclusions. This observation is notable, since the
constraint is expected to be disadvantageous for MAGIC as it
forces MAGIC to use an inferior configuration of parameters
compared to its default settings.
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Since the GD-scores rely explicitly on gene annotations,
the evaluated methods should not depend (implicitly or
explicitly) on gene annotation for building the genome
mapping. For this reason, instead of using gene annotations
of KEGG orthologs as seeds in MAGIC, all the above analyses
used the Mauve seeds instead. In fact, MAGIC’s performance
improves according to all the above criteria if its default
seeds are used (results not shown). Mauve backbones are
fed as initial anchors to MAGIC, further demonstrating that
MAGIC’s calculated mapping has better quality than its input
mapping, in agreement with observations made in [22].

Our main goal here was to define and test some basic
measures for evaluating mapping quality. We tested and
demonstrated these measures on two mapping tools, but
they can be readily used to compare other algorithms. We
hope that the availability of established quality measures will
advance the important challenge of genome-wide mapping.
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