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A theory of resistance to multiplexed gene drive demonstrates
the significant role of weakly deleterious natural genetic
variation
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Evolution of resistance is a major barrier to successful deployment of gene-drive
systems to suppress natural populations, which could greatly reduce the burden of
many vector-borne diseases. Multiplexed guide RNAs (gRNAs) that require resistance
mutations in all target cut sites are a promising antiresistance strategy since, in prin-
ciple, resistance would only arise in unrealistically large populations. Using stochastic
simulations that accurately model evolution at very large population sizes, we explore
the probability of resistance due to three important mechanisms: 1) nonhomologous
end-joining mutations, 2) single-nucleotide mutants arising de novo, or 3) single-
nucleotide polymorphisms preexisting as standing variation. Our results explore the
relative importance of these mechanisms and highlight a complexity of the mutation–
selection–drift balance between haplotypes with complete resistance and those with
an incomplete number of resistant alleles. We find that this leads to a phenomenon
where weakly deleterious naturally occurring variants greatly amplify the probability
of multisite resistance compared to de novo mutation. This key result provides design
criterion for antiresistance multiplexed systems, which, in general, will need a larger
number of gRNAs compared to de novo expectations. This theory may have wider
application to the evolution of resistance or evolutionary rescue when multiple changes
are required before selection can act.
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Suppression gene-drive systems have the potential to be highly effective for population
control of many vectors of human disease, including malaria-carrying mosquitoes, as
well as for invasive species control (1). With the recent discovery of the CRISPR–Cas9
gene-editing system (2), such drives can be realized by targeting specific sequences for
insertion of a drive construct into a gene of importance; during meiosis, this converts a
very large fraction of gametes carrying wild-type alleles to this drive construct, thereby
increasing transmission of the drive over and above random Mendelian segregation. If
the drive construct only has significant fitness effects as a homozygote, it can rise to high
frequencies; in particular, if the target gene is necessary for female fertility, this provides
an effective way to suppress the population (3, 4). An important question is how resilient
gene-drive systems are to the evolution of resistance (1, 5–7), which could arise via single-
nucleotide mutations or single-nucleotide polymorphisms (SNPs) or by an imperfect end-
joining repair process, called nonhomologous end joining (NHEJ) (3, 8). Although in
caged populations, resistance to suppression has been observed via indels induced at a
nonconserved target site within a gene critical for female fertility (3), drive systems where
the chosen target site has high conservation have been found to be resilient (4). However, it
is an open question as to how resilient gene-drive systems are to the evolution of resistance
in natural populations, which can have very large population sizes (9).

Although empirically, we understand well the rate at which these processes occur in
individuals, from characterization of the mutation rate (μ) and the net NHEJ rate (ν),
both per generation, it is also crucially important to know 1) the population size and
2) the fraction of potential resistance mutants that are actually functional. Rather than
the per-individual rate, the population-level mutation rate is critical, as it measures how
likely such mutations are to arise in the population (5–7). For example, if a resistance
mutant is produced per individual at rate 10−7 and the population size is N = 104, the
population-level mutation rate is 10−3, and it will typically take 1,000 generations before
a single resistance mutant is generated in a population, and so resistance is unlikely to
arise, given that drive typically acts to suppress a population on a timescale of much less
than 100 generations; on the other hand, if N = 108, 10 such mutants are generated every
generation, and so resistance mutants with a selective advantage compared to drive are very
likely to arise and fix before population elimination.
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A promising antiresistance strategy is to exploit multiple re-
dundant target sites for cleavage by the nuclease (1, 7, 10, 11). If
there are multiple guide RNAs (gRNAs) or target cut sites within
a single locus, since a single successful cut, followed by homology
directed repair, is sufficient for the drive to be copied, all sites
must develop resistance mutants in order for the non-Mendelian
transmission of drive to fail. This aims to reduce the individual
rate of resistance to such small numbers that typically, unrealistic
population sizes would be required to achieve a large population-
level rate of resistance generation. Although multiplexing has
been demonstrated to work in cage trials (12–14), extrapolation
of these results to large natural populations is uncertain. Using
a deterministic model, Noble et al. (11) showed that multi-
plexed strategies can allow drive to overcome resistance on short
timescales; however, as population dynamics were not considered,
in such infinite population-size models, resistance will always arise
eventually for any fertile allele. Beaghton et al. (5) explored explicit
population dynamics and finite population stochasticity and the
probability of resistance using branching process theory in the
context of the Y-drive suppression strategy, and Marshall et al. (7)
used more complex and realistic stochastic simulations to examine
how resistance interplays with population size and the rate of
generation of NHEJ mutants. Both of these works showed that
large natural population sizes reduce the maximum permissible
rate of resistance mutants. Using heuristic arguments, Marshall
et al. then argued that relatively modest degrees of multiplexing
m could prevent resistance from arising. These considerations
assume that for multiplexed drive systems, cleavage is independent
at each site, while in practice, cleavage may be simultaneous
(15, 16) and/or dependent on dosage of Cas9 (16); simultaneous
cleavage should be less relevant for suppression drives, as these
would generate large deleterious deletions. In addition, none of
these works have explored the role of standing variation, though
more recently, Lanzaro et al. (17) showed that higher levels of
standing variation of resistance variants increase the probability of
resistance to various gene-drive strategies, including suppression
drives, though crucially, they did not look at the role of population
size and multiplexing.

On a theoretical level, there are a number of works in the
population-genetic literature relevant to resistance arising in sup-
pression drives (18–21) that predict that population rescue or
adaptation in response to an environmental change, in general,
is more likely from standing variation compared to de novo
mutations arising after the change. Although simple theoretical
arguments for the role of standing variation with multisite evo-
lution have been considered using branching-process theory (22),
they assumed that the initial frequency of mutants are fixed at their
deterministic mutation–balance frequencies. However, stochastic
theory (21) shows that this overestimates the role of standing
variation, since by averaging over the allele frequency distribution
before the change, the advantage over de novo mutation is only
weakly logarithmic in the fitness cost and, in general, not very
significant. There is currently no theory that addresses the question
of the role that standing variation plays, with its full allele-
frequency spectrum, in determining the probability of resistance
for a multisite evolutionary system like multiplexed gene drive,
and this is an important question we address here.

In this work, we develop fully stochastic Wright–Fisher simula-
tions of multiplexed drive to analyze the role of population size in
more detail for different degrees of multiplex m and for more gen-
eral scenarios of resistance not previously considered, including, as
we shall see, the critical role of standing variation in multiplexed
drives. We exclusively explore the population-rescue scenario,
where drive is introduced at sufficiently large frequency that the

population will be eliminated without resistance. Multiplexing
means that the critical population sizes required for resistance can
be very large, yet the resistance mutants still arise at very small
frequency, requiring a stochastic description of their establish-
ment; to this end, we develop a very accurate Gaussian–Poisson
approximation to the multinomial distribution to allow Wright–
Fisher sampling in almost arbitrarily large population sizes. We use
these simulations to assess the modes of resistance arising for both
NHEJ mutants and SNP mutants, where the latter can arise by de
novo base-pair mutation or preexist in the population before the
introduction of drive as standing genetic variation. Importantly,
we also allow each type to be functional or nonfunctional. Our
key finding shows a more complex structure of standing variation
with multiple gRNAs; this results in a power-law dependence of
the critical population size for resistance to arise on the fitness cost
of standing variation, compared to the weak logarithmic fitness
effects for a single gRNA. This leads to an extreme sensitivity of
resistance on the fitness cost, greatly amplifying the probability
of resistance, compared to de novo, for weakly selected alleles as
the number of target sites and gRNAs increases. As well as being
important to predict the success of multiplexed drive systems in
preventing resistance at a given population size, we suggest that
this result has wide applicability for understanding resistance due
to standing variation for a range of multisite evolutionary systems,
including the question of vaccine escape.

Results

Our main results are the probability of resistance arising as a
function of the effective population size N , for one, two, or
three gRNAs. We define four allele types at each target site: wild
type, W; functional resistant, R; nonfunctional resistant, N; and
drive, D. For m > 1, the haplotype of alleles at each of the
target sites on each chromosome are some mosaic of these basic
alleles (e.g., WRN), except that there cannot be a mosaic with D
since drive is either successfully copied or not. A fully resistant
haplotype is one that has either R or N at all m sites. We will
explore the probability of resistance as a function of three main
parameters: the fraction of NHEJ mutants that are functional
(β), the fraction of de novo mutations that are functional (ξ),
and the heterozygous fitness cost (in the absence of drive) of
functional resistance (σ) (assumed to be the same whether it
was derived from de novo mutation or NHEJ); the remaining
fraction 1 − β of NHEJ mutants, or 1 − ξ of de novo SNPs,
are assumed nonfunctional. For simplicity, we assume that all
resistant mutations, whether functional or not, completely abolish
cleavage, so resistance is complete, and there are no effects of
recombination between target sites, or off-target effects (23, 24).
The parameters used in the model are summarized in Table 1 with
typical values used in the simulations.

Overall, we find that the probability of resistance has a universal
sigmoidal behavior, which is of the form

p = 1 − e−N /N ∗

, [1]

where for small population sizes, N � N ∗ resistance is very
unlikely, while for sufficiently large population sizes (N � N ∗),
resistance arises with near-100% certainty. We use the simulations
to develop a heuristic theory to characterize how N ∗ depends
on the parameters β, ξ,σ,N and then focus, in particular, on
contours in the parameter space of these variables, where the
probability of resistance is p = 0.05, or 5%.

The results are organized by four different conditions: 1) NHEJ
mutations only; 2) de novo SNP mutants only; 3) standing
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Table 1. Table of model parameter values and typical
values

Typical value Parameter Description
ε Cleavage efficiency 0.95
ν Rate of NHEJ events 0.05
μ Mutation rate 5.4 × 10−8

s Fitness cost of nonfunctional 1
homozygotes (D or N)

h Dominance coefficient of W/D 0.3
hN Dominance coefficient of 0.02

nonfunctional resistance (N)
N Effective population size Varied
σ Fitness cost of functional Varied

resistance (R)
β Fraction of functional NHEJ mutants Varied
ξ Fraction of functional Varied

single-nucleotide mutations
m Number of gRNAs/target sites Varied

All efficiencies/rates are per generation per individual per target site in an independent
sites model (Materials and Methods and SI Appendix). The target site mutation rate is
calculated assuming a site of length 18 bp and nucleotide mutation rate of 3 × 10−9 taken
for Drosophila (25).

variation of SNP mutants in mutation-selection balance; and
4) where all of the first three mechanisms are possible, where for
each, we vary the fraction of functional NHEJ mutants β, the
fraction of de novo SNPs ξ, and the fitness costs of functional
mutants (NHEJ or SNP) as appropriate.

All the results are determined from running 500 replicate
simulations. For each set of parameters, we determine whether
resistance to the drive construct arose using a resistance criterion
that the sum of the frequency of resistance alleles/haplotypes
reaches 0.95: for example, when the frequency of R and N, for
a single gRNA, is greater than 95%, or for two gRNAs, when
the frequency of RR, RN and NN is greater than 95%. We also
examine the time to resistance, given that resistance arises, in
SI Appendix. In all simulations, drive is introduced at a frequency
of 0.1 in males.
Probability of Resistance: NHEJ Only and Single-Nucleotide
De Novo Mutants Only. For both NHEJ and de novo single-
nucleotide mutants, we find that the simulations of the probability
of resistance as a function of population size can be fit very
accurately with a sigmoidal form p = 1 − e−N /N ∗ . For NHEJ
only, we plot in Fig. 1 p vs. N for m = 1 gRNA (Fig. 1A), m = 2

gRNAs (Fig. 1B), and m = 3 gRNAs (Fig. 1C ) for the standard
parameters outlined above, but where the cost of functional
resistance mutants is σ = 0.01. Each set of simulation data
with square symbols of a given color corresponds to a different
value of β, the fraction of functional NHEJ mutants; as β
decreases, N ∗ increases, as we would expect, and the probability
of resistance decreases for a given N . These results (Fig. 1) (square
symbols) are obtained by using the hybrid Poisson–Gaussian
approximation to the multinomial distribution (Materials and
Methods), which allows Wright–Fisher simulations at very large
population sizes; to check that this approximation works well, the
results with pentagram symbols represent simulations at smaller
population sizes using multinomial generated random numbers,
for which we see very good agreement with the Poisson–Gaussian
approximation. We find equivalent sigmoidal curves for de novo
SNPs only, where N ∗ increases for decreasing ξ. Again, for
NHEJ only, in SI Appendix, we show typical time series of the
allele frequencies and population dynamics, showing population
extinction for N < N ∗ and population recovery and resistance
for N > N ∗, when the resistance allele/haplotype R, RR, or RRR
fix in the population, for m = 1, m = 2, and m = 3, respectively
(SI Appendix, Fig. S3).

The dependence of N ∗ on β and ξ for NHEJ and de novo
SNPs, respectively, are similar, but with a crucial difference that
highlights a difference in the dynamics of multiplex allele genera-
tion. For NHEJ, we find:

N ∗
n =

1

4γn (ενβ)m
; [2]

and that γn ≈ 0.2 for all values of m (see SI Appendix for details),
and we see that the fit is excellent, as shown in Fig. 1. This form
of N ∗ indicates that once the population-level rate of produc-
ing functional resistance mutants ∼N (ενβ)m , which requires m
copies of R, is sufficiently large, then the probability of resistance
is large; more specifically, at the critical population size N =N ∗

n ,
when the probability of resistance is large, the population-level
rate of generating functional NHEJ mutants is 2N (ενβ)m ≈
1

2γn
= 2.5 ∼ 1 per generation. As we show in SI Appendix, this

particular form with a single fixed γn independent of m arises
when the rate of generation of m-fold resistance mutants concur-
rently is faster than generating them sequentially, which we show
is generally the case when cleavage is efficient (1 − ε � 1). To
be clear, both pathways, concurrent and sequential generation of

Fig. 1. Probability of resistance evolving as a function of effective population size (N) for m = 1 (A), 2 (B), or 3 (C) gRNAs, where resistance can only arise due to
functional NHEJ mutants. R alleles have a fitness cost of σ = 0.01 relative to the wild type. Curves of different color correspond to different values of β, where
squares correspond to simulations using the hybrid Poisson–Gaussian approximation and open pentagrams to simulations using exact multinomial sampling.
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Fig. 2. Contours for probability of resistance p = 0.05 as a function of N
and β for m = 1 (blue), 2 (red), or 3 (yellow) gRNAs. Different symbols cor-
respond to interpolated values from simulations for different fitness costs for
functional mutants: square symbols, σ = 0.01; triangle symbols, σ = 0.001;
circle symbols, σ = 0.0001; and the solid lines are plots of p = 1 − e−N/N∗

n for
γn = 0.2.

m-fold mutants, have a rate that scales as (ενβ)m , but they have
different prefactors determining their relative importance.

On the other hand, for de novo SNPs N ∗ takes the following
similar functional form:

N ∗
d =

1

4γm (ξμ)m
, [3]

but unlike for NHEJ mutants, the fitting constant γm is not
independent of m , and we show in SI Appendix that it is of the
form γm = sbτm , which arises when multifold resistance alleles
arise sequentially, rather than concurrently; here, sb is an effective

beneficial selection coefficient for the resistant haplotype with
m functional resistant alleles, and τ is the timescale over which
these resistant mutants accumulate. By fitting the simulation data,
we find that γm = {0.76, 6, 55} for m = {1, 2, 3}, respectively,
which corresponds to sb ≈ 0.09 and τ ≈ 8.5 generations, which,
pleasingly, is a time consistent with the timescale over which
drive increases to high frequency. As the rate per individual of
generating functional resistance at all m sites is (ξμ)m , this
means that the population-level rate needed for the probability of
resistance to be large is 2N (ξμ)m ≈ 1

2γm
≈ {0.658, 0.083, 0.009}

per generation, for m = {1, 2, 3}, respectively.
For both NHEJ and de novo SNPs, we can summarize this

information in Figs. 2 and 3A by plotting contours of p = 0.05
on axes of β vs. N , or ξ vs. N , where the region to the left of the
contour indicates values of these parameters for which we expect
the probability of resistance to be ≤ 0.05. As indicated by Eqs. 2
and 3, we see that these contours are a power law ∼β−m and
∼ξ−m , respectively. The solid lines are plots of p = 1 − e−N /N ∗

n

for p = 0.05 and γn = 0.2 in Fig. 2 and γm = {0.76, 6, 55} for
m = {1, 2, 3} in Fig. 3A. In both figures, the different symbols
correspond to different fitness costs of mutants in the presence of
wild type, and we see that, here, this has no effect on contours,
which is intuitive, as these mutants only become advantageous
once drive has nearly fixed, and their effective frequency-
dependent selection coefficient has only a weak dependence on
σ, the cost in the presence of wild type only.

To summarize, the key results for NHEJ vs. de novo SNPs are
that:

• The critical population size for resistance for both NHEJ and
de novo SNPs scales as the inverse of the rate of generation of
resistance mutants in individuals (Eqs. 2 and 3).

• The mechanism of resistance from NHEJ is dominated by
resistance alleles arising at all target sites concurrently, while for
de novo SNPs, the resistance alleles arise sequentially.

Probability of Resistance: Preexisting and De Novo SNP Mutants
Only. We now allow the possibility that functional resistant (R)
mutants may exist in a mutation-selection balance before the
introduction of drive, by running each replicate simulation for a

Fig. 3. Contours for probability of resistance p = 0.05 as a function of N and ξ for m = 1 (blue), 2 (red), or 3 (yellow) gRNAs. A corresponds to simulations
with de novo generation of SNP mutants only, while B shows simulations with both de novo and preexisting SNP mutants. Different symbols correspond to
simulations for different fitness costs for functional mutants: square symbols, σ = 0.01; triangle symbols, σ = 0.001; circle symbols, σ = 0.0001; and the solid
lines plot p = 1 − e−N/N∗

, with N∗ = {N∗
d , N∗

s } for A and B given by Eqs. 3 and 4, respectively, where for A, γm = {0.76, 6, 55}, and for B, γ = 2 and sb = 0.5.
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period of time 1/σ before the introduction of drive, which gives
sufficient time for the frequency distribution of the SNP mutants
at the time of introduction of drive to have equilibrated (Materials
and Methods). As in the previous sections, we can very accurately
fit curves of the probability of resistance vs. N , using the same
functional form ps = 1 − e−N /N ∗

s , where now

N ∗
s =

1

4ξμm
(
γξμ
σ

)m−1
ln(1 + sb

mσ )

; [4]

where the fitness cost is σ, before drive is introduced. For m = 1,
this expression corresponds to the theory of Hermisson and
Pennings (21), assuming a fixed beneficial selection coefficient
of sb for the resistance mutant in the presence of the drive
allele, which is derived by calculating the average probability of
fixation over the distribution of allele frequencies in mutation-
selection balance. For sufficiently strong selection 4Nσ > 1, this
allele frequency distribution is closely approximated by a gamma
distribution with shape parameter θ = 4N ξμ and rate parameter
α = 4Nσ. In the case of m > 1 gRNAs, the functional form for
N ∗ can be heuristically motivated by assuming the frequency
distribution is of the same form (gamma distributed), but with
a modified rate parameter αm = 4Nmσ and shape parameter
θm ∼ 4N ξμr ∗m−1 ∼ 4N ξμ(ξμ/σ)m−1, where r ∗m−1 is the fre-
quency of mutants with m − 1 R alleles and a single W in
mutation-selection balance before drive is introduced. For ex-
ample, if there are m = 2 gRNAs, then r ∗1 is the frequency of
RW, while for m = 3 RNAs, r2 is the frequency of RRW. We
show in SI Appendix that r ∗m−1 ∼ (ξμ/σ)m−1. θm represents the
effective mutational flow from m − 1 mutants to m mutants,
which is balanced by negative selection, where each m mutant has
fitness cost mσ, before the introduction of drive. By averaging
the probability of fixation over this distribution, we recover the
scaling law for N ∗

s stated above. We do not attempt to calculate an
exact theory, but use a fitting parameter γ to represent the scaling
between these heuristic considerations and an exact theory.

We first fit the curves of probability of resistance vs. N for
m = 1, where γ does not appear in N ∗

s , which gives an approxi-
mate value of sb ≈ 0.5 for all values of ξ (SI Appendix). Form > 1,
we fix sb to this value and fit the curves of p(N ) for the single
fitting parameter γ and find that γ ≈ 2 for bothm = 2 andm = 3,

as shown in SI Appendix. In all cases, we find that the curves fit
the simulation data very well.

We summarize these results by plotting contours of constant
probability of resistance p = 0.05 as a function of ξ and N , as
shown in Fig. 3B; regions to the left of each curve represent
combinations of ξ and N for which the probability of resistance
is less than 5%. The major effect of preexisting mutations is to
very greatly reduce the effective population size needed before
resistance arises for more than m > 1 gRNAs compared to de
novo SNPs. Importantly, unlike for de novo SNPs or NHEJ
mutations, there is a significant effect of changing selection, where
the probability of resistance increases for decreasing σ because
less-harmful mutations will segregate at a higher frequency before
release. Hermisson and Pennings (21) showed this to be the
case for a single site (m = 1) (6, 21), in which case the effect
is only weak and logarithmic in σ. However, here, we see for
m > 1, N ∗ ∼ σm−1, which represents a significant amplification
of the role of more weakly selected standing variation in causing
resistance.

In summary, the key results for preexisting SNPs are that:

• Form > 1, the more complex mutation–selection–drift balance
for multiple target sites (treated heuristically in SI Appendix)
means that the critical population size for resistance from
preexisting SNPs (Eq. 4) picks up an additional power-law
dependence on the fitness cost of these SNPs before the intro-
duction of drive compared to the weak logarithmic dependence
for m = 1.

• The probability of resistance for m > 1 is greatly amplified
compared to de novo mutation in the presence of weakly
deleterious mutation.

Probability of Resistance: NHEJ, De Novo, and Preexisting SNPs
Combined. Finally, we combine all three mechanisms by which
resistance can arise to assess their relative importance as a function
of varying β, ξ, and σ. The summary of these results is shown in
Fig. 4, for contours of p = 0.05 for β vs. N , for the case of all
SNPs being functional (ξ = 1; Fig. 4A) and 1% functional SNPs
(ξ = 0.01; Fig. 4B). The same broad trends as observed in the
simulations of the previous sections are seen, where decreasing
β increases the range of population sizes for which resistance is
improbable; the asymptotic power-law behavior seen as β→ 1 is

Fig. 4. Contours for probability of resistance p = 0.05 for β vs. N and ξ = 1 (A) and ξ = 0.01 (B), for simulations including NHEJ, de novo, and preexisting SNPs.
Blue symbols represent m = 1, red m = 2, and yellow m = 3, where the different symbols present different fitness cost σ of mutants in the presence of wild
type, as shown in the legend. The solid lines are plots of 1 − e−N/N∗

, for 1/N∗ = 1/N∗
n + 1/N∗

s–which assumes the probability of resistance from NHEJ and SNPs
are independent–for exactly the same values of the γ parameters in the previous sections/plots, where the thick lines correspond to σ = 0.0001, intermediate
thickness to σ = 0.001, and thin lines to σ = 0.01. The dotted lines are the same as the solid lines from Fig. 2, which are the contours of p = 0.05 for NHEJ only.
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the same as the simulations with NHEJ only, indicated by the
dotted lines for each value of m , which are the solid lines in
Fig. 2. However, in the presence of preexisting SNPs, we find that
for sufficiently small β, this effect plateaus and the 5% contours
are constant with respect to N , as the dominant and more rapid
mechanism of resistance becomes SNPs from standing variation.
We also find that increasing ξ decreases the population size at
which resistance arises at 5%, given by a uniform shift of these
curves to the left, as seen by comparing Fig. 4A to Fig. 4B. The
solid lines in each plot correspond to assuming that the probability
of resistance from NHEJ mutations and preexisting (and de
novo) mutations are independent: pres = 1 − (1 − pn )(1 − ps ) =
1 − e−N /N ∗ , where

1

N ∗
=

1

N ∗
n
+

1

N ∗
s

= 4γn (ενβ)
m + 4ξμm

(
γξμ

σ

)m−1

ln
(
1 +

sb
mσ

)
. [5]

The plots use the parameters γn = 0.2 and γs = 2, as derived from
fitting in the previous sections, where the different line thicknesses
correspond to different values of σ; we see that, asymptotically,
for either β→ 1 (1/N ∗

n � 1/N ∗
s ) or β→ 0 (1/N ∗

n � 1/N ∗
s ),

where NHEJ mutations are dominant and SNPs are dominant,
respectively, the solid lines match the simulation data very well,
as expected. However, for the intermediate regime, where NHEJ
mutations and SNPs from standing variation are equally domi-
nant, there is a mismatch, which indicates that the assumption
that resistance from NHEJ and SNPs are independent is relatively
poor. This is as expected, since this heuristic ignores the mosaic
nature in which resistance arises at multiple target sites, where,
for example, at one site, resistance may have arisen by standing
variation and the other two by NHEJ; nonetheless, we see this
heuristic gives a good guide to the probability of resistance in the
presence of both NHEJ and standing SNP variation.

In summary, when we examine all possible mechanisms of
resistance arising for multiplex drive:

• If the rate of producing functional NHEJ mutants per individ-
ual is large, such that N ∗

n � N ∗
s , then resistance is dominated

by NHEJ.
• Conversely, if the rate of producing NHEJ mutants is small,

such that N ∗
n � N ∗

s , then resistance is dominated by standing
genetic variation

How Many gRNAs Are Needed to Prevent Resistance?. An im-
portant practical question that arises is how many gRNAs are
sufficient to prevent resistance to a high probability. Assuming a
regime of β, where NHEJ mutations are dominant, using Eqs. 1
and 2, we can find the required number of gRNAs to keep the
probability of resistance to less than or equal to p:

m >
ln

(
1

4γn
ln

(
1

1−p

))
− ln (N )

ln (ενβ)
. [6]

This result is similar to equation 2 of ref. 7, the main difference
being that it is derived by approximately solving the dynamics
of resistance-allele generation, using their probability of fixation
(SI Appendix) and explicitly accounting for a fraction β of func-
tional NHEJ mutants.

We can find an equivalent expression for de novo SNPs using
Eq. 3, but since our results indicate that standing variation will
always be at least as important as de novo generation of SNPs,

we directly consider the constraint on m for standing variation.
Using Eqs. 1 and 4, we can, in principle, calculate the minimum
number of gRNAs m required to prevent resistance to a specified
probability. Eq. 4 is transcendental, but if we replace the weak m
dependence in the logarithm (ln (1 + sb

mσ ) → ln (1 + sb
σ )), then,

for σ� ξμ, we find the approximate expression:

m >
1

ln (
γξμ
σ )

W−1

(
γ

4Nσ

ln ( 1
1−p ) ln (

γξμ
σ )

ln (1 + sb
σ )

)
, [7]

where Wk (x ) is the Lambert W function, which are solutions of
the equation wew = x .

When both mechanisms of resistance are possible, the effective
critical population size N ∗ is a combination of N ∗

n and N ∗
s . As

shown in Fig. 4, Eq. 5 is a reasonable approximation, but it is
difficult to invert this expression to find how many gRNAs are
needed to prevent resistance to a certain probability p. Here, we
instead estimate this critical population size for different values of
m , β, ξ, and σ by reading off Fig. 4 or by extrapolation using
the approximation in Eq. 5, which we can compare to whichever
target population size we have in mind for an application of
drive. We can examine two different extremes: 1) β = 10−4, which
corresponds to assuming that functional NHEJ mutants are quite
rare, as we might expect given the expectation that NHEJ will
tend to produce significant genetic changes like multiple base-
pair insertions and deletions; and 2) β = 10−2, which is more pes-
simistic, should in fact NHEJ more readily produce less significant
genetic changes, which are more likely to be functional. For the
fraction of functional SNPs, we assume a worst case that ξ = 1
and the scenario that ξ = 0.01, which roughly corresponds to, on
average, a single functional mutant in all the 3L one-step mutants
about the wild-type sequence in a target site of size L = 18 bp
(values of ξ � 0.01 effectively correspond to ξ = 0). To calculate
N corresponding to when resistance is equal to 5%, we can read
off from Fig. 4 or use our extrapolation of the simulations using
Eq. 5 to different values of σ. These population sizes are shown in
Table 2.

Table 2. Effective population sizes N at which a proba-
bility of resistance p = 0.05 is obtained from simulations
and theory for different numbers of gRNAs m and dif-
ferent selection coefficients σ, for the fixed value of
fraction of functional mutants ξ = 1 and ξ = 0.01

m = 1 m = 2 m = 3 m = 4 *

ξ = 1, β = 10–4

σ = 10−6 * 8 × 103 9 × 104 6 × 105 4 × 106

σ = 10−4 104 3 × 106 4 × 109 7 × 1012

σ = 10−2 104 4 × 108 2 × 1013 2 × 1019

ξ = 1, β = 10–2

σ = 10−6 * 100 7 × 104 6 × 105 4 × 106

σ = 10−4 100 7 × 104 3 × 107 1012

σ = 10−2 100 3 × 105 5 × 108 1012

ξ = 0.01, β = 10–4

σ = 10−6 * 104 7 × 108 6 × 1011 4 × 1014

σ = 10−4 104 4 × 108 3 × 1013 1020

σ = 10−2 104 3 × 109 3 × 1017 1020

ξ = 0.01, β = 10–2

σ = 10−6 * 100 3 × 105 6 × 108 1012

σ = 10−4 100 3 × 105 3 × 109 2 × 1013

σ = 10−2 100 3 × 105 6 × 108 2 × 1013

The starred values indicate population sizes extrapolated from simulations results using
heuristic theory (Eq. 5).
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Time to Resistance. In SI Appendix, we also examine the mean
time taken for resistance to arise, given that resistance arose, where
resistance corresponds to the establishment and then fixation of
a functionally resistant allele. Specifically, we define the time to
resistance to be when the sum of the frequencies of resistance
haplotypes exceeds or equals 0.95; this high threshold is a good
indication of the time to fixation, which is generally much larger
than the time to establishment of resistant haplotypes.

We find across all simulations, very consistently, that the mean
time is between 45 and 65 generations, where, as expected in
general for large values of β, we have shorter times, since the rate
of producing NHEJ mutants is larger, and, as the population size
is increased, the time to resistance increases. Broadly, we find that
if variants are more deleterious before the introduction of drive
and/or as the population size increases, the time to resistance is
longer. These results point to the fact that the time for resistance
to arise is conditioned on resistance arising, and so all the variants
that are destined to give resistance must be generated, or preexist,
before the population is eliminated; population elimination hap-
pens on a timescale set by the dynamics of drive replacing the wild
type–which does not change for different simulations performed
in this paper–and by the size of the initial population, where larger
populations take a logarithmically longer time to elimination (on
average).

Discussion

Understanding and overcoming resistance in suppression-drive
systems is a major obstacle to successful control of natural pop-
ulations that are vectors for disease, such as malaria (3, 4). As
this work and previous research show, population size is a key
determinant of the probability of resistance (5–7). In particular,
we have highlighted the role of the critical population size N ∗ as a
useful summary measure of the probability of resistance compared
to some target natural population size. Multiplexing of gRNAs,
such that resistance is required in all gRNAs, is a promising
antiresistance strategy, as it aims reduce the individual rate of
resistance sufficiently that N ∗ is much greater than the target
population size. Our results have highlighted five key parameters
determining N ∗ and the probability of resistance evolving for
multiplexed drive: β, ξ, σ, m , and N . The expressions we derive
from simulations for N ∗ in terms of these parameters inform on
the relative importance of NHEJ vs. de novo single-nucleotide
mutations vs. standing variation of SNPs. Our key finding is a
significant amplification of the role that weakly deleterious stand-
ing genetic variation plays in determining resistance in multisite
evolutionary systems, compared to de novo mutation. This means,
for example, that designing a multiplexed drive system based on
the number of gRNAs required for de novo mutation–i.e., at least
a couple, for rates of generation of de novo functional resistance,
which are of order ∼10−8 or less–will not prevent resistance in the
presence of weakly deleterious standing variation.

An Estimate of the Number of gRNAs Required for Different
General Scenarios. By judicious choice of target sites, researchers
developing gene-drive constructs for population suppression will
have some level of control over all of the key parameters identified
above except population size. NHEJ typically produces insertion
or deletion mutations (3), so choosing a target site that is unable
to tolerate length variation will be one way to reduce β, and this
would usually be a top priority in choosing a target site. A target
site in a region coding for an unstructured loop of a protein might
have a β ∼ 1/3 (if 2/3 of indels produce frameshift mutations), but
a target site in a more structurally constrained region may have

a much smaller β. Hammond et al. (3) have demonstrated that
having a single target site that can tolerate length variation quickly
leads to the evolution of resistance, even in small populations
(N ≈ 600). Though data are scarce, the next most frequent type
of mutation produced by NHEJ is presumably single-nucleotide
changes at the cut site, and ensuring that those are nonfunctional
would be a second priority. Assuming a target population of
N = 106 and the baseline parameter values, Eq. 6 indicates that
under the worst-case scenario of β = 1, m = 6 gRNAs will be
needed to have the probability of resistance arising due solely to
NHEJ be less than 0.05, whereas if β can be reduced to 0.01,
then only m = 3 will be needed, and if β can be reduced further
to 10−4, then only 2 will be needed. If the target population is
N = 109, then the corresponding values arem = {8, 4, 2} gRNAs
for β = {1, 0.01, 10−4}, respectively.

Single-nucleotide mutations can also arise spontaneously and,
if the population is large, may be already present before release.
These may also provide resistance against cleavage, particularly
if they are near the cut site (26). The likelihood that resistance
evolves from these mutations depends on ξ, the fraction of
them that are functional (since it is only these that can spread
through a population), and on σ, the extent to which those
functional resistant mutations reduce fitness (since that affects
their frequency in the prerelease population). Again, all else being
equal, more functionally constrained sequences will be preferred,
having lower ξ as well as lower β, though, if base changes are less
likely to be harmful than indels, then ξ will be greater than β. In
principle, genetic surveys of sequence variation at the target site
may provide useful information on ξ and σ and the probability of
resistance evolving through standing variation. Assuming a target
population of N = 106, baseline parameter values, and σ = 10−6,
then using Eq. 7 under the worst-case scenario of ξ = 1, m = 4
gRNAs are needed to ensure the probability of resistance evolving
from de novo mutations and preexisting variation is less than
0.05, whereas just m = 2 gRNAs are needed if σ = 10−4 or σ =
0.01, which demonstrates the sensitivity to weakly deleterious
standing variation. However, if ξ = 0.01, then only one gRNA
is needed, irrespective of the value of σ. If the target population is
N = 109, the corresponding values are that m = {7, 3, 2} gRNAs
are needed, respectively, for ξ = 1 and σ = {10−6, 10−4, 0.01},
whereas for ξ = 0.01, m = 2 gRNAs are needed, regardless of σ.

Critical Population Size for Resistance for Anopheles gambiae
An important potential application of suppression drives is to
control populations of mosquitoes to reduce the burden of malaria
on human populations. Recently, the contemporary effective pop-
ulation size for A. gambiae in sub-Saharan Africa was estimated
as N ∼ 109, using a new method based on analyzing soft sweeps
(9). The above considerations of NHEJ and standing variation
separately give an indication of how many gRNAs are required to
achieve a probability of resistance less than 0.05, in each scenario,
but including both mechanisms, we refer to Table 2. Given a
target population size of N = 109, and assuming ξ = 1, these
numbers indicate that if resistance alleles are strongly deleterious
(σ = 0.01) to moderately deleterious (σ = 10−4), then resistance
can be prevented withm = 3 gRNAs if β = 10−4 orm = 4 gRNAs
if β = 10−2. However, if the resistance alleles are very weakly
deleterious (σ = 10−6), then even four gRNAs are not sufficient,
for both values of β, which exemplifies the strong amplification
of the probability of resistance in the presence of weakly selected
standing variation. On the other hand, if ξ = 0.01, which roughly
corresponds to, on average, a single functional mutant in all the
3L one-step mutants about the wild-type sequence in a target site
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of size L = 18 bp, we can prevent resistance for all values of σ and
β with m = 3 gRNAs, except for very weakly deleterious mutants
(σ = 10−6) and β = 10−2, which requires at least m = 4 gRNAs.
These considerations highlight the need to empirically determine
both β and ξ for putative target sites for multiplex suppression-
drive applications, using genetic screens that determine the func-
tionality of NHEJ mutants and by examining SNP variants and
their fitness effects from population genomic data.

Simplifications of Model. These simulations make a number of
simplifying assumptions that are necessitated by modeling the
already relatively complex situation of multiplex drive. We assume
that all of the nucleotides ξ corresponding to the fraction of
functional mutations in each target site, once mutated, completely
abolish cleavage and give complete resistance. We also assume
that there is no recombination between sites and, related to this,
that resistance only arises due to target-site effects; recombination
and off-target resistance have been explored by using deterministic
modeling (23, 24). We also have not explored the role of varying
a number of parameters like cleavage efficiency ε , the intrinsic
growth rate Rm , or the fitness parameters of drive; some of these
have been previously explored in the context of single gRNAs
(6, 7), and these works and ours in general indicate that these
will have a secondary role compared to the population-scaled rate
of NHEJ and de novo mutation. For example, increasing ε will
tend to increase the rate that drive replaces wild type, and we
may expect that one consequence is a quantitative reduction in the
probability of resistance, as there is less time to generate mutants
and establish before population elimination, but the qualitative
results we have presented will not change. However, there is
evidence that the overall efficiency of cleavage may diminish when
there are large numbers of gRNAs (16). There is also the possibility
that homing events may be more error-prone than normal DNA
replication and could lead to the loss of function of one or more
gRNAs, which we leave to future modeling efforts, but could in-
crease the probability of resistance evolving depending on the rate
of such events occurring. We also ignore the role of demographic
fluctuations, which would tend to mainly affect neutral variation
within a target site, where σ < 1/N , and could be much smaller
than expected due to historical population bottlenecks (9, 27); for
highly conserved sites, this is less likely to play a major role.

On one hand, it is not clear that spatial structure will strongly
affect these results, since the population size we consider here
should be very close to the census size; whether spatially separated
or in a well-mixed system, the number of mutations arising per
generation will depend on the total number of individuals in the
population. However, what is likely to be different is how quickly a
resistance mutation establishes and spreads; in spatially structured
populations, selection is effectively weaker (28), reduced by factor
1 − FST , where FST = 1/(1 + 4Nm) is Wright’s fixation index
for the island model, which means that fixation would be less
rapid in a geographically dispersed population. This could lead
to an increase in the critical population size N ∗, since at a given
population size, the probability of resistance is smaller, as elimina-
tion is more likely before the resistance allele becomes sufficiently
prevalent in the population. However, this is likely to only have
a significant effect in very highly structured populations (very
limited migration), since typically, selection for resistance mutants
is very large once drive has risen to large frequency. Importantly, in
models with spatial structure, even arbitrarily strong gene drives
may not eliminate a target population (29–31). This effect can
arise if the gene drive causes reductions in population density,
which leads to increased inbreeding, which, in turn, reduces the
efficacy of the drive (32, 33). If the population is not eliminated,

then eventually, one would expect resistance to evolve, though if
the population is substantially suppressed, this may take a long
time.

Broader Applications to Evolution of Multisite Resistance
These results also have broader implications for evolutionary
theory, particularly evolutionary mechanisms by which adaptation
occurs in response to an environmental change, such as the
introduction of drive, or in other contexts, such as resistance to
antibiotics or vaccines. Theory for a single site (m = 1) in various
evolutionary contexts includes the question of which is more
important, de novo vs. standing variation for adaptive evolution
(21, 27), population rescue (18), or in the context of the evolution
of gene-drive resistance (6). All of these studies show that changing
the magnitude of the fitness cost σ before the environmental
change has a relatively weak effect on the probability of resis-
tance, as borne out by the logarithmic dependence of N ∗

s on σ
for m = 1 in Eq. 4. However, a major finding is that for the
multiplex drive case, where resistance alleles must evolve at all
m target sites in order for resistance to arise, there is, in fact,
a marked dependence on the fitness of resistance alleles before
the introduction of drive. This arises from a complex mutation–
selection–drift balance between fully resistant (m R alleles) and
incomplete resistant (less than m R alleles) haplotypes, resulting
in a significant amplification of weakly deleterious alleles in their
contribution to resistance in a multiplex scenario and a significant
reduction in the critical population size with standing variation
compared to de novo mutation, as seen in Fig. 3B. We can
quantify this amplification by calculating the ratio

N ∗
d

N ∗
s
=
mγm−1 ln

(
1 + sb

mσ

)
σm−1γm

, [8]

which has values N ∗
d

N ∗
s
≈ {5, 217, 6266} for m = {1, 2, 3} and σ =

0.01, and N ∗
d

N ∗
s
≈ {11, 5.2 × 104, 1.6 × 108} for σ = 10−4, which

are very large amplification factors form > 1 and with consequent
implications for the prediction of the probability of resistance for
multiplexed gene drives (Note that these very large differences are
somewhat hidden in Fig. 3, as the results are plotted on a log scale
and over many orders of magnitude). It is interesting to note that
if we instead assumed that the frequency of functional resistance
mutants at each target site is the mean frequency ξμ/σ expected
from mutation-selection balance, this would give N ∗

s ∼ (σ/ξμ)m

and N ∗
d
/N ∗

s ∼ 1/σm , which would overestimate the importance
of standing variation; the key difference arises from averaging
over the distribution of functional resistance mutants at each site,
which reduces the critical population size by a factor 1/σ.

These findings may apply more widely to the evolution of resis-
tance or evolutionary rescue when multiple changes are needed for
selection to act. Combination therapy is often used in the context
of antibiotics (34, 35), antivirals (36), and anticancer treatments
(22, 37), and analogous principles are used by vaccine designers
and the natural immune system, where multiple epitopes on a
virus or other pathogen are targeted (38, 39). All else being
equal, combination therapy can be expected to be more effective
in preventing the evolution of resistance when resistance to all
components of the therapy is needed before fitness differences
appear and selection can act. To the extent that this ideal can
be achieved, Eq. 4 may be useful in predicting the likelihood of
resistance nonetheless evolving.

Summary. Overall, our results provide a foundation to under-
stand how resistance arises in multiplexed suppression-drive sys-
tems and the paramount role that standing variation plays in
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greatly amplifying the role of weakly deleterious variation in giving
rise to resistance. The results highlight the need to characterize
important unknown parameters, such as the fraction of functional
mutants at drive target sites, due both to NHEJ mutations and
single-nucleotide mutations, which can significantly affect the
probability that resistance arises.

Materials and Methods

We use nonspatial Wright–Fisher stochastic simulations of drive with separate
sexes throughout, but with coupling to population dynamics using density-
dependent Beverton–Holt growth. The details of these simulations are given in
SI Appendix. The simulations are stochastic, even when population sizes are very
large, because resistant mutations always arise at small frequency, so genetic
drift needs to be explicitly considered. Resistance corresponds to the estab-
lishment and then fixation of functionally resistant alleles, which we define to
be a frequency greater than 0.95. The simulations entail stochastic dynamics
with one, two, or three gRNAs, where at each target site, there are four alleles
that can occur: W (wild type), D (drive), R (functional resistance), or N (non-
functional resistance); this means that across an m-fold target site, we have an
m-locus, four-allele population genetic system with no recombination. However,
as we assume the drive construct is copied over as a whole, in practice, it is
an m-locus three-allele system +1 for the D allele. On a single chromosome,
the possible haplotypes (assuming no positional effects) for a twofold system
are WW, WR, RR, WN, RN, NN, DD, which is a total of n(n + 1)/2 + 1 =
(3 × 4)/2 + 1 = 7 haplotypes, and an analogous calculation in SI Appendix for
m = 3 gives a total of 11 haplotypes.

The alleles are assumed to have no effect on male fitness, while fitness effects
in females are as follows. W alleles have zero fitness cost, and D and N alleles
are deleterious with homozygous fitness cost s = 1 and heterozygous fitness
costs (when paired with a W allele) of h = 0.3 and hN = 0.02, respectively; the
larger dominance coefficient for drive represents potential somatic fitness costs
to heterozygotes females, from leaky expression of the Cas-9 protein (4). The
heterozygous fitness cost of R, before the introduction of drive, is σ, which we
vary in the simulations. When combined in haplotypes, we assume that each
target site has independent fitness effects, which means that a single occurrence
of an N allele is deleterious. Fitness costs are manifest as reduced female survival.
Further details are given in SI Appendix.

In W/D heterozygotes (and their multiplexed equivalents discussed in
SI Appendix), we assume a cleavage efficiency ε = 0.95 and an NHEJ rate of
ν = 0.05 approximately representative of the target site in the gene doublesex
in A. gambiae (4). We assume that NHEJ mutants produce functional resistant
alleles R with probability β and nonfunctional resistant alleles N with probability
1 − β. As a result, D gametes are generated from conversion of W at a rate
(1 − ν)ε , functional resistance alleles R at rate ε βν, and nonfunctional alleles
N at rate ε(1 − β)ν, while the fraction that remain wild type is 1 − ε .

We assume that the probability of cleavage at each available target site, given
by efficiency ε , occurs independently at different sites, so that the fraction of non-
driving gametes produced from a genotype with a nondriving allele/haplotype
paired with a driver is 1

2 [1 − ε(1 − ν)]m−r , where m is the number of gRNAs
and r ≤ m is the number of resistant (R or N) sites in the nondriving allele.
Thus, when there are multiple gRNAs, the presence of a resistant site gives some
protection to the chromosome from being cut, even if one or more cleavable sites
remain.

In addition, functional resistance alleles R are generated de novo at rate
ξμ, where μ is the mutation rate for the length of site of interest and ξ is the
fraction of SNP mutations that are functional, and nonfunctional resistance alleles
at rate (1 − ξ)μ. We assume μ = 18μ0 = 5.4 × 10−8, where 18 is the length of
each target site and μ0 = 3 × 10−9 is the base-pair mutation rate measured for
Drosophila (25).

Standing Genetic Variation. To study the effect of standing variation, we run
replicate simulations where we allow a burn-in period of 1/σ generations to
allow for the population to come to a mutation-selection balance equilibrium.
The initial frequency of the various resistance alleles/haplotypes when drive is
introduced at t = 0 is then implicitly drawn from the mutation-selection balance

equilibrium. Note that in the case of m > 1, the mutation-selection balance
distribution will be complex, with different frequencies for haplotypes carrying
different numbers of resistance mutations R.

Gaussian–Poisson Hybrid Approximation to Generate Multinomial Ran-
dom Numbers. In this paper, we run simulations to very large effective popu-
lation sizes. While it is typical in such a scenario to ignore the stochastic part of
the evolutionary dynamics by using deterministic dynamics, this is only accurate
if the allele frequencies are large themselves or, equivalently, the number of
copies in the population are large (� 1). We are interested in the dynamics of
resistance, which, by definition, means that we need to study situations where the
allele arises by de novo mutation as a single copy in a single individual, where
it must survive genetic drift or exist at very low frequency as standing variation.
When there are multiple alleles, particularly when simulating Wright–Fisher evo-
lutionary dynamics, this is accomplished simply by drawing multinomial random
numbers. However, when the effective population size is large, this can become
increasingly slow. In addition, the maximum population size is restricted to the
largest integer that can be stored in a computer; for the GNU scientific library’s
implementation of multinomial random number generators, this is limited to
32-bit, which gives a limit of roughly 4 × 109.

An alternative approach is to use the multivariate Gaussian approximation to
the multinomial distribution:

p(n1, n2, . . . , nK |x1, x2, . . . , xK , N) [9]

=
N!

n1!n2! . . . nK !
xn1

1 xn2
2 . . . x

nK
K , [10]

≈
exp

(
− 1

2 (n − Nx)TΣ−1(n − Nx)
)

√
(2π)K det(Σ)

, [11]

where n = (n1, n2, . . . , nK )
T and x = (x1, x2, . . . , xK )

T are the vectors of the
numbers drawn of K alleles and their expected frequency, respectively, and Σ
is the scaled covariance matrix of the multinomial distribution, where Σij =

Nxi(δij − xj). However, this approximation is poor when for any of the alleles
Nxk ∼ 1. In this limit, these rare alleles are well-approximated by a Poisson
distribution. The approach taken in this paper is therefore to partition the alleles
into a rare category, R, if Nxk ≤ 10 and nonrare if Nxk > 10, where the former
is drawn from independent Poisson distributions, while the latter is from a
multivariate Gaussian distribution conditioned on a smaller total population size
N′ = N −

∑
k∈R nk:

p(nk |xk) ≈
(Nxk)

nk e−Nxk

nk !
∀k ∈ R, [12]

p(n′|x′) ≈
exp

(
− 1

2 (n
′ − N′x′)TΣ′−1(n′ − N′x′)

)
√
(2π)K′det(Σ′)

, [13]

where the vectors n′ and x′ only take elements k � R, whose length is K ′ =

K − |R|, and the covariance matrix Σ′ij = N′x′i (δij − x′j ). We can assume inde-

pendent Poisson distributions for each of the rare alleles precisely because they
are rare and the effects of drift are approximately independent of each other,
and the constraint of constant population size is imposed on the nonrare alleles
through the modified population size N′ and the correlation structure in the
covariance matrixΣ′.

Data Availability. Simulation code data have been deposited in GitHub
(https://github.com/BhavKhatri/MutliplexDriveResistanceSims) (40).
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