
Estimating Mean First Passage Time of Biased Random
Walks with Short Relaxation Time on Complex Networks
Zhuo Qi Lee, Wen-Jing Hsu, Miao Lin*

School of Computer Engineering, Nanyang Technological University, Singapore

Abstract

Biased random walk has been studied extensively over the past decade especially in the transport and communication
networks communities. The mean first passage time (MFPT) of a biased random walk is an important performance indicator
in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and
the solution lacks interpretability. Other approaches based on the Mean Field Theory relate MFPT to the node degree alone.
However, nodes with the same degree may have very different local weight distribution, which may result in vastly different
MFPT. We derive an approximate bound to the MFPT of biased random walk with short relaxation time on complex network
where the biases are controlled by arbitrarily assigned node weights. We show that the MFPT of a node in this general case
is closely related to not only its node degree, but also its local weight distribution. The MFPTs obtained from computer
simulations also agree with the new theoretical analysis. Our result enables fast estimation of MFPT, which is useful
especially to differentiate between nodes that have very different local node weight distribution even though they share
the same node degrees.
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Introduction

Scale-free node degree distribution, small network diameter,

large clustering coefficients – these are common properties found

to be present in complex networks arising from seemingly

disparate fields such as biology, computer science, cosmology,

etc. [1,2]. It is widely believed that there should be common

underlying principles behind the formation of these networks that

resulted in the observed properties. As such, complex networks

have received much research attention during the past decade.

One of the studies pertaining to complex networks is the

network efficiency and capacity analysis [3–7]. In these studies,

answers to the questions such as ‘how fast can a message be

delivered to a given destination’ and ‘how many packets may be

generated in the system before congestion arises’ are essential in

understanding the performance of a network [5,7,8]. While there

are existing results on routing and flow balancing in networks with

certain topologies [9], they usually assumed the underlying

topology or the knowledge of link formation mechanism. There

are cases where the assumptions do not hold, for example, the

animal foraging strategy [10] and the web searching process as

depicted by the PageRank algorithm [11]. Approaches based on

random walk can be applied when the detailed information of

network formation mechanism is absent. Quantities such as

stationary distribution and mean first passage time (MFPT) are important

as they can be used to answer the questions about the performance

of networks as mentioned above.

The concept of random walk has also been applied in social

networks. Even-Dar et al. [12] studied the process of spreading

influences in social networks by means of Voter Model and

showed that the pathways in which the influences propagate are

equivalent to series of random walks. Thus, the MFPT to a node

A, yields the expected time for the other nodes in the network to

be influenced by node A. Selecting a node with low MFPT for

spreading the news could result in fast information propagation.

In fact, MFPT can be calculated by using the fundamental

matrix method [13]. However, the computation involves multiple

matrix multiplications. When the method is applied on large scale

networks with millions of nodes, the computation becomes

practically infeasible. Moreover, the solutions obtained from the

fundamental matrix approach are too generic and hard to

interpret. For instance, it is unclear which factors, be it node

degree, eigenvalue, local connectivity, or others, govern the MFPT

by just looking at the solution expression. Further research is

needed to better characterize MFPT and to reduce the compu-

tational cost.

In [10], Condamin et al. showed a mean first passage time

analysis using the pseudo Green function. They related MFPT to

the network size and diameter. The general applicability of their

result to non-fractal networks has been discussed in [14]. Fronczak

et. al [8] applied the mean field theory to study the MFPT based

on the Erdos-Renyi (ER) random graphs and networks generated

by using the Barabasi-Albert (BA) preferential attachment model.

Lau et. al [14] showed asymptotic analysis of the first passage time

of unbiased random walk for a class of networks with short relaxation

time by using the mean field theory. However, the solution relates

MFPT to the node degree alone. There are cases where the nodes

share the same node degree while having vastly different local

topology such as those depicted in Figure 1.
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Random walks with short relaxation time are also known as

random walks with non-compact exploration [15–17]. In [15],

Bénichou et al. presented the conditions for which a random

walk on fractal network falls into the compact or non-compact

exploration regime. In [16], Hwang et al. presented a fundamen-

tal result on the relationship between the node degree and the

MFPT of heterogeneous networks, i.e., networks with power-law

degree distribution. They focused on uniform random walks

without self-loops. It was shown that the general trend of MFPT

with respect to the node degree exhibit cross-over behaviour that is

governed by the spectral dimension ds and the exponent of the degree

distribution c. For the case dsv2, which is known as the compact

exploration regime (see also [15]), the MFPT was found to be

independent of node degree. For dsw2, the MFPT is related to the

node degree via a power-law function where the exponent is

determined by ds and c.

While the focus of [16] is to show the general trend of MFPT

with regard to node degree and spectral dimension, we focus on

explaining the differences in MFPT for nodes with same degree

when the underlying random walk falls into the non-compact

exploration regime. We generalize the FPT analysis as discussed in

[14] for a class of random walks with short relaxation time where

the nodes have arbitrary weights. In addition, we analyse the first

passage time at an improved level of precision by incorporating

exact solutions to the stationary distribution. This enables a more

detailed view of the neighbourhood around the target node. The

new expression allows us to differentiate between the case where

the neighbourhood of a node is sparsely connect and the case

where it is densely connected as depicted in Figure 1. We will show

that the MFPT of a node is closely related to the local weight

distribution around it. By changing the node weights, the spectral

dimension and hence the relaxation time will be affected, we have

also conducted simulations to study how the spectral dimension is

affected by varying the weight assignments. They will be discussed

in more detail in Discussions section.

Analysis

Outline
In this section, we will show the detailed analysis for

approximating the FPT decay rate and MFPT of random walks

with short relaxation time. First, we will show the stationary

distribution for random walk with arbitrary node weight

assignment scheme. Then, we apply a flow-based heuristics to

estimate the quasi-stationary distribution of the random walk when

a sink node is introduced. Next, we show that the FPT distribution

follows an exponential decay, and further show that the decay

exponent is related to the quasi-stationary distribution of the

neighbours of the target node. Finally, we obtain the MFPT by

approximating the integration over the FPT distribution.

Stationary and Quasi-stationary Distribution
A complex network is modelled by a connected and undirected

network G~(V ,E,W ), where V denotes the set of nodes with

jV j~N, E denotes the set of edges (i,j), and W denotes the

weights assigned to the nodes. An edge (i,j) represents the

existence of relationship between nodes i and j. For the sake of

simplifying expression, we assume without loss of generality that

self-loops are present for all nodes, i.e., (i,i)[E for i[½1,N�. We

define a biased random walk on G with arbitrary positive weights

assigned on nodes. A transition from node i to a neighbouring

node j is based on the following transition rule:

Pr(i?j)~
wjP

h[n(i) wh

ð1Þ

where wi denotes the weight of node i, and n(i)~fhj(i,h)[Eg
denotes the neighbourhood of node i. Pr(i?j) denotes the

probability of a random walker at node i moving to node j at the

next time step. When self-loop is present, the staying probability of

a node is not a constant but is dependent on the local weight

distribution. Let the transition matrix be denoted by

P~½Pr(i?j)�, and Pi(t) denote the probability of the random

walker appearing at node i exactly at timestep t. The master

equation is given by:

Pi(tz1)~
X
j[n(i)

Pj(t)Pr(j?i) ð2Þ

Recall that a Markov Chain (MC) is said to be regular if Aq [Zz,

V(i,j)P(q)(i?j)w0 where P(q)(i?j) denotes the (i,j) entry of the q-

th order transition matrix Pq. The probability distribution of a

regular MC will converge to a unique stationary distribution p
regardless of the starting position as t??. The relaxation time t of a

Markov Chain is the time for the state probability distribution to

be close to the stationary distribution, i.e., the standard deviation

of Pt is bounded by 1=e where e denotes the Euler Number (see

Figure 1. Nodes with same degree may have very different local connectivity. The figure shows two examples where a node with degree 3
may be part of a sparsely-connected star network or a densely-connected clique.
doi:10.1371/journal.pone.0093348.g001
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[18] Chapter 12). The relaxation time of a Markov Chain is given

by 1
1{l2

, where l2 is the second largest eigenvalue [18].

In the networks that we consider, since every node has a self-

loop and the graph is strongly connected, the corresponding

Markov Chain is regular. In the following, we show the exact form

of stationary distribution for the biased random walk as defined in

Eq.(1).

Let wi be the weight of node i, wi be the neighbourhood weight

of node i given by wi ~wi

P
j[n(i) wj , and w0 ~ 1

N

P
i wi . The

stationary distribution of the biased random walk is given by

Figure 2. Plots of empirical first passage time distribution against theoretical prediction according to the approximate bound
given by Ineq.(13) for different networks and weighting factors. Each row corresponds to a network in the following order: Actor, BA, ER,
and arXiv. The columns, from left to right, correspond to a~{1, 0, 1 respectively. For most cases, the tail of the first passage time distribution can be
predicted fairly accurately except for Figure 2(j), which is due to the high relaxation time as shown in Table 2.
doi:10.1371/journal.pone.0093348.g002
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pi~ lim
t??

Pt(i)~
wi

P
j[n(i) wjP

x wx

P
y[n(x) wy

~
wi

N: w0
ð3Þ

The expression can be verified by applying the equilibrium

condition on the master equation as given by Eq. (2).

Let vd denote the sink node and let Gvd
denote the resultant

graph from designating node vd as sink node. Let W(t) denote the

corresponding random walk probability distribution and wv(t)
represent the probability for a random walker to be present at

node v at time t. The following set of rules describes the new

random walk on Gvd
:

wv(0)~dvs (initial condition)

wvd
(t)~0 (sink node)

wv(t)~
P

u[n(v)

wu(t{1)
wvP

r[n(v)

wr

(transition rule)

8>>>>><
>>>>>:

ð4Þ

where vs denotes the source node and dvs~1 for vs, and 0

otherwise. For connected network where vd is reachable by every

node, wv(t) tends to zero when t tends to infinity. However, for

random walks with short relaxation time [14,19], the conditional

probability distribution Pi(tjTwt) (i.e. conditioned on the survival

of the random walker) will converge as t&t, where T denotes the

time to reach the sink node. As such, the converged conditional

probability distribution is called the quasi-stationary distribution

denoted as Yv. For t&t, we have the following approximation:

Yv&
wv(t)

wtotal(t)
ð5Þ

where wtotal(t)~
P

v[V wv(t) denotes the total survival probability

at time step t.

We approximate the quasi-stationary distribution of Gvd
around

the sink node with a flow-based heuristic [14] described in the

following. We begin with the stationary distribution p in G. Under

the stationary distribution, based on Eq.(3), the probability of the

random walker traversing an edge (u,v) is Pp(u,v)~ wuwv

N w0 : Next,

we treat an undirected edge as a combination of in-link and out-

link. We remove the out-links from vd and hence making vd a sink

node. Thus, the equilibrium will be broken and nodes u[n(vd ) will

have their ‘flow’ constantly drawn by vd . Finally, we approximate

the quasi-stationary distribution of such nodes by discounting the

probability of utilizing the edge (u,vd ):

Yu&(1{
Pp(u,vd )

pu

)pu~(1{Pr(u?vd ))pu ð6Þ

Asymptotic First Passage Time Analysis
To obtain FPT, we re-designate the destination node vd as a

sink node such that the random walk process terminates once the

random walker moves into the sink node. The time taken for it to

be absorbed into the sink node is then the same as the FPT. Let

F (vd ,tjvs) denote the probability of visiting node vd at timestep t

for the first time with vs as the starting node. Then by definition,

we have

F (vd ,tjvs)~wtotal(t{1){wtotal(t) ð7Þ

i.e. the first passage probability at time t is given by the difference

in the total survival probability between time t and t{1.

On the other hand, we can also obtain the first passage

probability by using the transition rule.

Table 1. Summary of networks studied.

Network # nodes # edges CC Dm Source

arXiv 4158 15501 0.5569 17 [21]

BA 4158 31136 0.0174 5 [1]

ER 4158 21020 0.0022 7 [24]

Actor 968 13324 0.6751 9 [1]

C denotes the average clustering coefficients and Dm denotes the network diameter.
doi:10.1371/journal.pone.0093348.t001

Table 2. Pearson’s correlation coefficient for MFPT.

Network Correlation Relaxation time t

a = 21 0 1 a = 21 0 1

arXiv 0.2619 0.7435 0.9269 555.56 555.56 1666.7

BA 0.9241 0.9812 0.9940 3.5311 2.2060 2.0178

ER 0.4860 0.9846 0.9973 16.502 3.7327 2.8417

Actor 0.0064 0.9231 0.9851 476.19 61.728 26.041

Overall, the correlations are high whenever the relaxation time is low. For the BA network, the relaxation time is consistently low and thus the correlation is extremely
good.
doi:10.1371/journal.pone.0093348.t002
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Figure 3. Comparison of MFPTs obtained from simulation against that obtained from using the bound shown in Ineq. (16). The
column on the left compares the empirical MFPT to the results obtained by (i) using the bound in Ineq. (16); (ii) using the result presented in [8]. The
column on the right shows the scatter plot and correlation between the empirical results and our proposed theoretical results. The rows correspond
to the Actor, arXiv, and BA network respectively. While the result presented by Fronczak et al. [8] gives the general trend of MFPTs with respect to
node degree, we find that the MFPTs for a given node degree are distributed across a wide range and cannot be fitted with a function of the node
degree alone. The scatter plots show a strong correspondence between the empirical results and our proposed theoretical results. This is further
supported by the high Pearson correlation coefficients which are shown on top of the scatter plots.
doi:10.1371/journal.pone.0093348.g003
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Table 3. Spectral dimension ds w.r.t. weighting factor a.

ds

a Actor arXiv BA ER

250 0.042 0.016 0.026 0.110

225 0.068 0.028 0.142 0.173

25 0.360 0.300 3.760 0.990

24 0.476 0.360 4.500 1.537

23 0.590 1.735 5.066 2.220

22 2.000 2.561 ‘ 3.526

21 1.932 3.440 ‘ ‘

0 1.500 2.505 ‘ ‘

1 1.456 1.060 ‘ ‘

2 1.400 0.667 ‘ ‘

3 1.025 0.420 ‘ ‘

4 0.920 0.229 ‘ ‘

5 0.880 0.220 ‘ 4.378

25 0.180 0.295 ‘ 0.536

250 0.107 0.090 ‘ 0.220

The data is obtained by conducting simulation and fitting the exponent of RTO probability according to the definition given in Eq.(17). We mainly consider the range [2
5,5] as they are mostly considered in the literature. The entries {250, 225, 25, 50} are used to examine the effect on ds for large a. The entries with ds~? are obtained
by the observation that the RTO probability stabilized fairly quickly in less than 10 time steps. The data in this table is plotted in Figure 4.
doi:10.1371/journal.pone.0093348.t003

Figure 4. Relationship between spectral dimension ds and the weighting factor a. The data used for drawing this figure is tabulated in
Table 3. The lines corresponding to BA and ER network appear disconnected as they have ds~? for certain values of a and cannot be adequately
shown in the figure. The spectral dimension generally peaks in the interval [21, 1] and drops significantly for a of greater magnitude. This is especially
true for the BA and ER networks (from infinity to a finite value). In the extreme case, by setting a~?, the ‘random walk’ is no longer random as the
node with largest degree will always be chosen at every step. Similar reasoning also applies for a~{?. Therefore, towards both extremes, we would
expect the random walk to become more localized and hence falls into the compact exploration regime.
doi:10.1371/journal.pone.0093348.g004
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F (vd ,tjvs)~
X

u[n(vd )

wu(t{1)
wvdP

r[n(u) wr

ð8Þ

For tvt, the first passage probability is dependent on the

source-sink distance. Here, we focus on the asymptotic behaviour

of the random walker for t&t. As such, we can apply Approx.(5)

and after simplifying, we get:

F (vd ,tjvs)&wtotal(t{1)
X

u[n(vd )

Yu

wvdP
r[n(u) wr

ð9Þ

Let bvd
~
P

u[n(vd ) Yu
wvdP
r[n(u)

wr
. By combining Eq.(7) and

Approx.(9), after simplification, we obtain the following recursive

approximation:

wtotal(t)&(1{bvd
)wtotal(t{1) ð10Þ

By definition, wtotal(0)~1 as the random walker has not started

moving and thus the survival probability is 1. Solving the recursive

formula yields:

wtotal(t)&(1{bvd
)t ð11Þ

ƒ exp ({bvd
t) ð12Þ

Substituting the result back to Approx.(9) yields:

F (vd ,tjvs) *> bvd
e
{bvd

(t{1) ð13Þ

Thus, the first passage probability is approximately bounded

below by an exponential function for t&t and the decay rate is

given by bvd
. To calculate the decay rate, we apply Approx.(6):

bvd
~

X
u[n(vd )

Yu

wvdP
r[n(u) wr

&
wvd

N w0

X
u[n(vd )

1{
wvdP

r[n(u) wr

 !
wu

~
wvd

X
u[n(vd )

wu{wvd

X
u[n(vd )

wuP
r[n(u) wr

0
@

1
A

~
w0vd 1{

wvd

P
u[n(vd ) Pr(u?u)P

u[n(vd ) wu

 !

~pvd
1{Pr(vd?vd )

X
u[n(vd )

Pr(u?u)

0
@

1
A

ð14Þ

where the last step is just a simplification of the expression by using

the definition as shown in Eq.(1) as we assumed earlier that every

node in the network has a self-loop. Nevertheless, for the cases

where self-loop is absent, the expression Pr(v?v) can be

Figure 5. MFPT of the Actor network when a~0. Even though the spectral dimension ds is less than 2, the MFPT is not found to be independent
of node degree. Instead, the MFPT exhibits a power-law relationship with respect to the node degree. The disparity arises probably as a result of self-
loops, which affects both the RTO probability distribution and the estimated ds.
doi:10.1371/journal.pone.0093348.g005
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substituted for wvP
u[n(v)

wu
, as self-loop played no role in our

derivation except for the regularity of the random walk.

The result in Approx.(14) suggests that the decay rate of the first

passage time distribution depends mainly on the sink node’s

stationary distribution and the transition probabilities around the

sink node.

Mean First Passage Time
After obtaining the first passage time distribution, we can

estimate the mean first passage time by using the approximation:

T ~
X?

1

tF (vd ,tjvs)

&
ð?

1

tF (vd ,tjvs)dt

~

ðc

1

tF (vd ,tjvs)dtz

ð?
c

tF (vd ,tjvs)dt

ð15Þ

for some c&t. In Approx.(15), the integral is separated into two

parts – from 1 to c and from c to ? for short-term and long-term

behaviour respectively. While the first passage time analysis is

based on the assumption t&t, our result is an upper bound on the

first passage probability for small t. This is justified by the

observation that the first passage time probability starts from zero

initially, increases to a peak, then decreases exponentially (see

Figure 2 and [15] for non-compact case) with the decay rate as

presented previously. Thus, Ineq.(13) is an overestimation of the

first passage probability for small t. Hence, we provide a lower

bound of mean first passage time as follows:

STTw

ð?
1

tbvd
e
{bvd

(t{1)
dt

~

ð?
1

(1{tbvd
)e

{bvd
(t{1)

dtz

ð?
1

e
{bvd

(t{1)
dt

~1z
1

bvd

ð16Þ

Although Ineq.(16) is a lower bound of the mean first passage time,

results from simulations show that it is strongly correlated to the

actual MFPT.

In order to calculate the MFPT, an edge will be followed exactly

twice to obtain the weight of the connected neighbour. Thus,

assuming the network is represented in adjacency list format, the

time complexity of the approximation is given by O(NzM). The

time complexity to convert a network from adjacency matrix

representation into adjacency list representation is bounded by

O(N2). Hence, the overall time complexity of the approach is

bounded by O(N2zM) for adjacency matrix representation.

Nevertheless, in terms of computational efficiency, the approach is

a great improvement from the fundamental matrix method [13]

which has time complexity of O(N3) or O(N2:376) depending on

the actual implementation of matrix operations [20]. Thus, our

approach can be used to estimate MFPTs of the network quickly

especially for large scale networks.

Results

We verify the theoretical results on two real world networks and

two artificially generated networks: (i)arXiv General Relativity and

Quantum Cosmology collaboration network, obtained from the

Stanford SNAP website [21], (ii) Barabási-Albert (BA) preferential

attachment network [1,22], (iii) Erdos-Renyi (ER) random graph,

and (iv) Actor collaboration network from the Barabási lab [1].

Because the analysis only applies to connected graphs, we used the

largest component of the arXiv network. The two generated

networks are chosen to test the theoretical results on networks with

different structure and edge density. The ER network is generated

with p~0:0011, while the BA network is generated with

m~N0~7. The Actor network is constructed from the first

1000 records of the database, where each record consists of the

actors who collaborated in the same movie. Table 1 summarizes

the networks that we have examined.

We apply the node weight assignment scheme given by wi~ka
i ,

where ki is degree of node i and a is an integer. This node weight

assignment scheme is mainly studied in the network traffic

community such as [5,7]. For our experiments, we mostly consider

the range of a in ½{1,1� except for the Actor network as other

values with greater magnitude will result in random walks with

exceedingly long walk lengths.

The experiments are conducted as described below. Firstly, for

a given network, we choose 20 nodes randomly as the source

nodes. The weighting factor a is then fixed and the node weights

are computed accordingly. For each source node, 250 times of full

random walk simulations are conducted independently. A full

random walk simulation starts with the random walker at the

source node and terminates when every other node has been

visited at least once. The first passage time to each node is

recorded. The procedure is then repeated for other values of a.

To obtain the first passage time distribution, we applied

Gaussian Kernel Density Estimation on the first passage time

statistics collected from the simulations. We randomly selected

different source-sink pairs for each network and different values of

a, and the results are plotted in Figure 2. As shown in the figure,

for most cases, we can predict the tail of the first passage time

distribution fairly accurately except for the case when a~{1 in

arXiv network. With reference to Table 2, we find that for

a~{1, the relaxation time for the corresponding random walk is

very high, and thus for certain sink nodes with high absorption

rates, our theoretical result may not be applicable.

In Figure 3, we compare the empirical MFPT to that predicted

by Ineq. (16). Since we relaxed several expressions during the

derivation, the values predicted by Ineq. (16) may not be of the

same scale as the empirical result. Therefore, we renormalized the

predicted values (P-set) with respect to the empirical result (E-set).

The renormalization scheme is described as follows. First, we sort

both the P-set and E-set in non-increasing order. Then we rescale

the middle 90% of the P-set with respect to that of the E-set, i.e.

obtain the rescale parameters (shearing and scaling) by ignoring

both the upper and lower 5 percentile of both sets. Finally, the

renormalization is applied to the whole P-set.

As shown in Figure 3, we can observe that while the result by

Fronczak et al. predicted the general trend of MFPT with respect

to node degree, our result further refined the predicted values by

examining local weight distribution. By zooming into a greater

level of detail, our approach has revealed a useful relationship

between local connectivity and the MFPT especially as highlighted

in Figure 3(a),(c), and (e). The weighting factor a controls whether

high degree nodes should receive greater attention or vice-versa.

Thus, for small a, high degree nodes should be reached less often

and hence greater MFPT. Surprisingly, even for a~{2, there are

cases where high degree nodes can be reached fairly quickly as

depicted in Figure 3(a). By examining the structure of the Actor

network, we find that many high degree nodes are connected with
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bridge nodes of low degree. On the other hand, the MFPT of the

BA network does not show this kind of pattern. We believe that

this is due to the fact that the BA network possesses a much simpler

structure than the Actor network.

To investigate the overall performance of the bound given in

Ineq. (16), we also calculated Pearson’s correlation coefficient, and

the results are summarized in Table 2. Overall, the correlations

are high whenever the relaxation time is low. For the BA network,

the relaxation time is consistently low and thus the correlation is

extremely good.

Discussions

In [15,16], it was found that the random walk exploration can

be divided into compact and non-compact regimes based on their

spectral dimension. For the compact case, the random walker

spends longer time travelling around certain neighbourhood and

hence the relaxation time is long, while the non-compact case is

the other way round. In our study, we focus on the non-compact

case, i.e., random walk with short relaxation time. While the

structure plays a part in deciding the dynamics of random walk,

the weighting factor a also affects the mixing rates. To examine

how much the assumption of short relaxation time holds when the

weighting factor a is changed, we also investigated the relationship

between a and the spectral dimension of the corresponding

random walk ds. We numerically estimate ds by using the

following relation [17]:

Po(t)*t{ds=2 ð17Þ

where Po(t) denotes the Return-to-origin (RTO) probability at

time t [17]. To obtain the RTO probabilities, we conducted

simulations with 100,000 random walkers which are placed

randomly at t~0. Each random walker walks independently for

100,000 time steps, and the fraction of random walker returning to

their respective starting node is recorded at each time step. Table 3

and Figure 4 summarizes the result.

As shown in Figure 4, the spectral dimension generally peaks in

the interval [21, 1], which explains the applicability of our result.

While for the case of uniform random walk, it was shown that ds of

both BA networks and random graphs are infinity [23], we found

finite ds for a=0. In the extreme case, by setting a~{?, the

‘random walk’ is no longer random as the node with smallest

degree will always be chosen at every step. For this scenario, the

network will be broken into cycles where leaf nodes form the

smallest cycle. Similar phenomenon also applies for a~?.

Therefore, towards both extremes, we would expect the random

walk to become more localized and hence falls into the compact

exploration regime where our result may not be applicable.

We also observe several disparities between our results and that

of [16]. For instance, as shown in Figure 5 and Table 3, when

a~0, we found that the spectral dimension of the Actor network is

1.500. However, the MFPT is found to be following a power-law

relationship with respect to node degree instead of being

independent of node degree. Similar results have been obtained

for the arXiv network for a~1, for which ds~1:060, as shown in

Figure 3(c). We believe that the disparities arise from the following

facts: (i) we considered random walks with self-loops where the

staying probabilities are proportional to the node weights; and (ii)

the random walks are biased by weight assignments. The self-loop

changes the RTO probability distribution and thus also affects the

estimated ds. The nodes are weighted differently, therefore the

cross-over threshold for ds may not be the same as that of [16].

Further research is needed to better understand the effects of self-

loops and node weights on the spectral dimension of a random

walk.

In summary, we have shown the exact form of stationary

distribution for a class of biased random walks on networks where

the nodes are assigned arbitrary weights. By using this result, we

have presented a new method that gives improved estimation of

MFPT for random walks with short relaxation time. We have

verified that the decay rate of the first passage time distribution

can be estimated fairly accurately and the MFPTs are found to be

better revealed by local weight distributions. Given its low

computational cost, our method enables quick inspection of the

MFPT for large scale networks. This is especially true for cases

where the ranking rather than the actual values of MFPT of nodes

is more important. For instance, to contain virus outbreaks, the

new method can be used to quickly rank the nodes based on

estimated MFPT and judiciously apply security measures on the

nodes that are ranked highly. Our result can also be readily

extended to the case of cyclic search [8] where the random walker

will scan the direct neighbours of current node for the target as

opposed to blindly following the transition rule.

Acknowledgments

The authors would like to express their gratitude to the anonymous

reviewers for the constructive comments and insightful suggestions,

especially with regard to the fundamental relations between the spectral

dimensions and MFPT, which led to the clarifications and additional

contents in Discussions.

Author Contributions

Conceived and designed the experiments: ZQL WJH ML. Performed the

experiments: ZQL. Analyzed the data: ZQL. Contributed reagents/

materials/analysis tools: ZQL. Wrote the paper: ZQL WJH.

References

1. Barabsi AL, Albert R (1999) Emergence of scaling in random networks. Science

286: 509–512.

2. Krioukov D, Kitsak M, Sinkovits R, Rideout D, Meyer D, et al. (2012) Network

Cosmology. Nature Scientific Reports 2.

3. de Martino D, Dall’Asta L, Bianconi G, Marsili M (2009) Congestion

phenomena on complex networks. Physical Review E 79: 015101.

4. Yan G, Zhou T, Hu B, Fu ZQ, Wang BH (2006) Efficient routing on complex

networks. Physical Review E 73: 046108.

5. Ling X, Hu MB, Jiang R, Wu QS (2010) Global dynamic routing for scale-free

networks. Phys Rev E 81: 016113.

6. Chen S, Huang W, Cattani C, Altieri G (2012) Traffic Dynamics on Complex

Networks: A Survey. Mathematical Problems in Engineering.

7. Dan Wang ZL (2012) General local routing on complex networks. In:

Communications and Infor- mation Processing.

8. Fronczak A, Fronczak P (2009) Biased random walks in complex networks: The

role of local navigation rules. Physical Review E 80: 016107.

9. Kleinberg J (2006) Complex networks and decentralized search algorithms. In:

In Proceedings of the International Congress of Mathematicians (ICM).

10. Condamin S, Bénichou O, Tejedor V, Voituriez R, Klafter J (2007) First-

passage times in complex scale-invariant media. Nature 450: 77–80.

11. Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking:

Bringing order to the web. Technical Report 1999–66, Stanford InfoLab.

12. Even-Dar E, Shapira A (2007) A note on maximizing the spread of influence in

social networks. In: Proceedings of the 3rd international conference on Internet

and network economics. Berlin, Heidelberg: Springer-Verlag, WINE’07, 281–

286.

13. Grinstead CM, Snell JL (2003) Introduction to Probability. AMS.

14. Lau HW, Szeto KY (2010) Asymptotic analysis of first passage time in complex

networks. EPL (Europhysics Letters) 90: 40005.

15. Bénichou O, Chevalier C, Klafter J, Meyer B, Voituriez R (2010) Geometry-

controlled kinetics. Nature Chemistry 2: 472–477.

Estimating MFPT of Biased Random Walks

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e93348



16. Hwang S, Lee DS, Kahng B (2012) First passage time for random walks in

heterogeneous networks. Phys Rev Lett 109: 088701.
17. Hwang S, Yun CK, Lee DS, Kahng B, Kim D (2010) Spectral dimensions of

hierarchical scale-free networks with weighted shortcuts. Phys Rev E 82: 056110.

18. David A Levin YP, Wilmer EL (2009) Markov Chains and Mixing Times. AMS.
19. Erik van Doorn PP (2011) Quasi-stationary distributions. Memorandum,

University of Twente, AE Enschede, The Netherlands. Available at http://
doc.utwente.nl/77521/1/memo1945.pdf. Accessed 2014 March 10.

20. Coppersmith D, Winograd S (1990) Matrix multiplication via arithmetic

progressions. Journal of Symbolic Computation 9: 251–280.

21. Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: Densification and

shrinking diameters. ACM Trans Knowl Discov Data 1.

22. Barabási AL, Albert R, Jeong H (1999) Mean-field theory for scale-free random

networks. Physica A 272: 173–187.

23. Samukhin AN, Dorogovtsev SN, Mendes JFF (2008) Laplacian spectra of, and

random walks on, complex networks: Are scale-free architectures really

important? Phys Rev E 77: 036115.

24. Gilbert EN (1959) Random graphs. Annals of Mathematical Statistics 30: 1141–

1144.

Estimating MFPT of Biased Random Walks

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e93348

http://doc.utwente.nl/77521/1/memo1945.pdf
http://doc.utwente.nl/77521/1/memo1945.pdf

