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Purpose: Developing an MRI-based radiomics model to effectively and accurately

predict the predominant histopathologic growth patterns (HGPs) of colorectal liver

metastases (CRLMs).

Materials and Methods: In this study, 182 resected and histopathological proven

CRLMs of chemotherapy-naive patients from two institutions, including 123 replacement

CRLMs and 59 desmoplastic CRLMs, were retrospectively analyzed. Radiomics analysis

was performed on two regions of interest (ROI), the tumor zone and the tumor-liver

interface (TLI) zone. Decision tree (DT) algorithm was used for radiomics modeling

on each MR sequence, and fused radiomics model was constructed by combining

the radiomics signature of each sequence. The clinical and combination models were

developed through multivariate logistic regression method. The performance of the

developed models was assessed by receiver operating characteristic (ROC) curves with

indicators of area under curve (AUC), accuracy, sensitivity, and specificity. A nomogram

was constructed to evaluate the discrimination, calibration, and usefulness.

Results: The fused radiomicstumor and radiomicsTLI models showed better

performance than any single sequence and clinical model. In addition, the

radiomicsTLI model exhibited better performance than radiomicstumor model (AUC

of 0.912 vs. 0.879) in internal validation cohort. The combination model showed

good discrimination, and the AUC of nomogram was 0.971, 0.909, and 0.905

in the training, internal validation, and external validation cohorts, respectively.
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Conclusion: MRI-based radiomics method has high potential in predicting the

predominant HGPs of CRLM. Preoperative non-invasive identification of predominant

HGPs could further explore the ability of HGPs as a potential biomarker for clinical

treatment strategy, reflecting different biological pathways.

Keywords: colorectal cancer, liver metastasis, magnetic resonance, histopathologic growth patterns, radiomics

INTRODUCTION

The inter- and intra-lesion heterogeneities of genetic, epigenetic,
phenotypic, and morphologic characteristics leads to differences
in overall survival response to systemic treatment in patients
with colorectal liver metastasis (CRLM) (1). One of these
heterogeneities appears as histopathological growth patterns
(HGPs) and corresponding microvasculatures (2, 3). According
to the different interface between tumor cells and adjacent
liver parenchyma, CRLM mainly has two types of HGPs: the
desmoplastic and the replacement; other infrequent types include
the pushing and mixed HGPs (4). In the desmoplastic HGP,
tumor cells and liver parenchyma are separated by a fibrous
rim with lymphocytic infiltration and have a microvasculature
of sprouting angiogenesis (3). In the replacement HGP, the
tumor cells forming the cell plate are continuous with the
hepatocyte plate, with microvasculature of vessel co-option
and without angiogenesis (3). The diversity of these biological
microenvironments leads to different responses to treatment,
especially to the anti-angiogeneic agent (5, 6) and to different
long-term prognosis (3, 7, 8). The replacement HGP is identified
as a poor predictor of Bevacizumab treatment in patients with
CRLMs (9).

The gold standard for HGP diagnosis of CRLMs is the
histopathological analysis of the chemo-naïve resected specimen
(3). Due to the low percentage of initially resectable lesions
and the wide use of preoperative systemic treatment, clinical
relevance is seriously limited. Therefore, a preoperative and
non-invasive surrogate method is needed to predict different
HGP in CRLMs, so as to improve the prognosis and facilitate
the treatment strategy. In addition, a non-invasive method to
assess the HGPs would also allow for longitudinal follow-up
of the response of a lesion to a certain treatment by switch
of the HGP.

Heightened soft-tissue resolution, multiparameter
acquisition, and functional imaging enable the MRI to be
an invaluable imaging method for patients with CRLMs (10).
Although there is no direct evidence that the qualitative
and quantitative MRI features can predict HGP of CRLMs,
preliminary data have provided some clues. In a very limited
cohort of seven patients with liver metastases, Semelka et al.
demonstrated that the transient enhancement around the
lesion on MR images was related to the desmoplastic reaction,
inflammatory cell infiltration, and vascular proliferation
around the tumor (11). Based on dynamic contrast enhanced
(DCE) MRI, O’Connor and Jayson revealed the microvascular
heterogeneity is a prognostic and predictive biomarker before
bevacizumab containing therapy (12). However, dedicated

acquisition and analysis protocol of DCE-MRI also limits clinical
relevance (13).

Compared with qualitative gross imaging features, radiomics
transforms digital images into quantitative data, analyzes
the spatial heterogeneity, and generates imaging biomarkers
that can be used as an assistant tool for clinical decision-
making (14). It develops rapidly in cancer detection, diagnosis,
and therapeutic strategy selection, prediction of prognosis,
therapeutic response, and surveillance (15–18). Our previous
study showed multidetector CT based radiomics analysis could
effectively identify HGP of CRLMs (19). Nevertheless, as far as
we know, radiomics model for predicting HGP of CRLMs based
on MR images has not been established.

In this study, we aim to develop and validate an MRI-
based radiomics model for predicting HGP of CRLMs, so
as to effectively screen patients and develop appropriate
treatment strategies.

MATERIALS AND METHODS

Two institutional review boards supported this study and waived
the informed consent requirements due to retrospective analysis.
The flowchart of this study is showed in Figure 1.

Patient Population
Patients were retrospectively searched in both institutions’
histopathological electronic information systems (HIS) from
November 2007 and June 2018. The inclusion criteria were as
follows: (1) partial hepatectomy was performed; (2) CRLM was
proved by histopathological analysis; and (3) a contrast-enhanced
abdominal MRI examination was performed within 4 weeks
before surgery. The exclusion criteria were as follows: (1) pre-
operative systemic and/or regional treatments were performed;
(2) MR image quality was inadequate for analysis; and (3)
hematoxylin- and eosin-stained (H&E) sections of the tumor-
liver interface (TLI) areas of the resected CRLM specimen were
inadequate for analysis.

Several clinical characteristics, including age, sex,
classification of the CRLMs (synchronous vs. metachronous),
time interval from MR scanning to hepatectomy, number
of resected lesions per patient, location of primary lesions
(left-sided: from the splenic flexure to the rectum vs. right-
sided: from the ileocecal junction to the transverse colon)
(20), histopathological type and tumor differentiation (high-
/moderate- vs. low-differentiated adenocarcinoma) of the
primary lesion were derived.
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FIGURE 1 | Flowchart for this study. (A) The T2W images were used as an example to illustrate the segmentation process, and slicer-to-slicer delineation obtained

two sets of ROI. (B) Multiple radiomic features were extracted from two sets of ROI. Clinical features were obtained from medical records, and qualitative gross

imaging features were evaluated by two board-certified radiologists. (C) Intra-/inter-observer coefficients were used to select the stability features, and decision tree

were used to construct the radiomics model in each sequence. The best performed sequences and related clinical features were used to form the final classification

model. The ROC, calibration curve, and decision curve were used to evaluate the performance of models.

Histopathological Analysis
For all resected specimens, two experienced pathologists (YLZ,
10 years of experience; WQS, 15 years of experience), who were
ignorant to the clinical data, reviewed the H&E-stained section
from four formalin-fixed paraffin-embedded blocks according
to the international consensus guidelines (3). Any subjective
disagreement between the two readers was discussed until
consensus was reached.

Lesions were categorized according to the 50% cut-off
value of the consensus guidelines. Lesions were categorized as
desmoplastic, replacement, or pushing HGP when >50% of the
interface was scored (i.e., >50% desmoplastic appearance would
be classified into desmoplastic HGP; same as the replacement and
the pushing HGP). Lesion was considered to be mixed HGP if
none of the three HGP was present at >50% of the interface.

MRI Acquisition and Qualitative Feature
Analysis
MRI Acquisition
The MRI examinations were performed by 750W system (GE
Healthcare, Milwaukee, WI, USA) and 8-channel phased array
torso coils in both institutions. All patients were positioned
supine and feet-first. Images used in this study included (i)
T2-weighted image (T2WI) of fast recovery fast spin-echo

with fat saturation, (ii) Diffusion-weighted imaging and the
Apparent diffusion coefficient (ADC) quantification, (iii) T1-
weighted image (T1WI), (iv) arterial phase (AP), and (v) portal
venous phase (PVP) image of the dynamic contrast-enhanced
T1-weighted liver acquisition volume acceleration (LAVA) with
chemically selective fat saturation. The conventional abdominal
MRI protocol is shown in Table E1. The enhanced images were
acquired after the intravenous administration of gadopentetate
dimeglumine (Magnevist; Bayer HealthCare Pharmaceuticals,
Berlin, Germany) in the arterial phase (46 s after contrast
injection) and portal venous phases (79 s after contrast injection).

Qualitative Feature Analysis
Two board-certified abdominal radiologists (FC, 2 years of
experience; JC, 10 years of experience), who were ignorant
to the histopathologic information and the original MR
imaging reports, evaluated the MR image retrospectively and
independently. Any subjective disagreement between the two
readers was discussed until consensus was reached.

The following features were evaluated and recorded: (1) the
location of the tumor: segment I–IV vs. segment V–VIII, based
on the Couinaud criteria (21); (2) the contour of the tumor:
lobular (defined as a tumor with one or more indentation with
an acute angle) or non-lobular (no indentations with an acute
angle) (22); (3) the presence or absence of enhanced rim on AP
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or PVP appearing as a peritumoral, complete ring with higher
intensity relative to adjacent liver parenchyma, as well as the solid
component of the lesion (11); and (4) the maximum diameter of
the tumor (in millimeters) in the axial PVP images.

Model Construction and Assessment
All of these characteristics were further investigated by
developing of three models, specifically (1) a radiomics model,
including the selected radiomic features; (2) a clinical model,
including the clinical and qualitative imaging features; and (3)
a combination model, including the selected clinical, qualitative
imaging, and radiomic features. Lesions from the first institution
were divided into a training cohort and a time-independent
internal validation cohort with the ratio of 2:1. Lesions from the
second institution were included as an external validation cohort.
We evaluated the identification ability of each model by using
the receiver operating characteristic (ROC) curve with area under
curve (AUC). DeLong tests were used to evaluate the differences
of predictive performance among models.

Radiomics Model Construction

Image segmentation
The region of interest (ROI) was manually delineated using
ITK-SNAP software (version 2.2.0; www.itksnap.org) on the
five sequences (T1W, T2W, AP, PVP, and ADC) images. We
constructed two sets of ROIs. The first set of ROIs was delineated
along the edge of each target tumor on each consecutive imaging
slice to cover the whole tumoral volume. The second set of
ROIs was restricted to the TLI zone, which was obtained by
subtracting an inner segmentation from an outer segmentation.
The outer segmentation was drawn ∼2mm outside the tumor
boundary, and the inner segmentation was ∼2mm inside the
tumor boundary.

Radiomic features extraction
Radiomic features were respectively extracted from the two
sets of ROIs, including 18 first-order statistical features and 74
texture features. The first-order statistical features describe the
distribution of voxel intensities in MR images. Textural features
that describe the internal heterogeneity of ROI are calculated
based on five textural matrices (Appendix E1). Additionally, the
three-dimensional coiflets wavelet transformation was applied
to decouple texture information for all patient data. Radiomic
features were derived from the original image and eight wavelet
decompositions for each patient both in TLI and tumor zone. The
detailed illustration of these features is shown in Table E2.

Feature selection
The intra/interclass correlation coefficient of each feature was
calculated to select the stable feature with the threshold of 0.8
(23) (Figures E1, E2). After pre-screening, we used the robust
feature selection (RFS) method to select radiomic features. The
RFS method emphasizes the minimization of joint l2,1-norm in
loss function and regularization, and selects the features of joint
sparsity on all data points (24). We ranked the coefficients of
all features and top best features were selected as the effective
predictors for later decision tree classifier.

Radiomics signature construction
The decision tree was applied to evaluate the ability of each of
the five sequences for predicting HGP. We implemented this
algorithm by tuning two parameters, the maximum sample of
leaf and the maximum node, in the training process based on
the selected features. We obtained five signatures after separately
applying this algorithm on the five sequences both in the TLI
and in the tumor zone. The forward stepwise regression method
was used to select the desired sequences from five signatures, and
the final radiomics signature was generated based on the desired
sequences through logistics regression method. The decision tree
algorithm was implemented by using the Python, version 3.6.5
“scikit-learn” package.

Cross validation
In order to elude the effect of a training/validation cohort split, we
performed cross-validation between institutions. Lesions from
the second institution were also divided into a training cohort
and a time-independent internal validation cohort with the ratio
of 2:1, and radiomics analysis was repeated in the final selected
sequences. Lesions from the second institution were used as an
external validation cohort.

Clinical and Combination Model Construction
Univariate analysis was used to evaluate the significance
of clinical and qualitative imaging features in predicting
HGPs of CRLMs. The forward stepwise was used to
select desired features and construct the clinical model. In
order to explore the complementarity between radiomics
signature and clinical and qualitative imaging features, a
combination model that incorporated the selected clinical
and qualitative imaging features and radiomics signature was
developed through logistic regression method. The forward
stepwise was also used to selected the optimal factors for
combination model.

Nomogram Establishment
To offer a quantitative tool to investigate the ability of the
combination model for HGP differentiation, we built a
nomogram based on the multivariable logistic regression in
the training cohort. Plotting calibration curves to evaluate the
degree of deviation between the predictions and observed
outcomes with Hosmer–Lemeshow test. Moreover, the
decision curve analysis (DCA) was carried out to appraise
its clinical usefulness by quantifying the net benefit under all
threshold probabilities.

Statistical Analysis
The differences of clinical factors between training and
validation cohorts were verified by Student’s t or Chi-square
test. The quantitative variables were displayed by mean and
standard deviation (SD). For categorical variables, number
(n) and percentage (%) were used. These analyses were
carried out on PASW Statistics version 25.0 (SPSS Inc.,
Chicago, IL, USA).
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RESULTS

Clinical and Histopathologic
Characteristics
Based on the inclusion and exclusion criteria, a total of 107
patients were involved, including 43 women (40.2%) and 64 men
(59.8%), with a median age of 59.79 years (interquartile range,
52–67 years). The median interval between MRI examination
and hepatectomy was 17.02 days (interquartile range, 6.75–
27.75 days).

Finally, a total of 195 CRLMs were recognized. The average
number of lesions of each patient was 1.84 (range, 1–12); 38
patients had multiple CRLMs. There were 59 (30.3%) lesions

with desmoplastic HGP (Figure E3a), 123 (63.1%) lesions with
replacement HGP (Figure E3b), 10 lesions (5.1%) with pushing
HGP, and three lesions (1.5%) with mixed HGP based on the
international guidelines for scoring HGPs of liver metastases
(3). Only one patient had both replacement and mixed CRLMs.
Because of the low prevalence of pushing and mixed HGP, they
were excluded from the study. This study finally analyzed 59
desmoplastic HGPs and 123 replacement HGPs.

The lesions from the first institution were grouped into
training (n = 61) and internal validation (n = 31) cohort
based on the surgery date. The external validation cohort was
consisted of 90 lesions from the second institution. Baseline
characteristics of these three cohorts are summarized in Table 1.

TABLE 1 | Demographics of patients.

Characteristics Training cohort

(n = 61)

Internal

validation cohort

(n = 31)

p-value External

validation cohort

(n = 90)

p-value

Age [years, mean (SD)] 61.74 (9.66) 60.35 (10.42) 0.529 57.71 (10.05) 0.030*

Sex [n (%)] 0.804

Male 39 (63.9) 19 (61.3) 53 (58.9) 0.533

Female 22 (36.1) 12 (38.7) 37 (41.1)

Synchronous

[n (%)]

0.572 0.001*

Yes 52 (85.2) 25 (80.6) 55 (61.1)

No 9 (14.8) 6 (19.4) 35 (38.9)

Primary site [n (%)] 0.834 0.395

Left-sided 44 (72.1) 23 (74.2) 59 (65.6)

Right-sided 17 (27.9) 8 (25.8) 31 (34.4)

Pathology [n (%)] 0.950 0.058

Low differentiation 35 (57.4) 18 (58.1) 65 (72.2)

High and moderate

differentiation

26 (42.6) 13 (41.9) 25 (27.8)

Diameter [mm, mean

(SD)]

26.69 (18.24) 33.17 (29.57) 0.198 24.00 (14.52) 0.382

Metastatic site [n (%)] 0.409 0.324

Segment I–IV 23 (37.7) 9 (29) 27 (30.0)

Segment V–VIII 38 (62.3) 22 (71) 63 (70.0)

Margin 0.312 0.055

Lobular 12 (19.7) 9 (29) 8 (8.9)

Non-lobular 49 (80.3) 22 (71) 82 (91.1)

Enhanced rim on AP 0.714 0.067

Yes 41 (67.2) 22 (71) 47 (52.2)

No 20 (32.8) 9 (29) 43 (47.8)

Enhanced rim on PVP 0.294 0.724

Yes 43 (70.5) 25 (80.6) 61 (67.8)

No 18 (29.5) 6 (19.4) 29 (32.2)

Pattern [n (%)] 0.959 0.942

Desmoplastic 20 (32.8) 10 (32.3) 29 (32.2)

Replacement 41 (67.2) 21 (67.7) 61 (67.8)

n, number of CRLMs; SD, standard deviation; AP, arterial phase; PVP, portal venous phase; *P < 0.05 showed significantly different.
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No significant differences were observed for baseline clinical
and qualitative imaging characteristics between the training
and internal validation cohort (all p > 0.05). Compared with
the training cohort, the external validation cohort showed
significantly younger age and different occurrence time of
the CRLMs; other characteristics were comparable between
two cohorts.

Performance of the Clinical Model
After univariate analysis, only lobular margin was statistically
significant (P = 0.032, Table 2). The clinical model was
constructed by sex, diameter, primary site, and lobular margin

through forward stepwise regression. The AUC was 0.659 (95%
CI: 0.514–0.803), 0.676 (95% CI: 0.484–0.869), and 0.685 (95%
CI: 0.563–0.807) in three cohorts, respectively (Table 3). The
ROC curves of the clinical model in all cohorts are displayed in
Figure 2A.

Performance of Tree-Based Radiomics
Signatures
We extracted 828 features for each sequence. After inter/intra-
observer agreement analysis, the dimensional of feature space
was 679 for T2WI, 483 for ADC, 631 for T1WI, 737 for AP, and
691 for PVP images in TLI zone; and 652 for T2WI, 549 for ADC,

TABLE 2 | Univariate analysis of clinical and qualitative imaging features in distinguishing HGPs of CRLMs.

Characteristics Desmoplastic

(n = 41)

Replacement

(n = 20)

OR 95%CI p-value

Sex (male) 28 (68.3%) 11 (55%) 1.84 (0.75–4.49) 0.182

Diameter 27.19 (19.74) 25.67 (15.11) 0.99 (0.97–1.00) 0.138

Metastatic site

(segment I–IV)

16 (39.0%) 7 (35%) 1.73 (0.70–4.26) 0.233

Pathology

(high/moderate

differentiation)

22 (53.7%) 13 (65.0%) 1.42 (0.58–3.48) 0.440

Age 62.07 (9.03) 61.05 (11.06) 1.00 (0.96–1.05) 0.907

Synchronous 35 (85.4%) 17 (85.0%) 1.04 (0.32–3.37) 0.948

Primary site

(left-sided colon)

32 (78.0%) 12 (60.0%) 0.50 (0.19–1.31) 0.158

Lobular margin 7 (17.1%) 5 (25.0%) 0.33 (0.13–0.91) 0.032*

Enhanced Rim on AP 26 (63.4%) 15 (75.0%) 0.90 (0.35–2.32) 0.827

Enhanced Rim on PP 30 (73.2%) 13 (65.0%) 1.34 (0.51–3.56) 0.553

n, number of CRLMs; *P < 0.05 showed statistical significance; OR, Odds ratio.

TABLE 3 | Performance of the clinical, radiomics, and combined models in distinguishing HGPs of CRLMs.

Models Clinical model Radiomicstumor

model

RadiomicsTLI

model

Combination

model

Training cohort AUC 0.659

(0.514–0.803)

0.999

(0.997–1.000)

0.974 (0.940–1.000) 0.971

(0.927–1.000)

ACC 0.623 0.983 0.934 0.967

SEN 0.561 0.976 0.950 0.976

SPE 0.750 1.000 0.927 0.950

Internal validation cohort AUC 0.676

(0.484–0.869)

0.879

(0.741–1.000)

0.912 (0.789–1.000) 0.909

(0.785–1.000)

ACC 0.613 0.774 0.903 0.871

SEN 0.571 0.762 0.952 0.952

SPE 0.700 0.800 0.800 0.700

External validation cohort AUC 0.685

(0.563–0.807)

— 0.960

(0.919–1.000)

0.905

(0.841–0.970)

ACC 0.567 — 0.811 0.788

SEN 0.475 — 1.000 1.000

SPE 0.759 — 0.414 0.345

AUC, area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.
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FIGURE 2 | (A) ROC curve for the clinical model. (B) ROC curves for the radiomicsTLI model. (C) ROC curves for the combination model.

TABLE 4 | Performance of each single sequence in distinguishing HGPs of CRLMs.

Model Training cohort Internal validation cohort

AUC ACC SEN SPE AUC ACC SEN SPE

TLI area T1WI 0.707

(0.599–0.816)

0.803 1.000 0.400 0.619

(0.458–0.780)

0.710 0.905 0.300

T2WI 0.845

(0.769–0.921)

0.803 0.854 0.700 0.767

(0.592–0.942)

0.677 0.905 0.200

AP 0.907

(0.832–0.982)

0.885 0.878 0.900 0.860

(0.721–0.999)

0.806 0.905 0.600

PVP 0.812

(0.712–0.912)

0.803 0.707 1.000 0.736

(0.590–0.882)

0.677 0.571 0.900

ADC 0.754

(0.645–0.863)

0.721 0.659 0.850 0.733

(0.567–0.900)

0.710 0.667 0.800

Tumor area T1WI 0.902

(0.825–0.980)

0.836 0.805 0.900 0.843

(0.708–0.978)

0.806 0.857 0.700

T2WI 0.762

(0.640–0.884)

0.754 0.780 0.700 0.657

(0.469–0.845)

0.677 0.714 0.600

AP 0.840

(0.725–0.954)

0.852 0.902 0.750 0.679

(0.493–0.864)

0.677 0.667 0.700

PVP 0.887

(0.798–0.975)

0.869 0.902 0.800 0.717

(0.533–0.900)

0.710 0.714 0.700

ADC 0.916

(0.848–0.985)

0.902 1.000 0.700 0.833

(0.713–0.954)

0.839 1.000 0.500

594 for T1WI, 694 for AP, and 679 for PVP images in tumor zone
(Figures E1, E2). The RFS method ranked radiomic features and
the top 20most discriminative features were used to construct the
decision tree classifier (25). The details of these selected features
for each sequence are demonstrated in Tables E3–E12.

When comparing the ability for HGP differentiation of
each single sequence in internal validation cohort, signatureAP

derived from the ROI of TLI zone exhibited the best
performance in all sequences, and signatureT1WI derived
from the ROI of tumor zone performed the best in all
sequences (Table 4). The final radiomicsTLI signature was
generated by signatureT2WI, signatureAP, and signaturePVP in

TLI zone through forward stepwise regression (Table E13), and
the radiomicstumor signature was generated by signatureT1WI,
signatureT2WI, signatureAP, and signaturePVP in tumor zone in
the same way. The radiomicsTLI signature demonstrated better
performance than the radiomicstumor signature in the internal
validation cohort (AUC: 0.912 [95% CI: 0.789–1] vs. 0.879
[95% CI: 0.741–1], Table 3 and Figure 2B). The Delong test
showed that the performance of the radiomicsTLI model was
obviously better than that of the clinical model (P = 0.035),
while the radiomicstumor model did not show significant better
performance than the clinical model in the internal validation
cohort (P = 0.051, Table 5).
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TABLE 5 | Delong tests’ results between different models.

Cohorts Clinical and

radiomicsTLI
Clinical and

combination

RadiomicsTLI and

combination

Clinical and

radiomicstumor

RadiomicsTLI and

Radiomicstumor

Training <0.001* <0.001* 0.719 <0.001* 0.152

Validation 0.035* 0.034* 0.916 0.051 0.607

*P-value < 0.05 showed statistical significance.

FIGURE 3 | (A) Violin graph of distribution of clinical model between replacement and desmoplastic HGPs. (B) Violin graph of distribution of radiomicsTLI model

between replacement and desmoplastic HGPs. (C) Violin graph of distribution of combination model between replacement and desmoplastic HGPs.

Performance of Combination Model and
Nomogram
The radiomicsTLI signature and clinical features were used to
construct the combination model. The decision trees of TLI zone
in T2WI, AP, and PVP images were shown in Figure E4. The
formula of radiomicsTLI signature was exhibited inAppendix E2.
The AUCs of combination model were 0.971, 0.909, and 0.905 in
three cohorts, respectively (Table 3 and Figure 2C). According
to the violin graphs (Figure 3), the distinguishing ability of
combination model was much better than that of the clinical
model (P = 0.034, Table 5), while there was no difference
between the radiomicsTLI model and combination model (P
= 0.916, Table 5). With respect to the predictive ability of
each model in three cohorts, the confusion matrixes shown the
sensibility, specificity, false positive and false negative by heat
maps (Figure 4).

The nomogram is showed in Figure 5. The AUC of
combination nomogram was 0.971, 0.909, and 0.905 in three
cohorts, respectively. The calibration curves for three cohorts
were shown in Figures 5B–D. The Hosmer–Lemeshow test
showed the predicted HGP was in consistency with the actual
HGP (P-value: training cohort, 0.874; internal validation cohort,
0.346; external validation cohort, 0.101). The decision curves
showed that the combination nomogram added more benefit
than clinical nomogram if the threshold probability >3%
(Figure 6).

Performance of Cross Validation
The results of cross validation are shown in Table E14.
The final radiomicsTLI model also shown good performance

with AUC of 0.888 in the training cohort, 0.906 in the
internal validation cohort, and 0.788 in the external validation
cohort. The decision trees that was constructed from second
institution was shown in Figure E5. We noticed some radiomic
features were selected in both institutions and showed them
in Table E15.

DISCUSSION

In this study, we demonstrated that a multiparameter MRI-
based radiomics model could be used as a non-invasion tool
to preoperatively distinguish the HGP of CRLMs. Radiomics
analysis was performed on both TLI and tumor zones, and
the radiomicsTLI model showed better performance than that
of the radiomicstumor model. The nomogram integrating the
radiomicsTLI signature and clinical factors showed satisfactory
performance in all cohorts.

Based on the discrepancy of microvasculature between
desmoplastic (angiogenesis) and replacement (non-angiogenesis,
but vessel co-option) HGPs, previous studies only focused on
the degree of tumor angiogenesis (26) and the response to
anti-angiogeneic treatment by using textures analyses (26–28).
Most studies suggest that the higher score reflecting textural
heterogeneity corresponds to higher degree of angiogenesis (24),
which may be associated with more aggressiveness (29, 30).
In contrast to these results, Ravanelli found that the CRLMs
with more uniform textual features on contrast enhanced CT
images had a worse objective response rates and shorter long-
term survivals after treatment of Bevacizumab (29). However,
Ravanelli didn’t reveal the association between those textual
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FIGURE 4 | Confusion matrixes for clinical, radiomicsTLI, and combination model in all cohorts.

features and pathological characteristics, such as the degree of
angiogenesis or even HGPs.

Unlike previous studies, we created a multiparameter MRI-
based radiomics model to predict HGPs with high accuracy.With
pathology as reference, the desmoplastic HGPwas identified with
more heterogeneous radiomic features and the replacement ones
had more homogeneous radiomics features (Tables E3–E12).
Four radiomic features were selected in both institution
after cross validation, including wavelet.LLH_glcm_Idmn
in T2WI, wavelet.HHL_glcm_Correlation, and
wavelet.HLH_firstorder_Skewness in AP images, and
wavelet.HHL_glcm_InverseVariance in PVP images (Table E15).
According the description of these features, the uniformity,
symmetry, and variation of gray value are of great significance for
HGP identification. The super enhanced small areas highlighted

by image filtering and quantized by the variable uniformity may
be caused by the leakage of contrast agent into the extracellular
space around the highly permeable and newly formed tumor
microvessels (29). Apart from the angiogeneic situation, there
are more tissue types in the desmoplastic HGP tumor, such
as fibrosis, inflammatory, tumor and liver cells, which shows
higher heterogeneity than the replacement ones. Therefore,
radiomic features of desmoplastic or replacement HGPs may
be used as biomarker to predict response to bevacizumab and
long-term prognosis.

Compared with the radiomic features, this study showed the
gross features on MRI could not distinguish HGP effectively. It
suggests that the traditional image analysis may over-simplify
the tumor biology (30), including the growth pattern and
corresponding microvasculature. Our previous study revealed
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FIGURE 5 | Development of nomogram and calibration curves. (A) Nomogram based on radiomics signatures and clinical factors. Calibration curves of the radiomics

nomogram in the (B) training cohort, (C) internal validation cohort, and (D) external validation cohorts.

FIGURE 6 | The decision curve of the nomogram.

that the enhanced rim on PVP CT images was correlated with
the histopathological presentation of the desmoplastic HGP (19).
Furthermore, a similar feature of transit enhanced rim on APMR
images was also associated with the desmoplastic reaction (11).
However, this study showed no significant difference between
enhanced rim and HGP. Compared with CT, the superior soft
tissue resolution of MR may cause more common enhanced
rim in MRI, which may explain enhanced rim is not selected
in our study. Furthermore, considering the very limited cases
in Semelka’s study, more profound study may be required.
The lobular margin was identified as a significant feature of
replacement HGP through univariate analysis in our study. It
was consistent with another study, in which lobular margin was
identified as a poor prognostic predictor in patient with resected
CRLMs (22). It is an important observation and may reflect the
irregular border on HE-stained tissue sections in the replacement
growth pattern.

According to the results, we learned both the radiomicstumor

and radiomicsTLI models were superior to the clinical model
in all cohorts. Additionally, the Delong test showed no
significant difference (P= 0.607) between the radiomicstumor and
radiomicsTLI model. It suggested that radiomics analysis in each
ROI could be used to identify HGP of CRLMs independently. The
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radiomicsTLI model had a higher AUC than the radiomicstumor

model in the internal validation cohort, which could be due to
the histological differences of HGPs are mainly focused on the
perilesional zone, the features extracted from the whole tumor
area might not reflect the differences in HGPs significantly.
Therefore, the final combination model was constructed by
radiomicsTLI signature and related clinical characteristics. We
noticed that the performance of combination model was
significantly better than that of clinical model (P < 0.05 in all
cohorts), which indicated that the radiomicsTLI signature can
complement the clinical characteristics. In addition, in external
validation cohort, the sensitivity was higher and lesions were
more likely to be predicted as a replacement HGP. However,
due to the large proportion of replacement HGP, this may
lead to good AUC, but poor calibration. The decision curve
analysis demonstrated that the combination nomogram was
superior to clinical nomogram, which enabled the evaluation of
clinical relevance and verified the radiomics signature hold great
potential for clinical application.

This study has some limitations. Firstly, the sample size
of this study was small and it was a retrospective study.
Sufficient data is the basis for performance evaluation of the
predictive model in radiomics or elsewhere. Most patients with
CRLMs are initially unsuitable for resection, which limits the
chemo-naïve specimens. In addition, Gillies et al. suggested
that although larger data sets provided more power, radiomics
could be performed with as few as 100 samples (31). Although
we used the external validation to reduce the impact, the
prospective multi-center study was still required in the future
and the survival prediction with this model could be tested.
Secondly, the pushing and mixed HGPs were not evaluated
because of the limited number. However, it was still consistent
with the data published in the international consensus (3).
Thirdly, few clinical factors were included. Considering the
need for more data in machine learning, other important
factors, such as disease-free interval, preoperative CEA, and
genetic (BRAF/KRAS), were not included in this study. More
samples and more clinical factors are essential to obtain a
comprehensive model and higher accuracy in future. Finally, the
radiomics model could be used to distinguish the predominant
(>50% area) HGP of resectable CRLMs. Considering the
inter- and intra-tumor heterogeneity of HGP types, it remains
challenging whether and how the model can used in patients with
unresectable CRLMs.

CONCLUSION

In conclusion, MRI-based radiomic approach has high potential
to predict the predominant HGPs of CRLM, paving the way for
further validation in larger and possibly prospective datasets.
Moreover, the results suggested that MRI can not only be used

as an independent prediction tool for HGP but also improve the
performance of clinical factors.
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