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Abstract: Ecological and evolutionary processes linking adaptation to environment are related to
species’ range shifts. In this study, we employed amplified-fragment-length-polymorphism-based
genome scan methods to identify candidate loci among Zingiber kawagoii populations inhabiting
varying environments distributed at low to middle elevations (143–1488 m) in a narrow latitudinal
range (between 21.90 and 25.30◦ N). Here, we show evidence of selection driving the divergence
of Z. kawagoii. Twenty-six FST outliers were detected, which were significantly correlated with
various environmental variables. The allele frequencies of nine FST outliers were either positively
or negatively correlated with the population mean FST. Using several independent approaches, we
found environmental variables act in a combinatorial fashion, best explaining outlier genetic variation.
Nonetheless, we found that adaptive divergence was affected mostly by annual temperature range,
and it is significantly positively correlated with latitude and significantly negatively correlated with
the population mean FST. This study addresses a latitudinal pattern of changes in annual temperature
range (which ranged from 13.8 ◦C in the Lanyu population to 18.5 ◦C in the Wulai population) and
emphasizes the pattern of latitudinal population divergence closely linked to the allele frequencies
of adaptive loci, acting in a narrow latitudinal range. Our results also indicate environmentally
dependent local adaptation for both leading- and trailing-edge populations.

Keywords: adaptive divergence; AFLP; allele frequency; annual temperature range; latitudinal
gradient; population mean FST; Zingiber kawagoii

1. Introduction

The altitude-for-latitude model projected the scales of range retractions in altitude
and latitude due to warming [1]. Locally adaptive alleles associated with environmental
conditions in range shift margin populations are essential for species’ future resilience
to climate change. Temperature and precipitation are the two most important climatic
factors influencing the distribution, differentiation, and diversity of species [2]. Genetically
based ecotypes may evolve corresponding to environmental changes and play a role
in minimizing the extinction risk [3]. Genetic variation may vary along latitudinal and
altitudinal clines [4]. Latitudinal environmental patterns are found to be correlated with
intraspecific and interspecific diversity distributed in a large geographic scale [5]. Taiwan
only covers a narrow latitudinal range of 385 km, lying between the north latitude 21.90
and 25.30, and the identification of latitudinal patterns in plant diversity and differentiation
is important given the presence of ecological heterogeneities due to rugged topography
and steep elevation in Taiwan.

Zingiber kawagoii is a species of herbaceous perennial plant in the Zingiberaceae family
found in Taiwan and a small offshore island southeast of Taiwan. This species is endemic
to Taiwan and is widely distributed along the west sides of the Hsuehshan Mountain
Range and the Central Mountain Range in Taiwan, but it is sparsely distributed east of
these mountain ranges, at low to middle elevations (140–1500 m), and from the southern
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to northern tip of Taiwan (Figure 1). Zingiber kawagoii was also found on a small island,
Lanyu (orchid island), 90 km off the southeast coast of Taiwan. Populations of Z. kawagoii
are found in different habitats including forest understories, forest edges, slopes, and
valleys. Extremely low intraspecific variation and high population differentiation were
found based on chloroplast DNA (cpDNA) variation [6]. A mean inbreeding coefficient of
0.656 was found, suggestive of a deficiency of heterozygotes that may have resulted from
bottlenecks and/or inbreeding [7]. The latitudinal northerly expansion of Z. kawagoii after
the last glacial maximum (LGM) has been inferred using ecological niche modeling [8]. This
climate-induced northerly expansion may reduce genetic diversity and increase genetic as
well as migration load [9,10], limiting the ability for adaptation and persistence in novel
environments. However, locally adapted alleles may have been evoked during expansion,
encountering novel selective regimes [4,11]. Although drift and migration both decrease local
adaptation, smaller range-front populations may develop local adaptive divergence when
selection is strong [12]. The leading-edge populations of northerly expanded Z. kawagoii may
evolve locally adapted alleles in association with a leading-front environment. Nonetheless,
trailing-edge populations are also important to the future survival of species [4,11,13].

Figure 1. Sampling localities of the 17 Zingiber kawagoii populations. The coordinates of sampling
sites were used to plot population locations using Tools in ArcGIS v.10.8.1. Map was derived from
the default map database in ArcGIS, and the 20 m digital elevation model was used in the generation
of elevation gradients. See Table 1 for abbreviations of the population names.

Lower-latitude populations within species may show greater genetic divergence and
evolutionary independence, contributing to reproductive isolation and speciation [5]. More-
over, adaptive genetic variation is widespread in herbaceous species with low levels of gene
flow under strong selection pressures [14]. Because of its widespread distribution from the
south to the north of Taiwan and the biogeographic history of latitudinal northerly expan-
sion [8], the examination of the latitudinal pattern of Z. kawagoii population divergence
related to environmental gradients will advance our understanding of species’ response
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to global change, particularly in a geographic area only spanning a narrow latitudinal
range. Spatial heterogeneity in populations of Z. kawagoii may have played roles in driving
local adaptation associated with environmental factors. Although genetic diversity in the
latitudinal leading- and trailing-margin populations may be reduced, adaptive loci driven
by natural selection may accumulate their frequencies at both range margins of distribution
correlated strongly with environment [12,15,16]. No study has been conducted to test for
local adaptation in Z. kawagoii. In this study, we surveyed the genetic variation in 212 indi-
viduals from 17 populations of Z. kawagoii using amplified fragment length polymorphisms
(AFLPs) [17] and collected information regarding the environmental variables of sampling
sites. The general aim of this study was to investigate the pattern of population divergence
in Z. kawagoii related to adaptive evolution along a narrow latitudinal range. Specifically,
we asked (1) how do population divergence and environmental variables vary along a
narrow latitudinal range? (2) Which environmental variable(s) may have played the main
role, and do environmental variables act in a combinatorial fashion in driving adaptive
genetic divergence? (3) How do the allele frequencies of adaptive loci vary corresponding
to the levels of population divergence?

Table 1. The seven retained site environmental variables of the 17 populations of Zingiber kawagoii.

Population Aspect BIO7 BIO12 NDVI PET RH WSmean

Antong (AT) 288.05 15.6 1933 0.84 1380.86 78.21 3.15
Beitawushan (BTWS) 120.11 14.9 4616 0.77 1497.83 76.68 2.69

Erfenshan (EFS) 314.41 18.1 2494 0.85 1634.22 78.23 2.73
Huangdidian (HDD) 299.16 18.4 3481 0.84 1419.22 78.88 2.57

Jianshi (JS) 164.95 17.3 2539 0.86 1436.64 78.91 2.51
Jinshuiying (JSY) 80.97 14.3 4749 0.80 1449.96 75.92 2.65

Kantoushan (KTS) 290.69 17.0 3120 0.78 1622.86 78.69 2.69
Lanyu (LY) 235.58 13.8 2760 0.77 1379.87 87.58 7.45

Nanzhuang (NZ) 269.41 18.1 2564 0.84 1489.51 78.67 2.60
Ruifang (RF) 250.43 18.4 3282 0.77 1398.84 78.29 2.83

Shibishan (SBS) 81.66 16.0 2726 0.77 1855.08 81.43 2.24
Shuangliu (SL) 63.68 14.4 3100 0.86 1830.68 76.15 2.96

Sunmoonlake (SML) 256.65 16.5 2262 0.80 1757.00 81.12 1.28
Tahsueshan (THS) 323.05 17.1 2569 0.81 1632.20 78.31 2.54

Taroko (TRK) 294.93 16.5 2292 0.84 1453.29 78.78 2.84
Wulai (WL) 105.67 18.5 3231 0.78 1477.30 78.82 2.43

Weiliaoshan (WLS) 358.40 16.1 3093 0.84 1769.88 77.34 2.78

Aspect (0–360◦). BIO7, annual temperature range (◦C); BIO12, annual precipitation (mm); NDVI, normalized
difference vegetation index (unitless); PET, annual total potential evapotranspiration (kg/m2/year); RH, relative
humidity (%); WSmean, mean wind speed (m/s).

2. Materials and Methods
2.1. Sampling, DNA Extraction, and AFLP Genotyping

Zingiber kawagoii individuals were collected from 17 populations (n = 212) which
spanned a latitudinal range of 21.90–5.30◦ N and an altitudinal range of 143–1488 m
(Figure 1). Within each population, samples were collected with a space at least 10 m apart.
Because of latitudinal northerly expansion [7], populations distributed in higher latitudes
can be recognized as leading-edge populations, and those distributed in the lower latitudes
can be recognized as trailing-edge populations. Total genomic DNAs were extracted based
on a cetyltrimethyl ammonium bromide (CTAB) procedure [18]. Total genomic DNA was
ethanol precipitated and dissolved in 200 µL of TE buffer (pH 8.0). We quantified total
genomic DNA using a NanoDrop spectrophotometer (NanoDrop Technology, Wilmington,
DE, USA). In a total 10 µL reaction volume, 200 ng of total genomic DNA was mixed
with 1 U EcoRI and 1 U MseI restriction enzymes incubated in 10X CutSmart buffer (New
England Biolabs, Ipswich, MA, USA) at 37 ◦C for 1.5 h for restriction digestion. The reaction
was deactivated at 65 ◦C for 15 min. The digested DNA products were ligated to AFLP
adaptors (5 µM EcoRI and 50 µM MseI) with 5 U T4 DNA ligase (Thermo Scientific, Vilnius,
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Lithuania) and 5X ligation buffer (Thermo Scientific) at 22 ◦C for 1 h in a 10 µL ligation
reaction mixture.

AFLP pre-selective amplification was performed using polymerase chain reaction (PCR).
Adaptor ligated product (1:9 dilution with ddH2O) was mixed with 12 µM EcoRI (E00:
5′-GACTGCGTACCAATTC-3′) primer, 12 µM MseI (M00: 5′-GATGAGTCCTGAGTAA-3′)
primer, 2.5 mM dNTPs, 1 U Taq DNA polymerase (Zymeset Biotech, Taipei, Taiwan), and
10X PCR buffer (Zymeset) in a 20 µL total volume. The PCR for pre-selective amplification
was an initial holding at 72 ◦C for 2 min and pre-denaturation at 94 ◦C for 3 min, followed
by 25 cycles of 30 s at 94 ◦C, 30 s at 56 ◦C, and 1 min at 72 ◦C, with a final 5 min holding
at 72 ◦C. Either three or five additional bases were added at the ends of E00 and M00,
and 90 primer combinations were screened initially for proper amplification, the number
of fragments were amplified, and the genotyping error rate did not exceed 5%. Finally,
11 EcoRI-MseI (E00 and M00) primer combinations were used in selective amplification
(Table S1). A labeled EcoRI selective primer (6-carboxyfluorescein or hexachloro-fluorescein
dye labeled) was used in selective amplification. Selective amplification was performed in
a 20 µL total volume containing 10 µM EcoRI and 10 µM MseI primers, 2.5 mM dNTPs, 2 U
Taq DNA polymerase (Zymeset), 10X PCR buffer (Zymeset), and diluted pre-selective ampli-
fied products (1:19 dilution with ddH2O). Selective PCR was an initial holding at 94 ◦C for
3 min, followed by 13 cycles of 30 s at 94 ◦C, 30 s at 65–56 ◦C (decreasing the temperature
by 0.7 ◦C each cycle), 1 min at 72 ◦C, then 23 cycles of 30 s at 94 ◦C, 30 s at 56 ◦C, and
1 min at 72 ◦C, with a final 5 min holding at 72 ◦C. Selective amplification products were
electrophoresed on an ABI 3730XL DNA analyzer. We used Peak Scanner v.1.0 (Applied
Biosystem, Foster City, CA, USA) to score amplification fragments. A fluorescent threshold
set at 150 units was used to avoid background noise when scoring AFLP fragments in the
range of 100–500 bp. We removed low peaks and fragments within one nucleotide in a
±0.8 base pair window which were recognized as the same fragment. Additionally, am-
plified fragments that scored higher than 99% or less than 1% of individuals were also
removed. Three randomly chosen samples in each population were used to calculate the
genotyping error rate per locus. Loci with an error rate per locus greater than 5% were
removed [19]. The mean error rate per locus was 4.11% (Table S1).

2.2. Environmental Variables

Three categories of environmental variables were used in the study. Nineteen biocli-
matic variables for sample sites at 30 s spatial resolution (~1 km) were downloaded from the
WorldClim 1.4 for information related to temperature and precipitation [20]. Topographic
variables, including aspect, elevation, and slope at 20 m resolution were obtained from
Taiwan Geospatial One Stop, Ministry of the Interior (https://data.gov.tw/dataset/138563,
accessed on 12 June 2021). Apart from the bioclimatic variables downloaded from World-
Clim and three topographic variables, twelve other environmental variables not directly
defined as bioclimatic and topographic variables were grouped as ecological variables.
The twelve ecological variables were the normalized difference vegetation index (NDVI),
the enhanced vegetation index (EVI), the leaf area index (LAI), the fraction of absorbed
photosynthetically active radiation (fPAR), the relative humidity (RH), cloud cover (CLO),
sunshine hours (SunH), the number of rainfall days per year (RainD), the mean wind speed
(WSmean), the soil pH, the annual total potential evapotranspiration (PET), and the annual
moisture index (MI).

Data from a moderate resolution imaging spectroradiometer (MODIS) recorded during
2001–2020 in the Land Process Distributed Active Archive Center (http://lpdaac.usgs.gov,
accessed on 12 June 2021) were obtained for NDVI and EVI (dataset MOD13A2, 1 km
resolution), LAI and fPAR (MOD15A2 dataset, 500 m resolution), and PET (MOD16A3
dataset, 500 m resolution). The monthly mean values of these variables were computed
using a maximum-value composite procedure. The monthly mean values of RH, CLO,
SunH, RainD, and WSmean at 1 km resolution were calculated using a universal spherical
model of the Kriging method in ArcGIS with data obtained from the Data Bank for At-
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mospheric & Hydrologic Research (https://dbahr.pccu.edu.tw/, recorded in 1991–2020;
accessed on 12 June 2021). Sampling site soil pH values were obtained from the soil data
of an island-wide, 1,150 site investigation conducted in 1969–1986 by the Agriculture and
Food Agency of Taiwan. Annual potential evapotranspiration values derived from the
annual mean temperature and annual precipitation were used to calculate the annual MI.

Environmental variables of the three categories were separately used in the calculation
of variance inflation factor (VIF) with a correlation threshold of |0.7| using the vifcor function
of the R package usdm [21] in the R environment [22]. The bioclimatic variables BIO7
(annual temperature range), BIO9 (mean temperature of the driest quarter), BIO12 (annual
precipitation), and BIO19 (precipitation of the coldest quarter); topographic variables aspect,
elevation, and slope; and the ecological variables CLO, EVI, LAI, NDVI, MI, PET, RH, soil
pH, and WSmean were retained based on VIF values smaller than 10. Moreover, the forward
selection procedure was used for these variables in each environmental category separately,
and the final set of environmental variables retained were aspect, BIO7, BIO12, NDVI, PET,
RH, and WSmean (Table 1) if more than 5% of outlier genetic variation (adjusted R2 ≥ 0.05)
was explained by the individual variable (see forward selection below, Table S2). Pearson’s
correlation coefficients of pairwise comparisons and VIFs (all < 5) are reported in Table S3.

2.3. Genetic Diversity

AFLP-SURV v.1.0 [23] software was used to estimate the population unbiased expected
heterozygosity (uHE) [24] and the proportion of polymorphic loci (%P, 95% criterion) based
on allele frequencies using the settings of the Hardy–Weinberg equilibrium and non-
uniform prior distribution. The per locus uHE was estimated using ARLEQUIN v.6.0 [25].
The index of association IA [26] and the modified index of association (rD) [27] are measures
of multilocus linkage disequilibrium. These two measures were calculated using the ia
function of the R package poppr [28]. A linear mixed effect model (LMM) was used to
estimate the difference of the mean uHE per locus among and between populations. In
LMMs, population and locus were used as a fixed factor and a random factor, respectively,
and they were analyzed using the lmer function of the R package lme4 [29] based on the
reduced maximum likelihood method. Significance tested using the Anova function of the R
package car was based on type II Wald χ2 statistics [30]. Pairwise population comparisons
of the mean uHE per locus with Tukey’s post hoc test were assessed using the lsmeans
function of the R package emmeans [31].

2.4. Genetic Differentiation, Clustering, and Relationships

The analysis of molecular variance (AMOVA) was used to estimate the level of genetic
differentiation between populations (ΦST) using the poppr.amova function of the R package
poppr. Significance was tested using the randtest function of the R package ade4 [32] with
9999 permutations. The pairwise population FST was computed using ARLEQUIN, and
the significance was tested with 10,000 permutations. Additionally, the level of divergence
for each population from the remaining populations was calculated as the mean value of
the pairwise FST for each population against the rest of the populations (denoted as the
population mean FST). The population mean FST can be used as a proxy of the level of one
population diverging genetically from the remaining populations.

Genetic homogeneous groups of individuals were assessed using the sNMF algorithm
of landscape and ecological association (LEA) [33] and discriminant analysis of principal
components (DAPC) [34]. A clustering scenario of K = 1–18 based on least-squares opti-
mization was estimated using the snmf function of the R package LEA [33]. The parameters
including regularization, iterations, and repetitions in snmf were set to 100, 200, and 10,
respectively, and other arguments were set to defaults. The find.clusters and dapc functions
of the R package adegenet [35] were used in DAPC analysis setting K = 1–10. The mean
minimal cross-entropy (CE) in LEA and the Bayesian information criterion (BIC) in DAPC
were estimated to determine the optimal number of clusters.

https://dbahr.pccu.edu.tw/
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A neighbor-joining (NJ) tree was used to assess the genetic relationships among
individuals. The nei.dist function of the R package poppr was used to calculate pairwise
Nei’s genetic distances [36]. Nei’s genetic distance matrix was used to generate an unrooted
NJ tree using the nj function of the R package ape [37], and bootstrap support values (BSP)
were calculated based on 1000 replicates using the aboot function of the R package poppr.

2.5. Test for FST Outliers

To detect the signature of selection on AFLP loci, FST outliers were identified using
DFDIST and BAYSESCAN. DFDIST is a modification for dominant markers of the software
developed by Beaumont and Nichols [38]. DFDIST estimates a distribution of observed FST
versus uHE, and loci under selection were identified by comparing them to a simulated
neutral distribution. DFDIST parameters include critical frequency = 0.99; Zhivotovsky
parameter = 0.25; trimmed mean FST = 0.3 (excluding 30% of highest and 30% of lowest
FST values); smoothing proportion = 0.04; 500,000 resamplings; and critical p = 0.05. AFLP
Loci with observed FST against uHE falling above the 95% confidence level of simulated
distribution were recognized as FST outliers under directional selection. BAYESCAN
v.2.1 [39] uses a reversible-jump Markov chain Monte Carlo algorithm to estimate the
ratio of posterior probabilities of selection over neutrality (the posterior odds (POs)). Two
hundred pilot runs of 50,000 iterations followed by a sample size of 50,000 with a thinning
interval of 20 among 106 iterations were performed in BAYESCAN. Selection is detected
when locus-specific component (α) is significantly different from zero. A positive α suggests
divergent selection, while negative values suggest balancing or purifying selection. We
used a criterion of a logarithmic scale of log10 (PO) > 2 as decisive evidence, corresponding
to posterior probabilities between 0.99 and 1 [40], for selection over neutrality for a locus
under directional selection (α > 0).

2.6. Test for Associations of AFLP Loci with Environmental Variables

To assess the associations of all genetic loci with environmental variables, the latent
factor mixed model (LFMM) [41] and Samβada [42] were employed in testing for significant
correlations of genetic variation in each AFLP locus with environmental variables. A
latent random factor was incorporated in the hierarchical Bayesian mixed effect model
implemented in the LFMM. Considering the background level of the population structure
due to the demographic history and isolation-by-distance pattern, a number of latent
factors of 3 was used according to the DAPC result (see Results), and a matrix of genetic
variation was used as a fixed factor. For each environmental predictor, ten LFMM runs
with 10,000 iterations of the Gibbs sampling algorithm and a burn-in period of 5000 cycles
were performed. We obtained Z-scores for each environmental predictor by combining the
results of ten independent LFMM runs and p values adjusted using the genomic inflation
factor (λ) [41]. A false discovery rate (FDR)-adjusted p value of 1% was further applied
using the qvalue function of the R package qvalue [43]. Samβada was used to assess the
correlations of allele frequencies of AFLP loci with values of environmental variables based
on the multiple univariate logistic regression approach. A 1% FDR for p value adjustment
for both Wald and G scores was used to assess the fit of the model with environmental
variables against the null model without environmental variables.

A Bayesian logistic regression analysis implemented in the stan_glm function of the
R package rstanarm [44] was employed to further justify the associations of the potential
FST outliers, identified using both BAYESCAN and DFDIST, with environmental variables.
In stan_glm, the weakly informative priors following Student’s t distribution with a mean
of zero and seven degrees of freedom were used, and the scale of the prior distribution
was 10 for the intercept and 2.5 for the predictors. All stan_glm models were run with four
chains for 2000 warm-up and 2000 sampling steps. The posterior_interval function of the
R package rstanarm was employed to estimate 95% credible intervals for the determination
of significant correlations of potential FST outliers with environmental variables. In stan_glm
analysis, the effective sample size values representing overall sampling efficiencies for each
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predictor estimated were between 1632.8 and 7199.4, and the convergence diagnostic statistics
were all close to 1. These values indicate good priors applied and stable estimates obtained.

2.7. Relative Contribution of Environmental Variables Explaining Variation in Potential
FST Outliers

To test for the most important environmental variables explaining outlier genetic
variation, we used the forward.sel function of the R package adespatial [45]. Forward
selection was stopped if either the conventional level of significance (p < 0.05) or the global
adjusted R2 was exceeded to prevent the overestimation of the explained variance, and
significance was determined based on 999 permutations. Environmental variables in the
three environmental categories were analyzed separately, and variables explaining more
than 5% of outlier genetic variation (adjusted R2 > 0.05) were retained as the final set of
environmental variables in the study (Table S2). Variables most importantly influencing
outlier genetic variation were assessed using functions within the R package MuMIn [46].
Generalized linear models (GLMs) with a logit link function and a binomial residual
distribution were used to assess the relationships between the outlier variation and the
final set of retained environmental variables, and McFadden’s pseudo-R2 for the fixed
effect of the best predicting model explaining outlier variation was calculated using the
pR2 function of the R package pscl [47]. GLMs that fit all possible models for each outlier
(response variable) were used in the dredge function and the subsequent model averaging
analyses based on the Akaike information criterion with a correction for small sample sizes
(AICc) (∆AICc ≤ 2, the model.avg function). The AICc was used to rank the models and to
calculate the Akaike sum of weights (SW) for each model [48]. The SW index, calculated
using the importance function, was used to assess the relative importance of environmental
variables contributing to explaining variation in the outlier loci. However, the SW index is
arguably not an appropriate measure, representing the importance of model selection [49].
Therefore, a 95% confidence interval (CI) for each environmental variable included in the
best predicting model for the variation in each outlier was estimated. The allele frequencies
of FST outliers were used to test for correlation with the population mean FST.

2.8. Mantel Test and Variation Partitioning

The mantel test was used to analyze the correlations of the outlier AFLP Euclidean dis-
tance matrix with the Euclidean distance matrix of environments using the mantel function
of the R package vegan [50] and the Euclidean distance matrix of environments controlling
for latitudinal difference using the mantel.partial function. Environmental variables and
outlier variation were used in a redundancy analysis (RDA). An RDA estimates the relative
contribution of environmental variables explaining the outlier variation using the varpart
function of the R package vegan. The total outlier variation was partitioned into four
fractions attributable to (a) a pure environmental effect, (b) a geographically structured
environmental effect, (c) a pure geographic effect, and (d) a residual effect [51]. We tested
the significance of these fractions using the anova.cca function of the R package vegan with
999 permutations. Sample site geographic coordinates were used as geographic effects in
variation partitioning.

3. Results
3.1. Genetic Diversity and Structure

A total of 621 AFLP (mean ± SD: 60.09 ± 13.96) loci was obtained using 11 selective
amplification primer combinations (Table S1). The percentage of polymorphism varied from
20.7 (population EFS) to 48.7 (population HDD), with a mean of 37.0 (Table 2). The average
level of uHE was 0.123, ranging from 0.102 in population TRK to 0.151 in population
BTWS. A strong departure from random association between AFLP loci based on the
measures of multilocus LD, IA, and rD was found for all populations examined (Table 2).
The linear mixed effect model (LMM) analysis showed significant differences in the mean
uHE per locus among populations (χ2 = 116.2, p < 0.001) and in many between-population
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comparisons (Table S4). Using the total data, population differentiation was high based
on the AMOVA (ΦST = 0.308, p < 0.001) (Table S5) and pairwise FST (average FST = 0.298,
p < 0.0001) (Table S6).

Table 2. Site properties and genetic parameters of the 17 sampled populations of Zingiber kawagoii
estimated based on the total AFLP variation.

Population Latitude
Longitude Altitude (m) N %P uHE

(SE)
IA
(p)

rD
(p)

Antong (AT) 23.2847
121.3721 610 14 35.2 0.113

(0.006)
3.614

(0.001)
0.016

(0.001)
Beitawushan

(BTWS)
22.6148

120.7022 1192 12 40.7 0.151
(0.007)

2.040
(0.001)

0.008
(0.001)

Erfenshan
(EFS)

24.3919
120.8240 769 12 20.7 0.115

(0.007)
1.753

(0.001)
0.009

(0.001)
Huangdidian

(HDD)
24.9894

121.6799 432 10 48.7 0.143
(0.007)

2.022
(0.001)

0.009
(0.001)

Jianshi (JS) 24.7307
121.2895 850 13 32.2 0.105

(0.006)
3.914

(0.001)
0.023

(0.001)
Jinshuiying

(JSY)
22.4075

120.7564 1488 14 36.6 0.126
(0.006)

1.137
(0.001)

0.005
(0.001)

Kantoushan
(KTS)

23.2671
120.5010 583 14 35.4 0.115

(0.006)
4.421

(0.001)
0.022

(0.001)

Lanyu (LY) 22.0496
121.5257 302 13 33.9 0.123

(0.007)
6.455

(0.001)
0.031

(0.001)
Nanzhuang

(NZ)
24.5742

121.0436 467 11 45.5 0.126
(0.006)

6.256
(0.001)

0.029
(0.001)

Ruifang (RF) 25.0861
121.8385 349 11 43.6 0.131

(0.007)
9.336

(0.001)
0.045

(0.001)
Shibishan

(SBS)
23.6077

120.7045 1347 13 37.5 0.125
(0.006)

2.517
(0.001)

0.012
(0.001)

Shuangliu
(SL)

22.2140
120.7961 255 13 30.0 0.103

(0.006)
2.489

(0.001)
0.014

(0.001)
Sunmoonlake

(SML)
23.8519

120.8982 816 13 33.1 0.115 (0.006) 7.748
(0.001)

0.036
(0.001)

Tahsueshan
(THS)

24.2326
120.9003 937 14 33.4 0.103

(0.006)
4.739

(0.001)
0.027

(0.001)

Taroko (TRK) 24.1880
121.6382 929 15 31.0 0.102

(0.006)
7.054

(0.001)
0.034

(0.001)

Wulai (WL) 24.8663
121.5498 143 10 46.7 0.145 (0.007) 4.942

(0.001)
0.022

(0.001)
Weiliaoshan

(WLS)
22.8695

120.6571 694 10 44.3 0.144
(0.007)

2.460
(0.001)

0.011
(0.001)

Average 12.5 37.0 0.123
(0.006)

N, number of samples used; %P, the percentage of polymorphic loci; uHE, unbiased expected heterozygosity; IA,
index of association; rD, modified index of association.

3.2. Genetic Clustering and Relationships

The mean minimal CE in LEA (Figure S1a) and the BIC in DAPC (Figure S1b) were
minimized at K = 18 and K = 8, respectively. However, we observed changes in both the
mean minimal CE and BIC elbowed at K = 3, which is consistent with three genetically
homogeneous groups observed in LEA and DAPC (Figure 2). The three genetic clusters
revealed by DAPC were: cluster A, containing populations LY and SL; cluster B, containing
populations JSY, BTWS, and WLS; and cluster C, containing populations AT, EFS, HDD, JS,
KTS, NZ, RF, SBS, SML, THS, TRK, and WL (Figure 2b). Genetic homogeneous grouping is
concordant when comparing LEA to DAPC, despite the gene flow between populations
observed in the LEA result (Figure 2a). Individuals of DAPC clusters A and B were grouped
together in the NJ tree (Figure 3). Individuals of different populations of DAPC clusters
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A and B were clearly separated into different clades in the NJ tree, albeit with low BSPs.
However, individuals of populations grouped in DAPC cluster C showed intermingled
relationships in the NJ tree.

Figure 2. Analysis of genetic homogeneous groups of 212 individuals of Zingiber kawagoii based on
the total AFLP variation using LEA (a) and DAPC (b). The clustering scenarios for K = 2–4 were
displayed in LEA. The two linear discriminants LD1 and LD2 of DAPC described 52.72% and 14.84%
of the total AFLP variation, respectively.

3.3. Latitudinal Trend of Annual Temperature Range and Population Mean FST

Pearson’s correlation test found a significant negative relationship between the popu-
lation mean FST and latitude (Table S7, Figure 4a) and a significant positive relationship
between the annual temperature range and latitude (Table S7, Figure 4b). Therefore, a
moderate negative correlation between the annual temperature range and population mean
FST was found (Figure 4c). Significant relationships between the population mean FST,
latitude, and annual temperature range were also observed when the LY population was
excluded from the analysis (population mean FST vs. latitude: Pearson’s r = −0.5842,
p = 0.01748; population mean FST vs. annual temperature range: Pearson’s r = −0.5786,
p = 0.0189; latitude vs. annual temperature range: Pearson’s r = 0.9341, p < 0.0001).
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Figure 3. Neighbor-joining tree of 212 individuals of Zingiber kawagoii based on Nei’s genetic distances
calculated using the total AFLP variation. Branch tip labels for individuals of different populations
are colored differently. For each node, bootstrap support values greater than 70%, between 50% and
70%, and smaller than 50% are coded with green, red, and blue, respectively.
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Figure 4. Regression plots showing the relationships between population mean FST and latitude (a),
between annual temperature range and latitude (b), and between annual mean temperature and
population mean FST (c). Pairwise population FST was estimated using the total AFLP variation and
used in calculation of population mean FST (Table S6) BIO7, annual temperature range.

3.4. FST Outliers and Relative Importance of Environmental Variables Explaining
Outlier Variation

BAYESCAN and DFDIST identified 26 loci (4.18%) as potential FST outliers (Table 3).
All 26 FST outliers identified by FST-based methods were strongly correlated with environ-
mental variables assessed using Samβada, the LFMM, and rstanarm (Table 3). We found
very high population genetic differentiation based on the outlier data using the AMOVA
(ΦST = 0.628, p < 0.001; Table S5). Additionally, the annual temperature range and annual
precipitation were the two most important environmental variables influencing outlier
genetic variation (adjusted R2 = 0.192 and adjusted R2 = 0.098, respectively; Table 4).
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Table 3. FST outliers identified via BAYESCAN and DFDIST and strongly associated with environ-
mental variables. Codes below the environmental columns (aspect, BIO7, BIO12, NDVI, PET, RH, and
WSmean) represent strong correlations between FST outliers and environmental variables identified
using LFMM (L), Samβada (S), and rstanarm (R).

Locus DFDIST
FST

BAYESCAN
log10 (PO) Aspect BIO7 BIO12 NDVI PET RH WSmean

P01_1612 0.329 1000 LSR LS S LSR R L
P01_1888 0.372 1000 SR SR S R R
P01_2213 0.397 1000 SR LSR S R R SR
P03_1760 0.340 1000 SR L LS R R
P03_1890 0.406 1000 SR LSR R SR
P03_2200 0.345 1000 LSR R R
P03_3475 0.291 1000 LSR S R L LSR
P05_2291 0.346 1000 R LR R R
P08_2566 0.493 1000 LSR S R R SR
P08_2919 0.400 1000 SR LSR SR S L R LR
P12_1612 0.259 2.164 R R
P12_1956 0.323 1000 LSR R
P12_2591 0.344 1000 R LSR S L
P13_1855 0.407 1000 R
P13_2177 0.452 1000 LSR R SR
P13_2234 0.434 1000 SR SR LSR R R
P13_2991 0.339 1000 LSR R LS
P19_2111 0.487 1000 R SR SR R SR
P19_2619 0.384 1000 LSR LSR SR SR
P19_2812 0.239 2.657 S LSR S S
P21_1772 0.384 1000 R R R LSR R SR
P21_1865 0.413 1000 R LSR SR LR R
P21_1955 0.407 1000 SR LSR SR R R
P21_3013 0.366 1000 SR SR SR R L R LR
P35_1635 0.361 1000 S LSR SR S R R R
P35_2014 0.382 1000 R R R R R

Aspect (0–360◦). BIO7, annual temperature range (◦C); BIO12, annual precipitation (mm); NDVI, normalized
difference vegetation index (unitless); PET, annual total potential evapotranspiration (kg/m2/year); RH, relative
humidity (%); WSmean, mean wind speed (m/s).

Table 4. Relative contribution (adjusted R2) and F test of environmental variables explaining outlier
genetic variation in Zingiber kawagoii using a forward selection procedure.

Environmental
Variable Adjusted R2 Cumulative

Adjusted R2 F Value (p)

BIO7 0.1916 0.1916 51.00 (0.001)
BIO12 0.0984 0.2900 30.11 (0.001)
NDVI 0.0374 0.3724 13.68 (0.001)

RH 0.0315 0.3589 11.09 (0.001)
WSmean 0.0298 0.3887 10.16 (0.001)

PET 0.0287 0.4174 11.63 (0.001)
Aspect 0.0118 0.4292 5.27 (0.001)

Aspect (0–360◦). BIO7, annual temperature range (◦C); BIO12, annual precipitation (mm); NDVI, normalized
difference vegetation index (unitless); PET, annual total potential evapotranspiration (kg/m2/year); RH, relative
humidity (%); WSmean, mean wind speed (m/s).

The relative importance of environmental variables estimated using model averaging
of the most parsimonious models (∆AICc ≤ 2) and the 95% CIs for coefficients of envi-
ronmental covariates in the best predicting models revealed that environmental variables
acted in a combinatorial fashion, influencing the genetic variations in the 26 FST outliers
(Table 5). Although the annual temperature range was not necessarily included in the best
predicting models explaining outlier variation (Table 5), it was the only environmental
variable significantly correlated with latitude (Table S7, Figure 4b).
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Table 5. Relative importance and significance of environmental variables explaining variations in the
26 FST outliers based on model averaging using MuMIn. Numbers in parentheses are the Akaike sum of
weights (SW) of each environmental variable across all parsimonious predicting models (∆AICc ≤ 2). In
bold, variables receiving strong support (i.e., the 95% confidence interval did not overlap with zero).
McFadden’s pseudo R2 was calculated with the variables (predictors) selected as the best model with
the lowest AICc used in the generalized linear model. For variables that are part of the best model with
the lowest AICc, the sign of regression coefficient is shown: +, positive; −, negative.

Locus Pseudo R2 Aspect BIO7 BIO12 NDVI PET RH WSmean

P01_1612 0.475 0.55 (8) 0.5 (7) 0.93 (14)+ 0.29 (5) 1 (15)+ 0.32 (5) 0.81 (11)+
P01_1888 0.387 1 (4)+ 0.18 (2) 0.21 (2) 0.78 (3) − 1 (4) − 1 (4)+ 1 (4) −
P01_2213 0.560 1 (3)+ 1 (3) − 0.21 (1) 0.25 (1) 1 (3) − 1 (3) −
P03_1760 0.248 1 (3) − 0.18 (1) 1 (3) − 1 (3) − 1 (3) − 0.41 (1) −
P03_1890 0.364 1 (5)+ 1 (5)+ 0.51 (2) − 0.86 (4) − 0.15 (1) 0.13 (1) 1 (5) −
P03_2200 0.197 1 (3) − 1 (3) − 0.65 (2) 1 (3) − 0.66 (2)+ 1 (3) −
P03_3475 0.726 1 (2)+ 1 (2) − 1 (2) − 0.38 (1) 0.62 (1) −
P05_2291 0.643 1 (5) 0.11 (1) 1 (5)+ 0.26 (1) 0.21 (1) 1 (5) − 1 (5)+
P08_2566 0.646 0.83 (2)+ 0.17 (1) 0.53 (2) 0.47 (1)+ 1 (3) − 0.47 (1)+ 1 (3) −
P08_2919 0.749 0.26 (10) 1 (3)+ 0.21 (1) 0.74 (2)+ 1 (3)+
P12_1612 1.000 0.2 (1) 1 (5)+ 1 (5) − 0.2 (1) 0.2 (1) − 0.2 (1) 0.2 (1)
P12_1956 0.189 1 (3)+ 1 (3)+ 0.66 (2) − 0.18 (1)
P12_2591 0.362 1 (3)+ 0.24 (1) 1 (3)+ 1 (3) − 1 (3) − 0.25 (1) 1 (3) −
P13_1855 0.582 1 (3) − 1 (3)+ 0.24 (1) 1 (3)+ 1 (3)+ 0.23 (1) 1 (3)+
P13_2177 0.494 1 (2)+ 1 (2)+ 1 (2)+ 1 (2) 0.25 (1) 1 (2)+ 1 (2) −
P13_2234 0.272 0.38 (2) 0.34 (2) 1 (5) − 1 (5) − 1 (5) − 0.12 (1) 1 (5) −
P13_2991 0.614 1 (3)+ 1 (3) − 1 (3) − 1 (3) − 0.23 (1) 0.24 (1)
P19_2111 0.587 0.32 (2) 0.47 (2) 1 (4) − 1 (4)+ 1 (4) − 1 (4)+ 1 (4) −
P19_2619 0.829 0.08 (1) 0.07 (1) 0.26 (3) 0.24 (3) 0.57 (7) − 0.92 (10)+ 0.17 (2)
P19_2812 0.846 0.2 (1) 0.2 (1) 0.8 (4)+ 0.4 (2) − 0.2 (1) 0.2 (1)
P21_1772 0.295 0.34 (2) 0.3 (2) 1 (6)+ 0.11 (1) 0.13 (1) 1 (6) −
P21_1865 0.326 0.23 (1) 1 (3)+ 1 (3)+ 1 (3) − 0.21 (1) 1 (3) −
P21_1955 0.652 0.63 (5)+ 0.59 (5) 1 (8) − 0.6 (5) 0.59 (5) − 0.49 (4)+ 0.5 (4) −
P21_3013 0.374 0.78 (2) − 1 (3) − 1 (3)+ 1 (3)+ 0.21 (1) 1 (3)+
P35_1635 0.534 0.08 (1) 0.56 (5) 1 (8)+ 0.18 (2) 0.92 (7)+ 0.4 (3) 1 (8)+
P35_2014 0.211 0.85 (4) − 0.29 (2) 1 (5) − 1 (5) − 1 (5) − 1 (5) − 0.4 (2)

Aspect (0–360◦). BIO7, annual temperature range (◦C); BIO12, annual precipitation (mm); NDVI, normalized
difference vegetation index (unitless); PET, annual total potential evapotranspiration (kg/m2/year); RH, relative
humidity (%); WSmean, mean wind speed (m/s).

The 95% CIs indicated that no environmental variable significantly explained genetic
variations in three outlier AFLP loci (P12_1612, P19_2619, and P19_2812) (Table 5), whereas
the other 23 FST outliers were significantly explained by a combination of environmental
variables. Moreover, environmental variables with high SW values may show no signifi-
cant effects (95% CIs bracket zeros) on outlier variation. Nine outlier loci were found to
have either significant positive (P05_2291, P08_2919, P21_3013, and P35_1635) or negative
(P01_1888, P08_2566, P13_2177, P21_1772, and P21_1955) relationships of allele frequency
with the population mean FST (Figure 5). However, we found no allele frequency correlation
with latitude (Table S8).

The total explainable outlier genetic variation by the seven retained environmental
variables was 47.4% based on the 26 outlier loci, of which 24.0% and 18.9% were, respec-
tively, attributed to pure environmental and geographically structured environmental
effects. However, only 4.5% was attributed purely to geographic effects (Table 6).
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Figure 5. Linear regression plots of nine FST outliers showing significant correlation relationships of
allele frequency with population mean FST. Pearson’s correlation test results are reported in Table S8.

Table 6. The percentage of variation (adjusted R2)-explained outlier variation and variation accounted
for by non-geographically structured environmental variables [a], shared (geographically structured)
environmental variables [b], pure geographic factors [c], and undetermined component [d] analyzed
based on variations in 26 FST outliers. Fraction [a+b+c] represents total explainable variation.

Adjusted R2

(Percentage of Total
Explainable Variation)

F p

Environment [a] 0.240 (50.6%) 14.66 0.001
Environment + Geography [b] 0.189 (39.9%)

Geography [c] 0.045 (9.5%) 9.76 0.001
[a+b+c] 0.474 22.16 0.001

Residual [d] 0.526
Environmental variables used in [a] were aspect; Geographic variable for [c] was calculated using geographical
coordinates of sample sites.

4. Discussion
4.1. Pattern of Adaptive Divergence along a Narrow Latitudinal Range

Biological species richness and speciation rate are higher toward the equator, which
may have been related to the higher genetic divergence and greater evolutionary indepen-
dence of populations within species [5]. Clinal variation may arise from neutral drift pro-
cesses or adaptation linked to local environmentally associated genotypes [52]. This study
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found no correlation between genetic diversity (uHE) and latitude (Pearson’s r = 0.021,
p = 0.936; Table S7). However, a strong negative correlation between the latitude and pop-
ulation mean FST (Pearson’s r = −0.677, p = 0.003) indicates higher levels of population
genetic divergence in the low-latitude populations of Z. kawagoii (Figure 4a, Table S7).
Additionally, a strong positive correlation of the annual temperature range with latitude
(Pearson’s r = 0.946, p < 0.001; Figure 4b, Table S7) is consistent with an environmental
gradient along latitude. Correlations between the latitude and population mean FST and
between the latitude and annual temperature range are evidence for local adaptation.

The LY population, located on a small island situated off the southeast coast of Taiwan,
had the lowest genetic distance to the population JSY in southern Taiwan (FST = 0.300; Table S6)
but clustered with the geographically closest SL population in DPAC (Figures 1 and 2b). Ad-
ditionally, the LY population was closely related to other geographic proximity populations
in southern Taiwan, including JSY, BTWS, and WLS based on the NJ tree (Figures 1 and 3).
These results suggest genetic connectivity between populations across the sea barrier, which
was also found in Pemphis acidula [53] and Setaria viridis [54]. Additionally, the direction
and significant relationships between the population mean FST, latitude, and annual tem-
perature range held when the LY population was excluded based on Pearson’s correlation
test (see results). Thus, we included the LY population as one of the populations in the
Z. kawagoii latitudinal distribution.

Multilocus LD (IA and rD, Table 1) measures the non-random association of alle-
les [26,27]. A significant departure from zero of these measures may result from recent
bottlenecks because of mating among genetically close individuals within populations [55],
but it can also be influenced by mutation, recombination, natural selection, genetic drift,
gene flow, and population size [56]. Our findings of environmentally dependent genetic
variation (Tables 3 and 5) and changes in the allele frequencies of adaptive loci strongly
correlated with population divergence (Figure 5) suggest that significant IA and rD detected
in all populations examined (Table 2) could be owing in part to natural selection [14,57,58].
In this study, the exceptionally high level of population differentiation analyzed using the 26
adaptive loci (ΦST = 0.628, p < 0.001; Table S5) suggests that environmentally based divergent
selection may have played important roles in generating population adaptive divergence (the
mantel test of outlier genetic distance matrix against environmental distance matrix: rM = 0.505,
p = 0.001). We identified environmental factors (the seven retained environmental variables,
Table 1) significantly correlated with outlier genetic variation controlling for the latitudinal
effect (partial mantel test: rM = 0.464, p = 0.001), suggesting that multiple environmental factors
impose as selective drivers for local adaptation (Tables 3 and 5). The strong adaptive differenti-
ation can be attributed to the complexity of environmental factors, causing micro-evolutionary
differentiation between Z. kawagoii populations [12,14,52].

4.2. Latitudinal Cline of Annual Temperature Range Is the Major Selective Driver for
Local Adaptation

Temperature and precipitation are the two most important selective drivers for local
adaptation in plants commonly found to influence fitness-related traits and survival [2,59].
In this study, the annual mean temperature was excluded from the final set of environmental
variables, and it was not significantly correlated with the population mean FST (Pearson’s
r = 0.116, p = 0.659) or with the latitude (Pearson’s r = 0.133, p = 0.611). The annual
temperature range with a higher adjusted R2 than other environmental variables (Table 4)
may have played the main role in driving outlier genetic variation, resulting in a significant
latitudinal pattern (Figure 4b). The differential combinatorial effects of environmental
factors [60] in the best predicting models also played crucial roles in influencing genetic
variations in the 26 FST outliers, with high pseudo R2 values (Table 5). The co-optimizing
environmental variables may invoke locally adaptive genetic variation, particularly in
rugged topographic landscapes such as Taiwan.

A strong linear fit of annual temperature range to a trend of reduction in the popula-
tion mean FST along latitude (Figure 4) is consistent with Martin and McKay [5], who found
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that lower-latitude populations displayed greater genetic divergence. Local genotypes may
be better adapted to local conditions, and adapted gene frequencies increase as natural
selection persists overtime, which may generate clines in allele frequencies along the envi-
ronmental gradient [10,61]. The nine potential FST outliers displayed strong correlations of
allele frequencies with the population mean FST (Figure 5), suggesting the strong impact of
selective pressures on population differentiation and the maintenance of adaptive integrity
against the opposing forces of maladapted gene flow [10,62].

Adaptive divergence associated with thermal plasticity has been observed in natural
populations of Plantago lanceolata [63] and Cynodon dactylon [64] along large-scale latitudinal
gradients. However, a study finding annual thermal plasticity associated with population
adaptive divergence along small-scale latitudinal gradients, to our knowledge, has not been
documented. Thermal plasticity was thought to be more adaptive at higher latitudes due to
the greater thermal variation in higher latitudes for species distributed in large geographic
scales [65]. However, our results suggest adaptive evolution is evoked in response to
different thermal ranges at higher- and lower-latitude populations (Figure 5).

4.3. Not Only Leading- but Also Trailing-Edge Populations Are Important for
Zingiber kawagoii Conservation

In the current context of climate change, ecological, evolutionary, and conservation
studies have demonstrated that populations at both limits of species distribution range
evolved distinct genetic and phenotypic features [4,12]. Selection along thermal gradients of
the environment can lead to the local adaptation and acclimatization of thermal-tolerance
limits among populations [66,67]. The result of adaptive population differentiation might
have related to range expansion toward higher latitudes (Figures 4 and 5), and environmental
boundaries between populations sharply shaped latitudinal cline in genetic divergence [10].

An initiation of shifting poleward in latitude and upward in elevation after the LGM
and under the current global warming is expected [1]. The degree of temperature variability
can affect the thermal-tolerance margins of organisms and is crucial to locally adapted
responses to warming [66,67]. The current level of genetic diversity is a key determinant of
a population adapting to changing environments [2,4,10,14]. High-diversity populations
have broader stress-mitigation responses than low-diversity populations [68]. However, the
genetic diversity of Z. kawagoii estimated using AFLP was lower (average uHE = 0.123) than
that of the Brazilian Z. officinale (average uHE = 0.312) [69], three Indian Zingiber species
(Z. neesanum: 0.240; Z. nimmonii: 0.164, and Z. zerumbet: 0.367) [70], and the diversity
of thirteen plant species (average uHE = 0.230) [71]. The relatively low level of genetic
diversity in Z. kawagoii was also reflected in the low average percentage of polymorphism
(Table 2) and low cpDNA variation [6]. The low population genetic diversity in Z. kawagoii
(Table 2) is probably due to factors such as the nature of inbreeding [7] and the isolation of
populations [2,3], which may reduce the potential of evolving local adaptation [57,59].

Although low-latitude rear edge populations are expected to be small in size and
are hence characterized by low genetic diversity [4], our data do not meet this rear edge
hypothesis (Pearson’s correlation test between uHE and latitude: r = 0.021, p = 0.936). It
is likely that geographic variation in thermal tolerance limits, consisting of both spatial
temperature gradient and warming, can influence the rate of range shifts [4]. While cool
margins are expanding, warm margin populations may persist locally due in part to local
topographic and ecological conditions [1,4]. Moreover, two contrasting patterns of allele
frequency change which correlated strongly with population divergence (Figure 5) indicate
an increase in the probability of the presence of adaptive loci associated with the leading-
and trailing-edge environments (Tables 3 and 5). Apart from the nine loci (Figure 5), other
outlier AFLP loci may persist at intermediate frequencies (Figure S2) for long periods due to
heterogeneous selective pressures. Spatial range expansions can generate allele frequency
gradients attributed to distinct selective processes [72]. This study suggests that locally
adapted trailing- and leading-edge populations (Figure 5) are important for the future
survival of species such as Z. kawagoii.
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5. Conclusions

We studied the population mean FST along a latitudinal gradient that extended from
the south of the Z. kawagoii distribution to its northern distributional margin. The annual
temperature range related to the thermal tolerance of local populations could be the major
environmental factor influencing outlier genetic variation. Additionally, the combina-
tion of various environmental variables may also be important to the local adaptation of
Z. kawagoii. This study identified the presence of natural selection acting on adaptive loci
at a small latitudinal scale, contributing to understanding how herbaceous species respond
to environmental changes. The results broaden the generality of the latitudinal popula-
tion divergence which is closely linked to environmental gradients in both the latitudinal
leading- and trailing-edge populations of Z. kawagoii. Ecological speciation may occur in
the low-latitude populations of Z. kawagoii, particularly because of high genetic divergence
against other populations with narrower thermal tolerance limits.

Supplementary Materials: The following are available online at: https://www.mdpi.com/xxx/s1,
Figure S1: Minimum cross-entropy (a) and Bayesian information criteria (b) for evaluation of cluster-
ing scenarios, respectively, analyzed using LEA and DAPC. Figure S2: Heatmap of allele frequencies
of the 26 outlier loci identified. The sequence of populations was arranged according to degree
of latitude (◦N). Table S1: Primer combinations, number of markers, and error rate per locus in
AFLP for investigation in Zingiber kawagoii. Table S2: Relative contribution (adjusted R2) and F
test of environmental variables explaining outlier genetic variation in Zingiber kawagoii using a
forward selection procedure. Table S3: Variance inflation factor (VIF) of the seven environmental
variables and Pearson’s correlation coefficients between these variables. Table S4: Summary of
Tukey’s post hoc pairwise population comparisons of the mean unbiased expected heterozygosity
(uHE) per locus using a linear mixed effect model. In linear mixed effect model, population was
treated as a fixed factor and locus as a random factor based on the total AFLP variation of Zingiber
kawagoii populations. Table S5: Genetic differentiation between populations within species of the 17
populations of Zingiber kawagoii based on the total and outlier AFLP variation using analysis of
molecular variance (AMOVA). Table S6: Pairwise FST between populations of Zingiber kawagoii
based on the total AFLP data using ARLEQUIN with 10,000 permutations. All pairwise comparisons
were found to be significant (p < 0.0001). See Table 1 for population code. Table S7: Summary of
the results of Pearson’s correlation test of population mean FST and seven environmental variables
against population latitude. Table S8: Summary of the results of Pearson’s correlation test of allele
frequencies of the 26 outlier loci against population mean FST and against population latitude.
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