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ABSTRACT

Xenobiotic and host active substances interact with
gut microbiota to influence human health and thera-
peutics. Dietary, pharmaceutical, herbal and environ-
mental substances are modified by microbiota with
altered bioavailabilities, bioactivities and toxic ef-
fects. Xenobiotics also affect microbiota with health
implications. Knowledge of these microbiota and ac-
tive substance interactions is important for under-
standing microbiota-regulated functions and thera-
peutics. Established microbiota databases provide
useful information about the microbiota-disease as-
sociations, diet and drug interventions, and micro-
biota modulation of drugs. However, there is insuf-
ficient information on the active substances modi-
fied by microbiota and the abundance of gut bac-
teria in humans. Only ∼7% drugs are covered by
the established databases. To complement these
databases, we developed MASI, Microbiota––Active
Substance Interactions database, for providing the
information about the microbiota alteration of vari-
ous substances, substance alteration of microbiota,
and the abundance of gut bacteria in humans. These
include 1,051 pharmaceutical, 103 dietary, 119 herbal,
46 probiotic, 142 environmental substances inter-
acting with 806 microbiota species linked to 56
diseases and 784 microbiota–disease associations.
MASI covers 11 215 bacteria-pharmaceutical, 914
bacteria-herbal, 309 bacteria-dietary, 753 bacteria-
environmental substance interactions and the abun-

dance profiles of 259 bacteria species in 3465 pa-
tients and 5334 healthy individuals. MASI is freely
accessible at http://www.aiddlab.com/MASI.

INTRODUCTION

The interactions of xenobiotic and host active substances
with gut microbiota play key roles in human health, dis-
eases and physiological responsiveness to various cues and
treatments (1–3). Broad variety of xenobiotics such as di-
etary components (4), pharmaceuticals (2,5,6), herbal prod-
ucts (7) and environmental chemicals (8,9) are modified by
microbiota with altered bioavailabilities, bioactivities and
toxic effects in the host. Some of these xenobiotics can also
alter microbiota to affect their functions and communica-
tions with the host (8,10). Probiotics have been used for al-
tering the composition of the gut microbiome and introduc-
ing beneficial effects to gut microbial communities (11). The
comprehensive knowledge of the interaction of microbiota
with the diverse active substances is important for under-
standing microbiota function and for developing improved
therapeutics (12–15).

Several microbiota databases have been developed for fa-
cilitating the research of the microbiota and its interactions
with active substances. PharmacoMicrobiomic gives the in-
formation of microbiota regulation of drugs (covers 24 gut
bacteria and 106 drugs) (16). Disbiome presents 10 684
microbiota–disease associations in a standardized way (17).
Virtual Metabolic Human database (VMH) contains 17,730
unique reactions of microbiome metabolism with nutrition
and diseases (18). gutMDisorder provides 2263/930 asso-
ciations between 579/273 gut bacteria and 123/33 disor-
ders or 77/151 interventions in human/mouse (19). These
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databases provide useful information about the microbiota-
disease associations, diet and drug intervention of micro-
biota, and microbiota modulation of drugs. However, there
is insufficient or lack of information about microbiota mod-
ification of drugs, dietary components, herbal products, and
environmental chemicals. Only 152 of the > 2000 approved
drugs are covered by these databases. Moreover, in these
databases, no data is provided for the relative abundance
of microbial species in human microbiota samples.

Therefore, expanded resources are needed for the in-
formation of more variety of microbiota and active sub-
stance interactions, and the relative abundance data of mi-
crobial species. To complement established databases for
the additional information, we developed a new database
MASI, Microbiota––Active Substance Interactions, to pro-
vide the information of microbiota alteration of active sub-
stances and active substance alteration of microbiota. The
active substances include comprehensive sets of therapeutic
drugs, diets/dietary components, herbal substances, probi-
otic products, and environmental chemicals modulated by
the microbiota species or involved in the regulation of the
microbiota species. Convenient search facilities were set up
for keyword search and for browsing by individual classes
of drugs, bacteria-active substance interactions (drug, diet,
herbal substance, probiotics, environmental chemical) and
bacteria–disease associations.

DATA COLLECTION AND PROCESSING

The information of microbiota alteration of active sub-
stances and active substance alteration of microbiota were
searched from the literature database PubMed (20), by us-
ing the combinations of keywords ‘microbiota’, ‘micro-
biome’, ‘microbe’, ‘bacteria’, ‘gut’, ‘intestinal’, ‘xenobi-
otics’, ‘chemical’, ‘metabolite’, ‘metabolism’, ‘biotransfor-
mation’, ‘modulating’, ‘modulation’, ‘regulating’, ‘regula-
tion’, ‘restoring’, ‘restoration’, ‘drug’, ‘therapeutic’, ‘food’,
‘dietary’, ‘nutrient’, ‘nutraceutical’, ‘probiotics’, ‘probiotic’,
‘prebiotics’, ‘herb’, ‘herbal’, ‘medicine’, ‘extract’, ‘environ-
mental’ and ‘environment’. Only the experimentally deter-
mined interactions, modulations, or regulations were in-
cluded in MASI. The literature-reported interaction records
were manually extracted from the individual publica-
tions. The experimental details (e.g. experimental condition,
chemical exposure dose and duration, effects on the host) of
bacteria and active substance interactions reported in orig-
inal publications were also collected when available. These
interaction records were categorized into two classes, the
bacteria and active substance interactions, and the bacteria
and dietary substance interactions.

For the identified bacteria species, their taxonomic in-
formation down to genus level was extracted from the
NCBI taxonomy database (21). The active substances in-
clude drugs, herbs, traditional medicines, environmental
chemicals/pollutants and other bioactive compounds. The
bacteria and active substance interactions are further di-
vided into the subclasses of bacteria alteration of active sub-
stances and active substance alteration of bacteria. The bac-
teria and dietary substance interactions are currently of a
single type, i.e., dietary substance alteration of bacteria. In
order for convenient access of the bacteria–disease associa-

tions relevant to the collected bacteria and active substance
interactions, we further searched PubMed for the relevant
bacteria-disease associations using the name of each col-
lected bacteria and the keywords ‘disease’, ‘disorder’, ‘syn-
drome’, ‘cancer’, ‘leukemia’, ‘infection’, ‘inflammation’, ‘in-
flammatory’, ‘allergy’, ‘asthma’, ‘arthritis’, ‘diabetes’, ‘obe-
sity’, ‘fibrosis’, ‘cirrhosis’, ‘Parkinson’s’, ‘epilepsy’, ‘sep-
sis’, ‘colitis’, ‘fatigue’, ‘constipation’, ‘enterocolitis’ and
‘eczema’. The searched literatures were manually evaluated
for finding the experimentally indicated bacteria-disease re-
lationship, i.e. the increase/decrease of the relative abun-
dance of the bacteria is associated with the disease. More-
over, probiotics were extracted from Probio database (22)
by the bacteria species matching using the corresponding
scientific name or NCBI taxonomic identifier.

The SMILES strings of the chemical substances were
extracted from PubChem database (23) by matching Pub-
Chem CID identifiers or by manual matching and in-
spection of the substance names with those in the Pub-
Chem records. The SMILES strings were subsequently con-
verted to structure images using OpenBabel command line
script (24). The Anatomical Therapeutic Chemical Classi-
fication System (ATC) codes of the drugs were from Drug-
Bank database (25) by matching DrugBank identifiers or
PubChem CID identifiers with those in the DrugBank
records. Cytoscape software (26) was used for generating
the bacteria-substance-disease association networks, which
are provided in the respective MASI webpage for visualiza-
tion.

The pre-processed gut bacteria abundance level in the pa-
tients and healthy individuals are from the curatedMetage-
nomicData resource (27). The curatedMetagenomicData
processes metagenomic data with a unified analysis pipeline
to calculate the relative abundance from raw sequencing
data. In the relative abundance matrix, the sum of microbial
abundance of an individual microbiota sample was stan-
dardized to 1 at each taxonomic level (e.g. species, genus,
family). Relative abundance of each bacteria species was
log10 transformed (resulted relative abundance levels range
from –7 to 0) for convenient visualization. Ridgeline plots
were generated using ggplot2 R package to show relative
abundance profiles of individual bacteria species across ages
and geographical regions of patients, and disease condi-
tions.

MICROBIOTA AND ACTIVE SUBSTANCE INTERAC-
TIONS

Active substances such as drugs, dietary supplements,
herbal products and probiotics have been widely used for
therapeutic, nutritional and health beneficial effects. Many
of these active substances affect microbiota with either
beneficial or adverse effects. For example, in a study of
>1000 approved non-antibiotic drugs against 40 represen-
tative gut bacterial strains, there appear to be partially
overlapped resistance mechanisms of antibiotics and non-
antibiotic drugs, suggesting that microbial species which
are multi-drug resistant to antibiotics may in some cases
be more resistant to human-targeted drugs (28). Various
strategies have been explored for improved therapeutic re-
sponse in cancer treatment by the modulation of gut mi-
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Figure 1. The homepage of MASI web interface. The webpage allows users to search microbiota species, therapeutic substances, or disease by keywords.
All entries of MASI can be browsed or downloaded by clicking the ‘Browse’ or ‘Download’ buttons in the top menu.

crobiome, which include faecal microbiota transplants, pro-
biotics, diet, and prebiotics intervention (29,30). The con-
sumption of antibiotic drugs may alter the host microbiota,
resulting in dysregulation of host immune homeostasis and
an increased susceptibility to disease (31,32). The antihyper-
lipidemic function of Coptis chinensis alkaloids partly arise
from their modulation of gut microbiota and bile acid path-
way to reduce triglycerides, total cholesterols, low-density
lipoprotein cholesterols, lipopolysaccharides, and total bile
acids, leading to the beneficial effects in the treatment of
high-fat diet induced hyperlipidemia (33). Therefore, the in-
formation of the regulation of microbiota by active sub-
stances is important for the investigations and manipula-
tions of gut microbiota in searching of improved therapeu-
tics.

Moreover, many drugs, dietary components, and herbal
products are modified by gut microbiota with functional
and therapeutic implications. For instance, the nucleoside
analog drug brivudine can be converted to hepatotoxic bro-
movinyluracil by both mammalian and microbial enzymes,
suggesting a microbiome contribution to brivudine phar-
macokinetics and toxicity (13). Studies of 271 clinical drugs
have found 176 drugs metabolized by at least 1 of the 76
tested human gut bacterial strains, some of which are ex-
pected to influence intestinal and systemic drug and drug-
metabolite exposure (5). Dietary fibers are metabolized by
gut microbiota into short-chain fatty acids, which mediate
gut-brain communications with beneficial effects on cogni-
tive, immune and endocrine functions (34). Ellagitannin-
rich herbs are popular remedies in the treatment of vari-
ous inflammatory diseases, and ellagitannins in these herbs
are metabolized by gut microbiota into anti-inflammatory
urolithins partly responsible for their observed beneficial ef-
fects (35). Hence, the knowledge of the modulation of active
substances by microbiota is highly useful for the full under-
standing and exploration of the effects of drugs, foods and
herbal products on human health.

MICROBIOTA INTERACTIONS WITH ENVIROMENTAL
CHEMICALS

Environmental chemicals strongly influence microbiota
communities with implications to human health (8,36). In
a study of the impact of confined swine farm environments
on gut microbiome and resistome of veterinary students,

it has been found that farm exposure shapes the gut mi-
crobiome of these students, with enrichment of potentially
pathogenic taxa and antimicrobial resistance genes (37).
The potentially adverse effects include increased risk of ade-
nocarcinoma in the lower esophagus and decreased mod-
ulation of immunologic, endocrine, and physiologic func-
tions in the stomach. The potentially beneficial effects in-
clude decreased risks of ulcers, gastric adenocarcinoma
and lymphoma. Bisphenol A (BPA), a plastic monomer of
high-volume industrial chemical with endocrine-disrupting
toxicity, has been found to alter a variety of gut micro-
biota species (26). For instance, BPA exposure has led to
increased Prevotellaceae in the gut microbiome of male
mice, which may affect the mucosal barrier function (38),
BPA exposure has also led to upregulated Akkermansia and
Methanobrevibacter in the gut microbiome of males, which
is of concern of cancer risks because Akkermansia is in-
volved in butyrate production and is frequently elevated in
human cancers (39,40). A third study has found that ex-
posure to trace-level dust from a high biodiversity soil can
change gut microbiota in comparison to dust from low bio-
diversity soil or no soil, which indicates that biodiverse soils
may be an important source of butyrate-producing bacteria
for resupplying the mammalian gut microbiome with poten-
tial gut and mental health benefits (41). Thus, information
of the interactions between microbiota and environment is
needed for a more complete investigation and understand-
ing of the microbiota functions and interventions.

GUT BACTERIA ABUNDANCE AND HUMAN HEALTH

The alterations of relative abundance of gut bacteria are
closely associated with human health and diseases. For in-
stance, differences in the composition and function of gut
microbial communities contribute to individual variations
in cytokine responses to microbial stimulations in healthy
individuals (42). Moreover, in a recent investigation of the
contributions of impaired gut microbial community devel-
opment to childhood undernutrition, a microbiota-directed
complementary food has been identified that changes the
abundances of targeted microbiota bacteria, resulting in en-
hanced growth, bone formation, neurodevelopment, and
immune function in children with moderate acute malnu-
trition (43). Treatment of mice with an antibiotic cock-
tail results in the perturbation of the abundance of specific
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Table 1. Overall statistics of MASI database

No. of entries

Unique bacteria species 806
Unique substances 1350
Unique diseases 56
Unique bacteria species with abundance profile
available

259

Unique bacteria–substance interaction pairs 11 752
Unique interaction pairs: bacteria alter
substances

4001

Unique interaction pairs: substances alter
bacteria abundance

7770

Unique bacteria–disease associations 784

members of the microbiota communities, and the perturba-
tion impairs the response of subcutaneous tumors to CpG-
oligonucleotide immunotherapy and platinum chemother-
apy (44). Therefore, gut bacteria abundance information is
essential for the investigation of the microbiota and its in-
teraction with active substance.

DATABASE CONTENTS, STRUCTURE, AND ACCESS

MASI is freely accessible at http://www.aiddlab.com/MASI
(homepage in Figure 1). As shown in Table 1, it cur-
rently covers 11 215 bacteria-drug, 914 bacteria-herbal
substance, 309 bacteria-dietary component, 753 bacteria-
environmental chemical interactions. These interactions in-
volve 980 approved drugs, 103 dietary components, 119
herbal substances, 46 probiotic products and 142 environ-
mental chemicals interacting with 806 bacteria species and
in 56 human diseases. The relative abundance profiles of
259 bacteria species in 3465 patients and 5334 healthy in-
dividuals are provided. Among four substance categories,
microbiota-therapeutic substances interactions account for
the majority of the total 11 752 interaction records in MASI
(Table 2). MASI can be searched by keywords and by
browsing the substances (drug, dietary, herbal substance,
probiotics, environmental), interactions (microbiota alter-
ation of substance, substance alteration of microbiota), and
bacteria-disease associations. In the MASI browse page, the
interactions can be filtered by selecting the respective fields
of bacteria and active substance interactions, bacteria and
dietary substance interactions, bacteria and environmental
chemical interactions, and bacteria-disease associations.

For each individual bacteria species, the interaction infor-
mation was presented in five sections (Figure 2): Section-
1 ‘Bacteria–Drug Interactions’ shows the detailed infor-
mation of alteration effect of bacteria on the bioavailabil-
ity, bioactivity or toxicity of drugs and alteration effects
of drugs on bacteria abundance in human gut or pro-
liferation in in vitro assays. Similar information was pre-
sented in Section-2 ‘Bacteria–Herbal Substance Interac-
tions’ and Section-3 ‘Bacteria–Dietary Substance Interac-
tions’. Section-4 shows the ‘Bacteria–Disease Associations’
to cover those bacteria that have bacteria–active substance
interaction records in MASI. Section-5 provides relative
abundance profile of the bacteria species in healthy popu-
lation and various disease conditions. For each individual
substance, a substance page provides ‘Bacteria–Drug In-

teractions’ and ‘Probiotics-Substance Interactions’ records
relevant to this substance.

As shown in Figure 3, active substances in MASI in-
teraction records tend to concentrate on a few regions on
the phylogenetic tree of microbiota species. The number
of substances interacting with individual bacteria species
ranges from 1 to 203. The top five bacteria species Rose-
buria intestinalis, Eubacterium rectale, Bacteroides vulgatus,
Clostridium perfringens and Coprococcus comes have 203,
198, 194, 182 and 180 known interactive substances, re-
spectively, while about 83% of bacteria species in MASI
have <10 known interactive substances. From higher tax-
onomic level perspectives, bacteria-active substance inter-
actions mainly distributed in Bacteroidales order, Lach-
nospiraceae family and Escherichia genus.

MASI was developed with MySQL backend and PHP
server software. Its web-interfaces were built with HTML5,
PHP, and JavaScript, and were designed to enable the con-
venient access of its entries by browsing or searching micro-
biota species, substances (e.g. approved drugs, dietary com-
pounds, medicinal herbs, antibiotics), and diseases. While
applicable, the microbiota species entries are cross-linked to
NCBI Taxonomy database (21), chemical substances entries
are crosslinked to ChEMBL (45), DrugBank (25), Ther-
apeutic Target Database (TTD) (46), PubChem (23) and
Natural Product Activity and Species Source database
(NPASS) (47). The references for each microbiota-active
substance interaction are listed with PubMed identifiers or
DOIs below each entry for conveniently tracing back to
original studies. All interaction entries can be freely and
conveniently downloaded using the download functions
provided in each individual bacteria/substance webpage.
Alternatively, users can download whole datasets of MASI
from the ‘Download’ webpage with a format of either plain
text or Excel tables.

PERSPECTIVES

Microbiota plays vital roles in human health (1) and its
malfunction and dysregulation may lead to health prob-
lems (37). The state of microbiota and its broad effects is
significantly influenced by the interactions of microbiota
with various active substances (5,28,35) and environmen-
tal chemicals (41). MASI as well as other established mi-
crobiota databases (16–19) collectively serve as useful re-
sources for the relevant information and for facilitating the
research and exploration of microbiota in the promotion
of human health. There have been new advances in the
large-scale genomic studies of the functional microbiome of
>6000 gut bacteria (48), longitudinal analysis of the ecolog-
ical states in gut microbiome (49), the mapping of the hu-
man microbiome drug metabolizing genes (5), and the de-
sign of microbiota-targeted foods for the treatment of dis-
eases promoted by the malfunctional or dysregulated mi-
crobiota (43). The rich information generated from these
and future investigations can be incorporated into MASI
and other established microbiota databases for better serv-
ing the microbiota research and exploration efforts. We aim
to regularly update the newly-emerging information into
MASI.

http://www.aiddlab.com/MASI
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Table 2. Number of entries of microbiota - active substances interactions in each category/subcategory of substances. One substance may belong to
multiple subcategories

Substance category––subcategory
No. of

substances

No. of interactions
(bacteria alter

substances)

No. of interactions
(substances alter

bacteria abundance)
Total no. of
interactions

Therapeutic substance (all) 1074 4134 7081 11 215
Therapeutic substance––approved drug (human) 980 3947 6544 10 491
Therapeutic substance––approved drug (veterinary
medicine)

16 0 362 362

Therapeutic substance––drug class 41 51 139 190
Therapeutic substance––investigational drug 30 118 47 165
Dietary substance (all) 103 42 267 309
Dietary substance––artificial sweeteners 5 6 14 20
Dietary substance––dietary Compounds 72 46 138 184
Dietary substance––drinks 20 1 80 81
Dietary substance––foods 13 0 34 34
Herbal substance (all) 119 367 547 914
Herbal substance––medicinal herb 24 2 115 117
Herbal substance––medicinal herbal compounds 87 364 405 769
Herbal substance––TCM formula 5 0 24 24
Environmental substance (all) 142 37 716 753
Environmental substance––heavy metals 10 4 158 162
Environmental substance––persistent organic
pollutants

14 0 94 94

Environmental substance––pesticides 26 0 269 269

Figure 2. An example webpage of microbiota species. The top section provides taxonomic classification of the bacteria species. Microbiota–active substance
interaction records are grouped into different categories and presented in individual tables. Users can click the fingerprint-like button in the ‘Reference
(PubMed ID)’ column to see detailed information of each reference. All records shown in table can be downloaded via ‘CSV’, ‘Excel’ and ‘PDF’ download
options in the left-top of each table. Detailed interaction data of substance can be accessed by clicking substance name in each row.
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Figure 3. Active substance distribution in the phylogenetic tree of human microbiota species. 532 bacteria species with NCBI Taxonomic Identifier available
were included in this tree. The number of substances of individual bacteria species ranges from 1 to 203. Phylogenetic tree of microbiota species was
generated based on Taxonomy Identifiers using phyloT webserver and annotated and visualized by iTOL software (50).
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