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A B S T R A C T

Mathematical models can aid in the understanding of the risks associated with the global spread of infectious
diseases. To assess the current state of mathematical models for the global spread of infectious diseases, we
reviewed the literature highlighting common approaches and good practice, and identifying research gaps. We
followed a scoping study method and extracted information from 78 records on: modelling approaches; input
data (epidemiological, population, and travel) for model parameterization; model validation data.

We found that most epidemiological data come from published journal articles, population data come from a
wide range of sources, and travel data mainly come from statistics or surveys, or commercial datasets. The use of
commercial datasets may benefit the modeller, however makes critical appraisal of their model by other re-
searchers more difficult. We found a minority of records (26) validated their model. We posit that this may be a
result of pandemics, or far-reaching epidemics, being relatively rare events compared with other modelled
physical phenomena (e.g. climate change). The sparsity of such events, and changes in outbreak recording, may
make identifying suitable validation data difficult.

We appreciate the challenge of modelling emerging infections given the lack of data for both model para-
meterisation and validation, and inherent complexity of the approaches used. However, we believe that open
access datasets should be used wherever possible to aid model reproducibility and transparency. Further,
modellers should validate their models where possible, or explicitly state why validation was not possible.

1. Introduction

The complexity of containing person to person pandemic potential
diseases has increased with the ease of global travel and closer con-
nection of countries (Morens and Fauci, 2013). As humans found faster
ways to travel (for example by horse, then ship) and engaged in wars
and migrations, the opportunities for diseases to take hold, and result in
pandemics, increased as pathogens were introduced into completely
susceptible populations (Karlen, 1995). The greatest risk of transporting
infections to naïve populations now comes from air travel (Karlen
1995). Understanding the way in which people move globally is
therefore important for understanding the spread of diseases with
pandemic potential, such as influenza, severe acute respiratory syn-
drome (SARS), and Ebola virus disease (World Health Organisation,
n.d.).

Mathematical models can aid in the understanding of the risks

associated with the spread of pandemic potential infectious diseases.
For instance, models could predict: the chance that a disease will invade
particular countries, the expected number of cases within a particular
timeframe, or the expected effect of interventions. For this information
to be of value, the model must be a sufficiently accurate representation
of reality in order to provide useful outputs. All models have a trade-off
between complexity and accuracy so it is important to assess which
approach is most appropriate for each individual situation (Keeling and
Rohani, 2008). Often multiple models may be developed to describe the
same real-world event; this is a natural consequence of no model being
completely accurate. Early in a disease outbreak response, real-world
information is sparse. Confidence in model accuracy may be increased
if multiple different, independent models, developed by independent
research groups, converge on a qualitatively similar output (or they
may provide clear insight to the reasons for different qualitative be-
haviour). For example, Mateus and Otete (2014) found that multiple
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models offer the same qualitative prediction that travel restrictions will
not prevent the spread of influenza into susceptible populations.

According to Keeling and Rohani (2008), a good model should be
both suited to its purpose (as simple as possible but no simpler) and
parameterizable by available data. Deciding which mathematical
methods to use is an important decision for modellers (Fowkes and
Mahony, 1994) as evaluation of a model comes down to a subjective
measure of usefulness (Keeling and Rohani, 2008). In some circum-
stances, for instance when modelling is conducted within the UK gov-
ernment, such decisions are made in discussion with the commissioner
of the modelling rather than by the modeller alone. Directed by this
view, we seek to identify what modelling techniques have been em-
ployed to predict the global spread of a pandemic potential disease and
what data are available to parametrise these models. Confidence in
model outputs is important as, in the case of disease spread models,
health protection planning decisions may be directly influenced by
these outputs. Confidence in model outputs can be increased through a
process known as validation.

Validation is checking that a model, combined with its assumptions,
provide a sufficiently accurate real-world representation to a sufficient
level of accuracy (Carson, 2002; Sargent, 2011). What constitutes a
sufficient level of accuracy must be a judgement made by the modeller
(or, where relevant, the commissioner or stakeholders) as model vali-
dation always requires some subjective analysis (Barlas, 1996). Pri-
marily, the validity of a particular model choice is not independent of
the model purpose (Barlas, 1996). Validation can be considered as a
multi-component process involving: conceptual validation, logical va-
lidation, experimental validation, operational validation and validation
of the data used in the model (Landry, Malouin et al., 1983). The first
two aspects are concerned with the conceptual model and its im-
plementation, considering assumptions made about the real-world si-
tuation and verifying that a model implementation meets the criteria of
the concept model. Operational validation is most relevant to the end-
user of the model and focuses on cost-benefit analyses of proposed
actions. In this review we are interested in what has been called ex-
perimental validation, pertaining to model efficiency and robustness.
We consider validation to be done by comparing model predictions to a
known outcome or, more weakly, by calibrating a model to a known
outcome. Data validation of disease spread models has been discussed
in Meslé et al. (2018).

In this review we assess the current state of mathematical models for
global infectious disease spread in order to highlight common ap-
proaches and good practice, and identify any gaps for future research.
We focus on identifying the model type, the input data that were used
to parametrise the model, and the validation data used to assess model
accuracy and judge quality. It is useful at this point to reflect that
modelling infectious diseases, particularly emerging pandemics, is dif-
ferent to modelling environmental or physical phenomena (such as
climate change or fluid dynamics). This is because the underpinning
knowledge or empirical data are often rare or highly uncertain and the
timescales for intervention relatively fast. We adopt a scoping study
approach, as described by Arksey and O’Malley (2005) and Levac and
O’Brien (2010), as this allows us to employ an iterative search approach
and rapidly assess the literature. Scoping studies do not seek to provide
a quality assessment of the literature but seek to provide an overview of
the extent, range and nature of existing literature and highlight any
research gaps (Arksey and O’Malley, 2005). Consequently, we do not
seek to critically appraise each model as models have multiple trade-
offs so a comparative framework for model design cannot be separate
from a framework for assessing the quality of datasets.

2. Methods

2.1. Database searches

This scoping study was completed by a team of three individuals, as

recommended by Levac and O’Brien (2010). The final agreed search
terms are listed in Table 1, chosen to capture literature addressing the
global spread of pandemic potential diseases. Through following an
iterative process whereby we refined search terms by examining the
relevance of title hits, we decided to include certain specific model type
terms: metapopulation, agent-based, and network. Similarly we included
the disease-specific term influenza as this is the classical example of a
pandemic disease and much literature exists around its spread. Re-
maining terms are more general to ensure that relevant literature was
not missed.

The searches, conducted on 1st July 2015, yielded 1453 records
across three databases: 332 from Embase (1974-present), 439 from
PubMed (1946-present), 682 from Scopus (1970-present). Record titles
and abstracts from the three databases were imported into EndNote
X7.3.1 (Thompson Reuters). Duplicates were identified and removed
with the aid of the software’s ‘remove duplicate’ function, leaving 799
records to be reviewed.

Within these 799 records we identified two existing literature re-
views of infectious disease model. Lee et al. (2009) focuses on articles
where at least two intervention strategies for reducing the spread and
morbidity from pandemic influenza are modelled; Mateus and Otete
(2014) assesses the effectiveness of travel restrictions in the rapid
containment of influenza strains with pandemic potential. Whilst both
reviews are of interest, neither addresses the questions that we consider
in this review.

2.2. Record screening

At all stages, screening was completed by two independent re-
searchers, calling upon a third to resolve discrepancies. The researchers
regularly discussed results to ensure the accurate assessment of records,
with inclusion/exclusion criteria updated as necessary. The inclusion/
exclusion criteria for both the initial sift and the full text screening are
listed in Table 2.

Title and abstract screening yielded 75 articles to be screened on full
text, after which 57 records remained eligible for inclusion. The re-
ference lists of all included records were screened on title and abstract,
following an iterative process. This yielded a further 24 articles to be
screened on full text, of which 21 records were eligible for inclusion. In
total, 78 records have been included in this review. The screening
process is represented in Fig. 1.

When completing the screening process, three records in particular

Table 1
Database search terms used for the literature review.

Search number Search terms

Model terms
1 Mathematical
2 Metapopulation OR meta-population
3 Agent-based
4 Simulation
5 Network
6 #1 OR #2 OR #3 OR #4 OR #5
Disease terms
7 Disease spread
8 Influenza OR flu
9 #7 OR #8
Pandemic potential terms
10 Global
11 Pandemic
12 #10 OR #11
Movement terms
13 Travel*
14 Import*
15 Transport*
16 #13 OR #14 OR #15
Combining terms for final search
17 #6 AND #9 AND #12 AND #16
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were challenging.

i Record [71] considers influenza transmission between birds and
humans and seeks to describe the seeding of a novel pandemic-po-
tential strain where the virus jumps species. We retained this record,
despite the cross-species transmission, as the developed model as-
sumes virus evolution so that the strain becomes human to human
transmissible.

ii One record identified during title and abstract screening was found
to be a letter to the editor detailing a correction to another article in
this review. We considered the correction to be an extension to the
original article and thus analysed the two records as one: record
[66].

iii When screening the references of [53] an unpublished manuscript3

was flagged to be reviewed on full text. It was not possible to find a
copy of this manuscript so we were unable to continue the process
with full text screening.

2.3. Information extraction

Two individuals extracted the information of interest: modelling
approach; input data used, split into epidemiological, population, and
travel data; validation data used. Epidemiological data concerns model
parameters which describe the disease, such as the average length of
infection. Population data relates to difference within the total mod-
elled population, for example splitting the population into different age
brackets or determining how many individuals live in a particular re-
gion. Travel data consists of information on travel patterns of in-
dividuals, either commuting or long-distance travel.

We consider the best validation method to use data sources in-
dependent of the input data. That is, the model parameters are esti-
mated from datasets set apart from the dataset chosen for validation.
This may be data from a different setting or a partition of the data used
as input. An alternative form of validation is the fitting of the model to
data (and so deriving at least one parameter from that data) to show
qualitatively similar behaviour between model and validation data.
Pragmatically, in a data poor setting, this is often used by necessity
albeit as a weaker form.

3. Results

We are interested in identifying which modelling techniques and
datasets are used in global disease spread models, including how many
records have used particular methods. As we are not conducting a cri-
tical appraisal of each record we have not included a discussion of each

individual record, however we refer to examples throughout our ana-
lysis.

For some records we had difficulty in extracting information. For
example, a record may refer to a dataset within the main article text,
however fail to provide a citation for the data source. We have labelled
these records as ‘unclear’.

3.1. Identified modelling approaches

We wished to uniquely categorise our 78 records based on the
modelling approaches adopted in each article, however this proved
challenging. We attempted to provide the reader with a list of discrete
model types, however this list became intractable as many records
utilise a variety of mathematical and statistical techniques. We then
attempted to split the records into statistical or mechanistic, but again
had difficulty as, although some models are purely statistical, many of
the mechanistic modelling papers also used statistical methods for some
aspect of the model (for example record [36]). We have identified
models that we consider to be purely statistical in nature so these form
one model type. As our primary interest is finding models for the spread
of disease through a large population, we have then split the remaining
records on whether the models are agent-based or population-wide
models. We consider population-wide models to be those where each
individual is not tracked throughout the model (Table 3).

One explicitly mentioned metapopulation model is GLEaM, ap-
pearing in records [4, 5, 6, 33, 70, 72]. This is a computational model
which can be used to represent global infectious disease spread, which
is based upon a metapopulation approach (Balcan et al 2010). Popu-
lation mobility patterns (both local and global) are represented by
distinct spatial regions which are connected by a network (Balcan et al
2010). This software tool is publicly available (http://www.gleamviz.
org/), as presented in record [72]. Similarly, the model FluTE, de-
scribed in [15] as an agent-based model for simulating influenza spread
across major metropolitan areas, has open source code. The model
considers travel within the US only rather than worldwide, however it
may be possible to adapt the model to fit a global scale.

Record [78] is a cellular automaton model (CA). CA models involve
a grid lattice made up of cells and, at each discrete time step, the state
of an individual cell is affected by the states of its neighbours according
to a predefined mathematical rule (Wolfram Math World). Infectious
disease cellular automata models could involve each cell representing
an individual who, at each time step, will be either susceptible, in-
fected, or recovered; see, for instance, Keeling and Rohani (2008) for a
more detailed description. Alternatively, in the case of [78], each cell
represents one of a number of discrete spatial regions each with cor-
responding population. At each time step, the population for a discrete
region is split into susceptible, infected, and recovered individuals and
the sizes of these subpopulations vary dependent upon disease dy-
namics both within and between spatial regions.

Gravity models can be used to represent the flow of commodities,
people, or information from one region to another, allowing them to be
adapted to model infectious disease spread from a source location to a
destination location (Rodrigue and Comtois, 2013). The measure of
disease spread from one region to another is proportional to the sizes of
the populations and the distance between them. Six records, [5, 11, 51,
57, 73, 77], made explicit reference to adopting this approach. Record
[50] developed a gravity model for comparison with another approach,
and [48] developed an anti-gravity model, where the speed of disease
spread between regions is inversely proportional to the distance be-
tween regions.

3.2. Identified datasets

Sources of input data (epidemiological, population, and travel) and
validation data have been identified from all 78 records, with some
records reporting multiple sources contributing to the same data input

Table 2
Scoping review inclusion and exclusion criteria.

Inclusion Criteria

Global spread of a human to human infectious disease
Specific models for far-reaching outbreaks of influenza like illnesses
Use of appropriate datasets

Exclusion Criteria

Abstract or full text not available in English or French
Articles not containing mathematical models: review papers, empirical studies,

emergency response articles, microbiological studies, or disease surveillance.
Vector-borne diseases
Focus on treatment or vaccination
Not relevant models: in host, not disease-specific, not involving population-wide

spread, computer viruses, social media/ internet/ phone modelling.

3 L A Belova, J W Donovan, P E M Fine, D W Fraser, M B Gregg, L A Rvachev, V A
Shashkov, and V I Vasilyeva Experiment on pandemic process modeling (Part 1 – influ-
enza), unpublished manuscript (in Russian and English), 1983.
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type. We see from Table 4 that the majority of epidemiological data
come from existing literature, by which we mean published journal
articles as opposed to distinctly published datasets. Some records cite

an international health organisation as their source of information, such
as the Centers for Disease Control and Prevention, the European Centre
for Disease Prevention and Control, or the World Health Organization.

Population data come from a wide range of sources, detailed in
Table 5. What sources are appropriate is model-dependent: the data
aggregation and scale must match up with the model structure and
parameters. Information is commonly taken from a census for the
modelled region, or (inter-)national databases or statistics.

Table 6 shows that the main sources of travel data, aside from ex-
isting literature, are from national statistics or surveys, from IATA
(International Air Transport Association) or from OAG. IATA is a trade
association for the world’s airlines and has a variety of available da-
tasets for purchase (IATA). These include passenger forecasts, air traffic
statistics, and customisable datasets, which may provide more flex-
ibility when designing a model to be parameterised by particular da-
tasets. OAG is an air travel intelligence company which has a large
network of air travel data, also available for purchase (OAG).

Fig. 1. Literature search process, including reasons for exclusion of articles screened on full text.

Table 3
Summary of model classifications.

Model Classification

Model type Records

Agent-based 10 [9, 15, 21, 24, 57, 58, 59, 62, 63, 69]
Population-wide 63 [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22,

23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55,
56, 61, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77,
78]

Statistical 5 [8, 13, 47, 49, 60]
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3.3. Validation data

We find that 26 records that perform a type of model validation,
shown in Table 7. We identify 6 records where data independent of that
used to parameterise a model is used to validate the model. This allows
for an assessment of how flexible a model is i.e. how accurately it
predicts outcomes for novel occurrences of disease outbreaks. Of these
6, the records [12], [19], [53], [67], [70] all produce plots of simula-
tion results and of actual data so that the reader may visually compare
the two. Record [13] is validated differently. The authors seek to ex-
plain the role of air travel on influenza epidemic fluctuations by per-
forming time series analysis on pneumonia and influenza mortality
data. Validation is achieved through comparing results against time
series analysis from a separate viral surveillance dataset.

Twenty articles perform a pragmatic form of validation. Fourteen

Table 4
Epidemiological data classification.

Epidemiological Data

Source Records

Centers for Disease Control and Prevention (CDC) 4 [13, 41, 43, 51]
Census 1 [60]
European Centre for Disease Prevention and Control (ECDC) 1 [58]
Existing literature 51 [1, 2, 3, 4, 5, 6, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 36, 37, 38,

39, 42, 43, 44, 45, 46, 49, 53, 55, 59, 61, 62, 63, 64, 66, 67, 69, 70, 72, 73, 76]
General Practitioner reports 1 [9]
National reports/ statistics 5 [13, 24, 26, 70, 77]
Personal communication 1 [60]
Surveillance data 3 [26, 48, 70]
World Health Organization (WHO) including the influenza

surveillance system, FluNet
11 [8, 11, 36, 37, 41, 48, 49, 51, 71, 74, 78]

None 14 [7, 3 5, 40, 47, 50, 52, 54, 56, 57, 65]
Unclear [30, 31, 68, 75]

Table 5
Population data classification.

Population Data

Source Records

Census 22 [1, 3, 4, 7, 15, 16, 17, 18, 19, 20, 21, 23,
24, 32, 40, 42, 43, 51, 60, 69, 70, 73]

Center for International Earth
Science Information

1 [33]

CIA World Factbook 2 [37, 46]
Eurostat 3 [1, 57, 58]
Existing literature 16 [10, 13, 15, 23, 24, 32, 45, 48, 49, 57, 59,

60, 69, 70, 73, 74]
International population

Database
1 [46]

Landscan 1 [24]
National Geographic

Information Services
1 [9]

National Statistics 4 [21, 57, 59, 70]
Organisation datasets 3 [21, 51, 59]
Polymod 1 [2]
Population database for specific

country
5 [34, 36, 46, 49, 51]

Socioeconomic Data and
Applications Center
(SEDAC)

2 [6, 72]

Surveys 2 [21, 32]
United Nations database/ stats 3 [2, 42, 44]
World Bank population

estimates
2 [8, 49]

World Gazetteer 1 [42]
None 36 [5, 11, 12, 14, 22, 25, 26, 27, 28, 29, 35,

38, 39, 41, 47, 50, 52, 53, 54, 55, 56, 61,
62, 63, 64, 65, 66, 71, 75, 76, 77, 78]

Unclear [30, 31, 67, 68]

Table 6
Travel data classification.

Travel Data

Source Records

Airport/carrier-specific statistics/
surveys

7 [1, 13, 26, 37, 39, 40, 67]

Census 5 [21, 32, 40, 70, 73]
Data In. Information out. (DIIO) 1 [42]
Eurostat 4 [1, 57, 58, 64]
Existing literature 17 [2, 10, 15, 27, 28, 29, 32, 33, 34, 38,

45, 53, 62, 67, 70, 73, 76]
IATA (International Air Transport

Association)
16 [4, 5, 6, 8, 12, 16, 17, 18, 19, 20, 33,

34, 37, 41, 47, 72]
International Civil Aviation

Organisation
2 [25, 67]

National Statistics/surveys 21 [5, 13, 14, 15, 21, 22, 24, 32, 34, 39,
43, 44, 48, 50, 62, 63, 64, 67, 70,
71, 77]

OAG 15 [6, 7, 11, 12, 23, 33, 34, 41, 44, 49,
54, 55, 56, 67, 72]

University of Manitoba Transport
Information Group

1 [3]

World Tourism Organisation 2 [74, 75]
None 16 [9, 35, 36, 46, 51, 52, 59, 60, 61, 65,

66, 69, 78]
Unclear [30, 31, 68]

Table 7
Validation data classification.

Validation Data

Validation Method Data Sources and Records

Use of independent
data source

6 H1N1pdm data= 1 [70]
Other influenza data= 1 [13]
WHO data= 5 [12, 13, 19, 53, 67]

Data fit 14 CDC data= 1 [43]
H1N1pdm data= 4 [1, 4, 42, 57]
Other influenza data= 7 [5, 21, 26, 36, 45,

69, 73]
WHO data= 2 [20, 74]

Model-data
comparison

3 Existing literature= 2 [23, 48]
WHO data= 1 [51]

Model-model
comparison

3 [10], [49], [58]

None 52 [2, 3, 7, 8, 9, 11, 15, 16, 17, 22, 25, 27, 28, 29, 30, 33,
35, 37, 38, 39, 40, 44, 46, 47, 50, 52, 54, 55, 56, 59, 60,
61, 62, 63, 64, 65, 66, 71, 72, 75, 78]

Future predictions [6, 14, 24, 32, 34, 41]
Unclear [18, 31, 68, 76, 77]
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records have taken input values from a dataset and checked the model
outputs against this dataset. This clarifies if a model is giving a sensible
result, helping to understand the specific setting under consideration,
however it has not been tested to see if it is applicable to other disease
outbreaks. Three models are validated through comparison with data,
however such comparison is either not with an independent dataset or
is comparing only a single indicator, such as an R0 value, which gives a
qualitative comparison. Whilst this provides some level of confidence in
model accuracy, it is not as rigorous as validating against an alternative
dataset. Three records report comparing model output with that of a
different model. In this latter case, confidence in predictions may be
increased if models qualitatively agree.

4. Discussion

We have identified records which contain models for the global
spread of person to person infectious diseases. We have grouped the
records based on the modelling method used and have extracted the
types of data used both to parametrise and validate the models. Our aim
was to gain an insight into the breadth of modelling techniques and
what data is accessible. However, we have considered some key prin-
ciples to be of importance when creating mathematical models: pri-
marily that, when appropriate, data is available to parametrise and
validate models; also that all data sources are clearly referenced to aid
both transparency and reproducibility.

Some models are intentionally theoretical, looking to develop new
ideas or present a new understanding of a fundamental mechanism of
disease spread where the conclusions are, perhaps, more about appro-
priate mathematical approaches. This is certainly a valuable insight, but
not what we are focussing on in this review as there is usually less focus
on parameterisation and validation. For predictive models, we consider
the ideal situation to be where the model may be parameterised by
existing datasets, followed by being validated against an independent
source of data. In some instances records are not clear about where data
are from, for instance by not clearly giving references. This makes it
difficult for anyone to reproduce or check the work or to subsequently
use such data resources in their own work. So whilst models do use data
for parameterisation and validation, this should be openly reported for
model transparency.

We found 6 records, [12, 13, 19, 53, 67, 70], which were para-
meterized by existing data and validated by an independent dataset.
Record [13] is a statistical model whereas the other five all under our
population-wide model category, so validation is possible for different
modelling approaches. Yet not all articles perform model validation.
This may be because it can be difficult to find a suitable separate dataset
for pandemics (or large epidemics) as they do not happen often. Also
records and outbreak recording systems may have changed so much
over time that those datasets which do exist may not be appropriate for
comparison.

Most models in this review are for influenza. This may be a result of
pandemic influenza being a relatively likely emerging infection, with a
recent occurrence in 2009 and it is high on most countries’ national
planning assessments (World Health Organization, 2011). It also has a
well understood epidemiology and clear evidence of historical global
spread. There have been 4 major outbreaks in recent history (1918,
1957, 1968 and 2009) (Monto and Sellwood, 2013), hence it is a dis-
ease where it is possible to get separate datasets for parameterisation
and validation. However, as these outbreaks occur roughly once a
generation, socio-cultural changes (such as changes in contact pat-
terns), advances in medicine, and different surveillance mechanisms
can make comparison difficult.

For parameterisation of models, the records, on the whole, use
epidemiological and population datasets that are publicly available or
at least verifiable. However, two often cited sources of travel data were
IATA and OAG, both providing air travel data which can only be used
under a commercial license. As access to such data is restricted, it can

be difficult for researchers to critically appraise models which use data
under commercial licenses, discussed further in Meslé et al. (2017). As
travel patterns change over time, updated dataset access will be re-
quired to ensure models are parametrised to represent an up to date
real-world situation. In the event of a disease outbreak this may delay
the process of obtaining predictions. However, a benefit of using
commercial data is that there are often different data format options
available which customers can choose from. This may make the process
of model development easier. As such data are updated over time then,
provided the updated dataset is purchased, a model may remain in-
formative for a longer period of time.

We appreciate the challenge of modelling emerging infections given
the lack of data for both model parameterisation and validation and
inherent complexity of the approaches used. However, researchers
should attempt more robust validation, or justify explicitly why it was
not possible. The articles reviewed indicate that appropriate models
have been developed which can account for epidemiological complexity
and population structures. However, the complexity of the models often
leads to challenges in independent reproducibility of results by other
modelling groups or thorough quality assessment prior to use to advise
government. Simply sharing code/software or traditional peer review
may not always be sufficient. For example, the UK civil service has
adopted guidance on producing quality analysis to support quality as-
surance and governance of modelling advice: The Aqua Book (UK
Government). This is a burden of effort on modelling groups, and we do
not suggest this approach completely. That said, documenting as-
sumptions on data and methods explicitly in tandem with the code and
the input data will aid model transparency and aid future research. If
data or models are not publicly available (or are proprietary) then re-
sults are not easily reproducible by other groups and so may not be
taken seriously and achieve the impact the work deserves.
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