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    Introduction 
 The fi nal topology of a polytopic membrane protein is deter-

mined by a complex interplay ( Bowie, 2005 ;  Mackenzie, 2006 ; 

 von Heijne, 2006 ) between the topogenic sequences of the pro-

tein, the membrane insertion machinery, and the properties of 

the lipid bilayer ( Dowhan et al., 2004 ). How the sum of these 

factors determines fi nal topology of individual membrane pro-

teins is not completely understood. This paper focuses on the 

role of lipid – protein interactions as one determinant of topolog-

ical organization of the polytopic membrane protein lactose 

permease (LacY) of  Escherichia coli , which is a paradigm for 

membrane transport proteins throughout nature. 

 The orientation of transmembrane domains (TMs) of bac-

terial proteins is largely determined by charged residues in ex-

tramembrane domains fl anking TMs and can in most cases be 

predicted by the  “ positive inside rule ”  ( von Heijne, 1989 ), based 

on the fact that cytoplasmic domains relative to periplasmic 

domains are fourfold enriched in positively charged residues. 

In eukaryotic cells, orientation is more dependent on an equal 

but opposite contribution of positive and negative residues ( Zhang 

et al., 1995 ). The positive inside rule is not absolute. Cytoplas-

mic domains with a net negative charge are found ( Allard and 

Bertrand, 1992 ;  Pi et al., 2002 ). The positive inside rule can be 

overridden when negatively charged residues are present in high 

numbers ( Nilsson and von Heijne, 1990 ), fl ank a marginally 

hydrophobic TM ( Delgado-Partin and Dalbey, 1998 ), or lie within 

a window of six residues from the end of a highly hydrophobic 

TM ( Rutz et al., 1999 ). However, the molecular mechanism 

underlining the positive inside rule and the apparent dominance 

of positively over negatively charged residues is not understood. 

 Large protein segments ( Kida et al., 2007 ;  Ismail et al., 

2008 ) may adopt an initial topology for the N-terminal TM ac-

cording to the positive inside rule by direct charge interactions 

between the translocon and the protein ( Goder and Spiess, 2003 ; 

T
he molecular details of how lipids infl uence fi nal to-

pological organization of membrane proteins are 

not well understood. Here, we present evidence that 

fi nal topology is infl uenced by lipid – protein interactions 

most likely outside of the translocon. The N-terminal half 

of  Escherichia coli  lactose permease (LacY) is inverted 

with respect to the C-terminal half and the membrane 

bilayer when assembled in mutants lacking phosphati-

dylethanolamine and containing only negatively charged 

phospholipids. We demonstrate that inversion is depen-

dent on interactions between the net charge of the cyto-

plasmic surface of the N-terminal bundle and the negative 

charge density of the membrane bilayer surface. A trans-

membrane domain, acting as a molecular hinge between 

the two halves of the protein, must also exit from the mem-

brane for inversion to occur. Phosphatidylethanolamine 
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in favor of the cytoplasmic retention potential of positive 
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ical determinants.
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topogenic signals is a powerful approach to determine the coupled 

infl uence of membrane lipid environment and protein sequence 

on membrane protein topology. A plasmid copy of  OP tac  - lacY  

(isopropyl- � - d -thiogalactoside [IPTG] controlled expression of 

LacY) and a chromosomal copy of  OP tet  - pssA  (anhydrotetra-

cycline [aTc] controlled expression of phosphatidylserine synthase 

[initiates PE synthesis]) were combined in the same  lacY  null cell 

(strain AT2033). As previously demonstrated using arabinose to 

regulate  OP araB  - pssA  expression ( Bogdanov et al., 2002 ), strain 

AT2033 grown without aTc had  <  3% PE with the remainder be-

ing cardiolipin and phosphatidylglycerol and had wild-type phos-

pholipid composition after 3 h growth with aTc (Fig. S1, available 

at http://www.jcb.org/cgi/content/full/jcb.200803097/DC1). 

To determine the effect of a change in membrane lipid composi-

tion on topology of LacY, cells were grown in the presence of 

IPTG without aTc to allow membrane assembly of LacY in the 

absence of PE. Then cells were switched to growth without IPTG 

in the presence of aTc to permit biosynthesis of PE in the absence 

of newly synthesized LacY. The orientation of extramembrane do-

mains of LacY relative to the membrane bilayer were determined 

before ( � PE) and after (+PE) growth in the presence of aTc by the 

accessibility of engineered cysteine residues to a membrane im-

permeable sulfhydryl reagent (3-( N -maleimidylpropionyl) bi o-

cytin [MPB]) using the substituted cysteine accessibility method 

applied to TMs (SCAM) as described in Materials and methods. 

To identify the molecular basis for lipid-sensitive topogenesis 

of specifi c protein domains, plasmid copies of LacY with altered 

amino acid sequences were expressed in  � PE strain AL95 ( lacY  

and  pssA  null) and +PE strain AL95/pDD72 (carries plasmid copy 

of  pssA ) followed by SCAM analysis. 

 Characterization of LacY expression 
and function 
 LacY expressed and radiolabeled during growth in the presence of 

IPTG was only slightly reduced (Fig. S2, lane 1 vs. lane 2; avail-

able at http://www.jcb.org/cgi/content/full/jcb.200803097/DC1) 

during a 3-h chase of radiolabel in the absence of IPTG and 

the presence of aTc to induce PE synthesis. There was no de-

tectible radiolabeled LacY expressed during 3 h of growth in 

the presence of aTc but without IPTG (lane 3) while LacY was 

produced when both aTc and IPTG were present during growth 

(lane 4). Therefore, during PE induction, as previously shown 

using the  araB  promoter to regulate PE levels ( Bogdanov et al., 

2002 ), LacY synthesized in the absence of PE was stable and no 

new LacY was synthesized in the absence of IPTG. 

 Previous studies showed loss of energy dependent uphill 

transport of LacY substrates in  � PE cells, which was regained 

upon induction of PE synthesis using the OP  araB  - pssA  system 

( Bogdanov et al., 2002 ); energy independent downhill transport 

was independent of lipid composition. Consistent with previous 

results, LacY expressed in  � PE cells (AT2033, plus IPTG and 

minus aTc) displayed downhill transport of lactose but did not 

carry out uphill accumulation of the nonhydrolyzable substrate 

analogue methyl- � - d -galactopyranoside (TMG) (Fig. S3, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200803097/DC1). 

However, after recovery of PE levels (plus aTc) in the absence 

of IPTG (see previous paragraph), uphill transport of TMG was 

 Goder et al., 2004 ). However, irrespective of the number of TMs 

accommodated by the translocon pore ( Hamman et al., 1997 ; 

 Van den Berg et al., 2004 ), fi nal protein topology and organiza-

tion after exit from the translocon must follow thermodynami-

cally driven routes involving direct interaction of the TMs and 

associated extramembrane domains within the protein and with 

the lipid bilayer ( Hessa et al., 2005 ), which may further decode 

the topogenic signals within nascent polypeptides. 

 Although protein sequence appears to be the primary de-

terminant of fi nal organization, the topology of several twelve-

TM spanning secondary transporters of  E. coli  is dramatically 

infl uenced by the membrane lipid composition. The N-terminal 

six-TM helical bundle of LacY ( Bogdanov et al., 2002 ) (see 

Fig. 2 A vs. Fig. 1 A) and the N-terminal two-TM hairpins of 

phenylalanine permease (PheP) ( Zhang et al., 2003 ) and  � -amino-

butyrate permease (GabP) ( Zhang et al., 2005 ) are inverted with 

respect to the membrane bilayer when assembled in membranes 

lacking the major lipid phosphatidylethanolamine (PE). Intro-

duction of PE post-assembly of these proteins results in complete 

reversal of the aberrant topological organization for PheP ( Zhang 

et al., 2003 ) and at least the cytoplasmic domain C6 of LacY 

( Bogdanov et al., 2002 ). The above permeases maintain a com-

pact folded state in the absence of PE as indicated by retention 

of energy independent downhill transport function and resistance 

to degradation ( Bogdanov and Dowhan, 1995 ;  Bogdanov et al., 

2002 ;  Zhang et al., 2003 ,  2005 ). 

 The requirement for zwitterionic PE in supporting native to-

pology of the permeases appears to be as a diluent of the high neg-

ative surface charge due to the exclusive content of anionic lipids, 

mainly phosphatidylglycerol and cardiolipin, in  � PE mutants. 

When  E. coli  was engineered to synthesize the neutral lipid 

  �  -monoglucosyl diacylglycerol ( Xie et al., 2006 ) in place of PE, 

native topology of LacY was observed. Similarly, reconstitution of 

LacY into proteoliposomes containing PE or phosphatidylcholine 

along with anionic phospholipids, but not with anionic phospho-

lipids alone, resulted in wild-type topology ( Wang et al., 2002 ). 

 The above results strongly indicate that the collective charge 

nature of the bilayer surface infl uences fi nal membrane protein 

topology. However, the structural features of LacY that make it 

sensitive to lipid environment are not known. We now report the 

previously unknown disposition of TMVII in  � PE cells and the 

complete topology of LacY after post-assembly synthesis of PE. 

By varying the positive and negative charges in the normally cyto-

plasmic domains of LacY and determining topology as a func-

tion of membrane lipid composition, we determined the topogenic 

signals within LacY that require the presence of PE to establish 

native topology. Our novel results explain why positive residues 

are more potent topological determinants than negative residues 

under physiological conditions and establish lipid – protein net 

charge balance as one of several physiologically important deter-

minants of fi nal protein topology. 

 Results 
 Experimental rationale 
 The ability to regulate membrane lipid composition coupled with 

determination of orientation of proteins with changes in putative 
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the cytoplasm after post-assembly synthesis of PE ( Fig. 1 A ), 

but the orientation of the remaining TMs was not established. 

Cysteine replacements in otherwise cysteine-less LacY were ex-

pressed in +PE and  � PE cells, and reactivity with MPB in intact 

cells (periplasmic exposure) or only after cell disruption by 

sonication (cytoplasmic exposure) was used to establish TM 

orientation ( Bogdanov et al., 2002 ,  2005 ). 

 Consistent with previous results ( Bogdanov et al., 2002 ) 

( Fig. 1 B ,  � PE), cysteines residing within normally (+PE) cyto-

plasmic domains (NT-C6), when analyzed in AT2033 grown in 

restored as confi rmed by inhibition of accumulation of TMG by 

the protonophore carbonyl cyanide  p -trifl uoromethoxyphenyl-

hydrazone. LacY performed downhill transport of lactose in the 

absence of PE and after restoration of PE levels as shown in the 

inset to Fig. S3. 

 Lipid triggered transbilayer reorganization 
of LacY 
 Previous results established that cytoplasmic domain C6, initially 

misoriented to face the periplasm in  � PE cells, reorients to face 

 Figure 1.    PE-induced post-insertion topological reorganization of LacY.  (A) Change in topology of LacY assembled in  � PE cells (left panel;  Bogdanov 
et al., 2002 ) after post-assembly synthesis of PE (right panel; this paper) in strain AT2033. Rectangles defi ne the TMs ( Abramson et al., 2003 ) oriented with 
the cytoplasm above the fi gure. TMs (roman numerals), extramembrane domains (P for periplasmic and C for cytoplasmic as oriented in +PE cells), N ter-
minus (NT), and C terminus (CT) are indicated. The locations of negatively charged and positively charged residues involved in salt bridges between TMs 
are indicated. The locations and names of amino acids substituted by cysteine and used for SCAM analysis are indicated near circles (extramembrane) or 
squares (within TMs). TMVII is indicated in a periplasmic location (left) and a membrane-inserted location (right). (B – D) AT2033 cells without ( � ) or with (+) 
sonication were treated with MPB as described in Materials and methods. Labeling was performed on samples either after initial assembly of LacY in  � PE 
cells ( � PE, with IPTG induction but before addition of aTc) or after removal of IPTG and induction of PE synthesis (+PE) for 3 h (maximum PE level) during 
logarithmic growth (OD 600  increased from 0.4 to 1 – 1.4). Western blotting was used to detect biotinylation of diagnostic cysteines that were accessible to 
MPB; domain and/or substitution positions are indicated. Images are horizontal strips of the LacY (33 kD) position. See Materials and methods for details 
of image acquisition. (B) MBP labeling was performed at pH 7.5 except for P3/I103C*, where labeling was done at pH 10.5. (C and D). Labeling pH is 
indicated, and the cysteine substitutions in TMII, TMVII, and TMIX were L54C, I230C, and S300C, respectively. The substitutions in P1 and C6 are those 
noted in (B), and  “  � C ”  refers to cysteine-less LacY. Sonication of the TMVII samples from  � PE and +PE cells followed by SCAM analysis at pH 10.5 gave 
the same result as shown in lanes 3 and 4 from the left in D, respectively (not depicted).   
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after alkali treatment established specifi city for cysteine label-

ing and inaccessibility of cysteines within a TM, respectively. 

Strong alkaline conditions lyse cells while treatment at pH 10.5 

does not permeabilize cells to MBP (see following paragraph 

and  Fig. 1 D ). Differential susceptibility to increased alkaline 

conditions viewed within the context of other structural features 

of a protein can be used to establish differences in the environ-

ment of a particular cysteine, which in this case suggests a pro-

gression from a solvent-exposed domain (exposed at pH 7.5) to 

an extramembrane-hindered domain (exposed at pH 10.5), to a 

mini-loop domain (exposed after NaOH treatment) as opposed 

to a true TM (not exposed by NaOH). Therefore, TMII appears 

to form a fl exible hinge between P1 and C2 to allow a differential 

response of these domains to a change in lipid composition. 

 Organization of TMVII dependent on PE 
 Previous results ( Bogdanov et al., 2002 ) did not establish the 

location of TMVII either in  � PE cells or after restoration of PE 

levels. An I230C substitution near the cytoplasmic end of 

TMVII, which is not alkylated by  N -ethyl maleimide in +PE 

membranes ( Venkatesan et al., 2000 ), was chosen as a diag-

nostic residue to assess location of TMVII. In  – PE cells I230C 

was not labeled by MPB at pH 7.0 or 7.4 even after sonication 

of cells, but was moderately labeled at pH 9.0 (unpublished 

data) and highly labeled at pH 10.5 ( Fig. 1 D ) without sonication, 

consistent with TMVII being a hindered extramembrane do-

main exposed to the periplasm in  � PE cells. Cell integrity is 

maintained at pH 10.5, as indicated by labeling of domains P1 

( � PE cells) and C6 (+PE cells) only after sonication. Cysteine-

less LacY and LacY with an intramembrane cysteine (S300C) 

were not labeled at pH 10.5. Because residue I230C of LacY 

lies close to the cytoplasmic end of TMVII in wild-type cells, its 

exposure to the exterior of the cell under elevated pH conditions 

supports a structural rearrangement that brings the N-terminal 

end of TMVII in close proximity to the periplasm in  � PE cells 

rather than being a TM. The most likely location of the TMVII 

is in the periplasm (but a mini-loop is possible) due to its low 

hydrophobicity ( Bogdanov et al., 2002 ), the presence of two 

charged residues near its C-terminal end, and external expo-

sure of its N-terminal end at pH 10.5. Restoration of normal PE 

levels resulted in protection of I230C from labeling at pH 10.5 

in whole cells, consistent with TMVII returning to its normal 

TM location after reorganization of LacY ( Fig. 1 D ). 

 Proposed molecular basis for lipid-
dependent topogenesis of LacY 
 LacY belongs to the 45-member major facilitator superfamily 

( Saier, 2003 ). Sequence alignment of LacY with its four most 

similar sugar permeases (Fig. S4, available at http://www.jcb

.org/cgi/content/full/jcb.200803097/DC1) revealed strong con-

servation of negatively and positively charged residues within 

domains C2, C4, and C6, except for C6 of raffi nose permease. 

Although the positive inside rule is strictly followed, a noteworthy 

feature of the cytoplasmic domains fl anking TMs I-VI is the high 

content of negatively charged residues when compared with the 

cytoplasmic domains of the C-terminal fi ve-TM bundle. For LacY 

(Fig. S4 and Fig. 2 A) C2 contains one, C4 contains three, and 

the absence of aTc ( <  3% PE), were labeled whether or not cells 

were disrupted, indicating periplasmic exposure. A cysteine in 

normally periplasmic domain P1, P3, or P5 was labeled only 

after cell disruption, indicating cytoplasmic exposure. 

 Next, topology of LacY initially assembled in  � PE cells 

was examined after induction of PE synthesis in the absence of 

new LacY synthesis. A cysteine in domains C2, C4, or C6 ini-

tially exposed to the periplasm in  � PE cells was only biotinyl-

ated after cell disruption ( Fig. 1 B , +PE), consistent with a 

return to normal topology. However, NT (L14C) remained in its 

abnormal periplasmic orientation. A cysteine in domain P5 was 

accessible to MPB either with or without sonication. However, 

the labeling of domain P1 was observed only after cell disrup-

tion, consistent with retention of a cytoplasmic location. Lack of 

a mixed topology and retention of the topology observed in 

 � PE cells for the extramembrane domains fl anking TMI after 

restoration of PE content further support fl ipping of  “ old ”  LacY. 

Domain P7 was biotinylated without sonication in  � PE and 

+PE cells. The cysteine residue in domain P3 (I103C), which in 

 � PE cells was accessible only after sonication, was not acces-

sible to MPB at pH 7.5 either with or without sonication after 

growth in aTc; Western blotting analysis showed a full comple-

ment of LacY (unpublished data). Lack of biotinylation of a 

single cysteine residue can be due to its location within a TM or 

proximal environmental effects, which affect the thiol pKa or 

sterically restrict access ( Bogdanov et al., 2005 ). Increasing the 

solution pH should favor alkylation of an extramembrane cys-

teine as well as disrupt local restrictive secondary structure while 

truly membrane imbedded cysteines should not react. Indeed, 

P3 cysteine labeling proportionately increased with increasing 

pH with full labeling at pH 10.5 without sonication ( Fig. 1 B,  

I103C*). Controls for retention of membrane impermeability 

to MPB at pH 10.5 are presented in  Fig. 1 D . 

 Organization of TMII in cells with restored 
PE levels 
 If NT and P1 remain periplasmic and cytoplasmic, respectively, 

while C2 adopts the correct cytoplasmic location after restora-

tion of PE levels ( Fig. 1 A ), then a large structural rearrange-

ment must occur in TMII. The most probable arrangement in 

this case would be a  “ U ” -shaped membrane-dipping mini-loop 

( Lasso et al., 2006 ). Under strongly alkaline conditions (pH  > 11), 

biological membranes are converted to open membrane sheets 

( Ito and Akiyama, 1991 ). Peripheral membrane proteins are re-

leased in a soluble form and presumably so would domains 

such as mini-loops that do not span the membrane bilayer. TMs 

of integral membrane proteins remain embedded in the lipid 

bilayer. This empirical method has been extensively used to dif-

ferentiate between integral and peripheral membrane proteins 

and is the basis for the following approach to probe the location 

of unreactive cysteine residues. 

 L54C (TMII) in  � PE membranes was not labeled after 

exposure to NaOH, as would be expected for a cysteine within 

a TM ( Fig. 1 C ,  � PE). After induction of PE synthesis, L54C 

was not labeled at pH 10.5 even after sonication, but was readily 

labeled after NaOH treatment ( Fig. 1 C , +PE). No labeling of 

cysteine-less ( � C) LacY or LacY containing S300C in TMIX 



929POSITIVE INSIDE RULE AND PHOSPHATIDYLETHANOLAMINE  • Bogdanov et al. 

C6 contains two negatively charge residues. The abundance of 

these negatively charged residues led us to postulate a critical 

role for these residues in lipid-dependent topogenesis of the 

N-terminal bundle of LacY. However, why are these residues 

only topologically active in  � PE cells? If interactions in the 

membrane-aqueous interfacial region between charged extra-

membrane domains and the collective charge of the membrane 

surface are a determinant of TM orientation, then alterations in 

the charge nature of either the lipid headgroups, as already demon-

strated ( Bogdanov et al., 2002 ;  Xie et al., 2006 ), or the protein 

domains, should affect fi nal protein topology. 

 Testing the lipid – protein charge 
balance hypothesis 
 To investigate whether the presence of mixed proximal topo-

genic signals, i.e., both negative and positive residues, is the ba-

sis for lipid-dependent topogenesis, charged residues within the 

cytoplasmic domains of the N-terminal bundle were altered and 

topology was studied as a function of lipid composition. Acidic 

residues within the cytoplasmic face of the N-terminal bundle 

were converted to their corresponding neutral amides. Deriva-

tives with D68N (C2), E126Q (C4), or E215Q (C6) and contain-

ing a H205C in C6 for SCAM analysis were expressed in  � PE 

cells (strain AL95). The elimination of each negatively charged 

residue increased the net charge of each respective cytoplasmic 

domain and the cytoplasmic face of LacY by +1 ( Fig. 2 A ). H205C 

in  “ wild-type ”  LacY, which was biotinylated (cytoplasmic) in 

+PE cells (AL95/pDD72) only after sonication ( Fig. 2 B , lanes 

3 and 4), was labeled (periplasmic) whether or not  � PE cells 

(AL95) were sonicated (lanes 5 and 6). H205C in each replace-

ment mutant was also cytoplasmic in +PE cells (only the D68N 

derivative is shown in Fig. 2 A, lanes 1 and 2), but now remained 

cytoplasmic when expressed in  � PE cells ( Fig. 2 C ), indicating 

a wild-type topology for domain C6 in both types of cells. In ad-

dition, the above replacement mutants containing G13C (NT) 

and H205C (C6) replacements, which fl ank the N-terminal bun-

dle, were also only biotinylated after cell disruption ( Fig. 2 D ), 

consistent with retention of whole bundle orientation. Because 

the H205C substitution is cytoplasmic, it did not interfere with 

determination of a possible periplasmic exposure of G13C. 

Therefore, elimination of any one of the negative residues on the 

cytoplasmic surface of the N-terminal bundle, which increases 

the net charge by +1, prevented the misorientation of the whole 

bundle in  � PE cells in a position-independent manner. Inversion 

was also prevented in  � PE cells by adding a single positive 

charge (L72K) to the N-terminal bundle ( Fig. 2 E , lanes 1 and 2). 

Finally, eliminating of both a negative (D68N) and positive (K69N) 

charge from C2, thus not changing net charge, allowed inversion 

in  � PE cells ( Fig. 2 E , lanes 3 and 4). 

 Inversion of topology in +PE cells 
 If the net charge of these domains coupled with the presence of 

negative residues is a determinant of TM orientation, then in-

creasing the negative charge density should result in inversion 

of topology in +PE cells (strain AL95/pDD72). To test this 

hypothesis, a series of mutants carrying diagnostic H205C in 

C6 were constructed in which positive charges were replaced 

 Figure 2.    Effect of net positive charge of the N-terminal bundle cytoplas-
mic domains on TM orientation in  � PE cells.  (A) TM orientation of LacY in 
+PE cells ( Bogdanov et al., 2002 ) (see  Fig. 1 A  for TM orientation in  � PE 
cells and other details). Locations of positively (red) and negatively (green) 
charged residues are indicated (see Fig. S4 for exact locations). Name 
and number of residues changed in B – E are indicated, as well as the net 
charge of each extramembrane domain. LacY contained either a single 
cysteine replacement (B, C, and E) at H205 (C6) or an additional cysteine 
replacement (D) at G13 (NT). SCAM analysis with (+) or without ( � ) soni-
cation (Son) is shown for LacY with a change of net charge from +2 ( “ wild 
type ” ) in each cytoplasmic domain C2, C4, or C6 to +3 for domain C2 
(D68N) or C4 (E126Q) or C4 (E139Q) or C6 (E215Q). The combination 
of D68N and K73N resulted in no change in net charge for C2, and addi-
tion of L72K but retaining D68 increased C2 charge by +1. The presence 
(strain AL95/pDD72) or absence of PE (strain AL95) is indicated in B, and 
all derivatives in C – E were expressed in  � PE cells (AL95). Images are 
horizontal strips of the LacY (33 kD) position. See Materials and methods 
for details of image acquisition.   
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response of the flanking domains to the lipid environment 

( Bogdanov et al., 2002 ). To test this hypothesis, we increased 

the overall hydrophobicity of TMVII by introducing D240I in a 

LacY with H205C in domain C6. When expressed in +PE (strain 

AL95/pDD72) or  � PE cells (strain AL95), this cysteine was 

biotinylated only after sonication of cells, consistent with lack 

of inversion ( Fig. 4 B , lanes 1 – 4). The same result in  � PE cells 

(lanes 9 and 10) was obtained with a LacY derivative in which 

G13C (NT) and H205C (C6) (both facing the cytoplasm in +PE 

cells) fl anked the N-terminal helical bundle, consistent with 

lack of misorientation of the whole bundle. In addition, the 

diagnostic I230C substitution in TMVII, which was shown in 

 Fig. 1 D  to be membrane embedded in +PE cells and exposed to 

the periplasm in  � PE cells, when combined with a D240I sub-

stitution was not biotinylated at pH 10.5 either with or without 

sonication in +PE or  � PE cells (lanes 5 – 8). Furthermore, domain 

C6 (H205C) of LacY (D240I) remained accessible from only 

the cytoplasm after post-assembly synthesis of PE in  � PE cells 

(AT2033 plus aTc; unpublished data). 

 A D240I substitution in TMVII and an H205C substitu-

tion in C6 were introduced into the LacY  � 2/ � 2/ � 2 mutant to 

determine whether exit of TMVII was also required for inver-

sion of topology in +PE cells. This derivative was biotinylated 

with and without sonication (periplasmic and inverted) when 

TMVII did not have a D240I substitution ( Fig. 5 , top right half 

panel). However, the D240I substitution in the  � 2/ � 2/ � 2 mu-

tant prevented periplasmic exposure and inversion of C6 (top 

left half panel). An I230C substitution in TMVII of wild-type 

LacY (+2/+2/+2) was inaccessible to MPB with and without 

sonication at pH 10.5 (bottom left half panel), consistent with it 

by negative charges ( Fig. 3 A ). A change in net charge ( Fig. 3 B  

and Fig. S4) from +2 to  � 2 for C2 separately (K69E and K74E, 

lanes 3 and 4) or in combination with a +2 to  � 2 change in C6 

(K211E and R218E, lanes 5 and 6) had no effect on orientation 

of C6. Similarly, combining the changes in C2 and C6 with a 

change in C4 from +2 to 0 (K131E, lanes 7 and 8) had little ef-

fect on orientation, although a small level of exposure of H205C 

in cells before sonication (lane 7) was observed, suggesting pos-

sible mixed topology. Also, making domain C4  � 2 alone (K131E 

and R142E) had no effect (unpublished data). However, com-

bining the changes in C2 and C6 with a R142E substitution in 

domain C4 (lanes 9 and 10), making a +2 to  � 2 change in each 

of the three cytoplasmic domains, resulted in a periplasmic 

exposure of H205C. Finally, a G13C (NT) substitution (nor-

mally cytoplasmic) as the only cysteine in the  � 2/ � 2/ � 2 de-

rivative was periplasmic in +PE cells (lanes 11 and 12). Because 

G13 and H205 fl ank the N-terminal helical bundle, the results 

are consistent with complete inversion of the bundle in the 

 � 2/ � 2/ � 2 derivative. 

 TMVII as a molecular hinge between two 
halves of LacY 
 Common to many sugar permeases (Fig. S4) is the very hydro-

philic TMVII, which is not predicted by topology algorithms 

as a TM, but has been verifi ed in LacY to span the membrane 

( Wolin and Kaback, 1999 ). TMVII contains D237 and D240, 

which are in salt bridges ( Fig. 4 A ) with K358 (TMXI) and 

K319 (TMX), respectively ( Abramson et al., 2004 ). We previously 

postulated that the low hydrophobicity of TMVII is necessary 

for it to act as a reversible molecular hinge to allow independent 

 Figure 3.    Effect of net negative charge of the 
N-terminal bundle cytoplasmic domains on TM 
orientation in +PE cells.  (A) TM orientation of 
LacY in +PE cells (see  Fig. 1 A  for other de-
tails). Name and number of residues changed 
are indicated, as well as the net charge and 
change in net charge of each domain C2, 
C4, or C6. (B) LacY derivatives contained a 
single diagnostic cysteine at H205 (C6) (lanes 
1 – 10) or G13 (NT) (lanes 11 and 12) were 
expressed in +PE cells (strain AL95/pDD72). 
SCAM analysis with (+) or without ( � ) soni-
cation (Son) is shown for LacY with a change 
in net charge from +2 (lanes 1 and 2) to  � 2 
for domain C2 either separately (K69E and 
K74E, lanes 3 and 4) or in combination with 
a change in net charge of domain C6 from 
+2 to  � 2 (K211E and R218E, lanes 5 and 6). 
The changes in domains C2 and C6 were 
combined with a change in domain C4 from 
+2 to 0 (K131E, lanes 7 and 8) or from +2 to 
 � 2 (K131E and R142E lanes 9 – 12). Images 
are horizontal strips of the LacY (33 kD) posi-
tion. See Materials and methods for details of 
image acquisition.   
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outside the translocon. Our results support the following conclu-

sions: cooperative and cumulative interactions between charged 

residues of the cytoplasmic surface of the N-terminal bundle and 

the collective charge of the membrane lipid headgroups is a de-

terminant of TM orientation; fi nal topological decisions may be 

delayed to after exit from the translocon and are determined by 

short- and long-range interactions within the protein that balance 

these charge interactions with necessary interactions between TMs 

and of TMs with the membrane bilayer; the translocation poten-

tial of negatively charged amino acids working in opposition to 

the positive inside rule is largely dampened by the presence of 

PE, thus explaining the dominance of positive residues as reten-

tion signals; TM orientation maybe initially infl uenced by the 

translocation machinery, but fi nal topology is determined outside 

the translocon by the above interactions. 

 The N-terminal six-TM bundle appears to behave as a single 

unit in response to changes in protein topogenic signals, hydro-

phobicity of TMVII, and membrane lipid composition, consis-

tent with the independent folding of the two halves of LacY 

( Nagamori et al., 2003 ). Co-translational orientation of the 

N-terminal bundle as a whole was based on exposure of the fl ank-

ing NT and C6 domains. However, the more demanding post-

assembly reorientation indicated that NT-TMI would be the 

most likely not to properly orient during cotranslational insertion. 

Because NT properly oriented, we concluded the whole bundle 

properly oriented cotranslationally. Even if some of the middle 

TMs did not properly orient, this would not compromise the fi -

nal conclusions with respect to the effects of charged residues on 

topology. Therefore, we can treat the N-terminal bundle mostly 

as a single TM unit tethered to a molecular hinge (TMVII), the 

properties of which also govern upstream topology. 

being a membrane embedded in +PE cells ( Fig. 1 D ). However, 

I230C in the  � 2/ � 2/ � 2 derivative was accessible with and 

without sonication at pH 10.5, consistent with periplasmic ex-

posure of TMVII as previously shown for wild-type LacY in 

 � PE cells ( Fig. 1 D ). Therefore, inversion of the N-terminal 

helical bundle of the  � 2/ � 2/ � 2 derivative in +PE cells 

and wild-type LacY in  � PE cells displays the same dependence 

on a fl exible molecular hinge (TMVII), linking it to the lipid-

insensitive C-terminal bundle. 

 Discussion 
 In the present study, we analyzed the molecular determinants that 

specify retention or translocation of extramembrane domains 

connecting TMs of the polytopic membrane protein LacY in the 

context of different lipid compositions, thereby signifi cantly 

advancing our understanding of the rules that govern membrane 

protein topogenesis. We established that large topological reorga-

nization involving six TMs (II – VII) of a protein is possible post-

assembly. Therefore, topological organization, once established, 

is not static but is dynamic in response to changes in lipid envi-

ronment. This result strongly implies that post-translational TM 

orientation dependent on the lipid environment can be established 

 Figure 4.    Effect of increasing hydrophobicity of TMVII.  (A) See  Fig. 1 A  
for additional details. Positions of cysteine replacements are indicated 
by black and white rectangles. The  “ X ”  in TMVII indicates the position of 
the D240I substitution. (B) LacY with a D240I substitution in TMVII and a 
cysteine substitution in either C6 (H205C) or TMVII (I230C) or NT (G13C) 
and C6 (H205C) was expressed in +PE (+, strain AL95/pDD72) or  � PE 
( � , strain AL95) cells. Cells were treated with MPB without ( � ) or after (+) 
sonication (Son) at either pH 7.5 ( � ) or 10.5 (+) and analyzed by SCAM. 
Additional controls are shown elsewhere as follows: accessibility of C6 
(H205C) at pH 7.5 without the D240I substitution in +PE and  � PE cells is 
shown in  Fig. 1 B ; accessibility of TMVII at pH 10.5 (I230C) without the 
D240I substitution in +PE and  � PE cells is shown in  Fig. 1 D . Images are 
horizontal strips of the LacY (33 kD) position. See Materials and methods 
for details of image acquisition.   

 Figure 5.    Effect of TMVII hydrophobicity on topology of LacY mutants in 
+PE cells.  SCAM analysis is shown for C2/C4/C6 (+2/+2/+2) or C2/
C4/C6 ( � 2/ � 2/ � 2) LacY (see  Fig. 3 B ) expressed in +PE cells (AL95/
pDD72). The domain containing the indicated diagnostic cysteine replace-
ment is shown on the left. The amino acid at position 240 was either 
aspartic acid or isoleucine (see  Fig. 4 A ), as indicated. Biotinylation was 
performed at pH 7.5 (top panel) or pH 10.5 (bottom panel). Images are 
horizontal strips of the LacY (33 kD) position. See Materials and methods 
for details of image acquisition.   
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to act as dominant translocation signals. These results suggest an 

important physiological role for PE, as well as possibly neutral 

glycolipids that substitute in the absence of PE ( Xie et al., 2006 ), 

in maintaining TM orientation by accentuating the positive inside 

rule while allowing insertion of negative residues in cytoplasmic 

domains for functional purposes without destabilizing cytoplas-

mic retention. 

 A possible explanation for the less potent translocation po-

tential of negative residues is provided by the effect of PE on the 

pKa of negatively charged amino acids in a multidrug transporter 

(LmrP) of  Lactococcus lacits  (which contains both PE and 

glycolipids) with homology to LacY ( Gbaguidi et al., 2007 ; 

 Hakizimana et al., 2008 ). When LmrP was reconstituted into lipo-

somes lacking PE, acidic amino acids exhibited the expected 

pKa values of 4 – 5. However, the presence of PE raised the pKa 

values to 6 – 7, making these residues prone to protonation. There-

fore, the pKa shift caused by PE would selectively neutralize 

negatively charged residues. 

 PE resides within both leafl ets of the membrane bilayer, so 

lipid composition alone cannot impart directionality to TM ori-

entation. However, the positive outward proton motive force 

across the cytoplasmic membrane was demonstrated to drive 

negatively charged domains outward ( Andersson and von Heijne, 

1994 ;  Cao et al., 1995 ) and counter the translocation of positively 

charged domains ( Cao and Dalbey, 1994 ). Therefore, PE ( Fig. 6 ) 

would increase the positively charged amino acid retention po-

tential of domains containing both negatively and positively 

charged residues, whereas the absence of PE would increase the 

negatively charged amino acid translocation potential, which 

may even be dominant. Introduction of PE post-assembly of LacY 

would return the effective charge properties of the N-ter minal 

bundle to normal, and the proton motive force may provide the 

driving force for fl ipping the bundle. 

 Flip-fl op of large TM bundles in vivo challenges the dogma 

that once TM orientation is established it is not subject to post-

insertional topological editing. However, the activation energy 

for a reversible orientation of LacY in response to lipid composi-

tion appears easily overcome, and the  � 11 kcal/mol of orienta-

tion driving force provided by the proton motive force ( Cao et al., 

1995 ) may be suffi cient. Changing the lipid environment would 

establish new energy minima for the two halves of LacY, which 

can be attained because of the TMVII molecular hinge. Given the 

 In contrast to the numerous and continuing reports on the 

role of extramembrane charged residues in determining TM 

topology, only one report investigated the role of lipid – protein 

charge interactions in determining topology ( van Klompenburg 

et al., 1997 ). In this study, positively charged residues were var-

ied in a chimeric bitopic membrane protein that was expressed in 

an  E. coli  mutant with normal to reduced anionic phospholipid 

content. Retention of the cytoplasmic domain was proportional 

to both the number of positively charge residues and the mem-

brane content of anionic phospholipids, thus indicating lipid –

 protein charge interaction as a determinant of topology. However, 

this observation appears to be in confl ict with the results we re-

port. Because all the cytoplasmic domains of LacY follow the 

positive inside rule, lack of PE resulting in only anionic phospho-

lipids in the membrane would be expected to stabilize native 

topology rather than cause inversion. Therefore, the role of 

lipid – protein interactions and PE in particular in determining 

fi nal topology is more complex than previously recognized. 

 We found that increasing the net positive charge within 

the negative amino acid – rich cytoplasmic face of the N-terminal 

bundle of LacY by either eliminating negatively charged resi-

dues or introducing positively charged residues in a position-

independent manner prevented inversion in  � PE cells. Alterations 

resulting in no change in net charge did not prevent inversion. 

Moreover, the effects of a change in charge on topology were 

the same whether these resulted from the lipid or the protein, i.e., 

either an increase in the net positive charge of the cytoplasmic 

protein surface or reduction of net negative charge density of the 

membrane by the presence of lipids with net zero charge resulted 

in wild-type topology. Similarly, increasing the negative charge 

of the cytoplasmic surface of the N-terminal bundle resulted in 

topological inversion in +PE cells, but a large increase in the net 

negative charge was required. Although these results might be 

expected from a general consideration of the positive inside 

rule, they uncover an unrecognized role for membrane surface 

charge properties in attenuating and enhancing the topogenic 

signals stemming from charged residues. Our results are consis-

tent with PE reducing the effectiveness of negative residues in 

destabilizing the cytoplasmic retention potential of positive res-

idues, which explains why basic amino acids are generally domi-

nant retention signals over acidic amino acids as translocation 

signals. However, in the absence of PE, negative residues appear 

 Figure 6.    PE and the positive inside rule.  In the left 
panel a cytoplasmic domain is shown containing a 
mixture of negative and positive amino acids. PE sup-
presses or neutralizes the presence of negative res-
idues (yellow circles), which increases the effective 
positive charge potential, thus favoring cytoplasmic 
retention of the domain. In the absence of PE (right 
panel) negative residues (green circles) exert their 
full potential, resulting in translocation of the domain 
with a lower effective net positive charge. The pro-
ton motive force (arrow) positive outward determines 
domain directional movement depending on the do-
main effective net charge as infl uenced by the lipid 
environment.   
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tively charged residues. The C2 domain, which is misoriented 

in PheP and GabP assembled in  � PE cells ( Zhang et al., 2003 , 

 2005 ), has a net negative charge, as do closely related amino 

acid permeases (Fig. S5, available at http://www.jcb.org/cgi/

content/full/jcb.200803097/DC1). TMIII appears to be the hinge 

region that allows the N-terminal hairpins of PheP and GabP to 

misorient in  � PE cells. TMIII in these permeases is highly en-

riched in interface-prone aromatic residues, which might allow 

TMIII to assume a mini-loop structure in order to act as a hinge. 

Therefore, our results would predict that permeases with the 

above types of cytoplasmic domains and putative TM molecular 

hinges would also require PE to establish native topology. 

Preliminary results show that decreasing the net negative charge 

of the extramembrane domains fl anking the N-terminal hairpin 

of PheP forces 60% of molecules to assume wild-type orienta-

tion in  � PE cells (unpublished data). 

 Changes in protein sequence resulting in a change from an 

even to odd number of TMs generally results in inversion of 

protein topology ( Saier, 2003 ), as we report for LacY. The thirteen-

TM  Pseudomonas aeruginosa  ChrA protein is composed of two 

homologous orientationally opposed six-TM bundles that are 

separated by a hydrophobic TM (TMVII). However, the homol-

ogous two six-TM bundles of the twelve-TM  Cupriavidus 
metallidurans  ChrA are arranged in the same orientation with 

respect to each other ( Jimenez-Mejia et al., 2006 ). TMVII of 

ChrA from  P. aeruginosa  contains no charged amino acids, 

whereas the corresponding region from  C. metallidurans  con-

tains two positively charged residues and is not a TM. This 

suggests that both proteins arose from the same intragenic 

duplication of an ancestral six-TM protein followed by the in-

sertion of an intervening sequence whose hydrophobicity deter-

mined the relative orientation of the duplicated domains. 

 In summary, the infl uence of the lipid environment on pro-

tein topology was only revealed through manipulation of lipid 

composition and protein sequence. These relationships are not al-

ways evident under normal conditions because lipids and proteins 

have coevolved so that fi nal structural organization supports func-

tion. Our results signifi cantly extend the understanding of the 

complex process of insertion and folding of membrane proteins 

by providing new insights into how the membrane lipid matrix 

interacts with defi ned protein motifs to determine fi nal protein 

folding. The results show that PE is required to fulfi ll the positive 

inside rule as applied to N-terminal bundle of LacY and explains 

why positively charged residues are more potent topological de-

terminants than negatively charged residues under physiological 

conditions. PE and an appropriate charge density for the mem-

brane surface maintain the charge balance between translocation 

and retention signals required to achieve proper TM topology 

while allowing the presence of negative residues in the cytoplas-

mic face of proteins for other purposes. Sequence comparisons 

between proteins whose topology is lipid sensitive and related 

homologues indicate a specifi c role for PE. Polytopic membrane 

proteins containing competing opposite charges within their 

cytoplasmic domains may share a common mechanism for topo-

genesis dependent on PE. Moreover, significant topological 

decisions can be made outside and most likely independent of the 

translocation machinery. 

highly fl exible properties of the N-terminal half relative to the 

C-terminal half of LacY ( Nagamori et al., 2003 ;  Bennett et al., 

2006 ), spontaneous fl ipping of the former is a distinct possibility. 

The TMs of the N-terminal bundle are highly hydrated ( Lomize 

et al., 2006 ), which might lower the activation energy for fl ip-

ping. TMI is more exposed to the membrane hydrophobic core, 

which may explain retention of its orientation and the formation 

of a second hinge region represented by TMII. Moreover, in-

creasing the low hydrophobicity of TMVII by the D240I replace-

ment is suffi ciently energetically unfavorable to counter the 

favorable inversion of the N-terminal bundle in  � PE cells. 

 A direct role for the translocon in determining fi nal topo-

logical orientation of TMs has not been established, but models 

of cotranslational insertion of polytopic proteins suggest an ini-

tial infl uence of the translocon on orientation ( Goder and Spiess, 

2003 ;  Goder et al., 2004 ) in a sequential manner ( Hartmann et 

al., 1989 ) for TMs before exiting the translocon ( Sadlish et al., 

2005 ). However, the topology of LacY reconstituted into lipo-

somes is determined solely by the lipid composition and is inde-

pendent of other protein factors or the topological history of 

LacY ( Wang et al., 2002 ). Because LacY exists in a compact 

folded state in  � PE cells ( Bogdanov et al., 2002 ) and is in large 

molar excess over the number of functional translocons ( Urbanus 

et al., 2002 ), it is very unlikely that the translocation machinery 

is recruited for the reorientation process. Short-range and long-

range interactions governed by topological determinants of the 

lipid bilayer and topogenic signals within the protein sequence 

are more likely as dominant determinants of fi nal topology. The 

cooperative topological response of the N-terminal bundle to 

changes in the charge in a position-independent manner and the 

effect of membrane environment on global topology changes in 

this large domain are unlikely due to a specifi c property of the 

translocon. Similarly, the ability of TMVII to exist in or out of the 

membrane bilayer, dependent on the lipid environment, further 

supports factors other than the translocation machinery as a pri-

mary determinant. These results are consistent with the N-termi-

nal bundle remaining in a non-native and presumably uncommitted 

topological state until TMVIII is synthesized, resulting in an in-

tegral protein ( Nagamori et al., 2003 ). Although the translocon 

may be involved in establishing initial orientation of TMs during 

cotranslational insertion, the post-assembly TM lipid-dependent 

fl ipping of LacY indicates that fi nal topology is under thermody-

namic rather than kinetic control ( Bogdanov et al., 2002 ;  Mack-

enzie, 2006 ), as determined by the protein sequence and the lipid 

environment. The balance of net charge due to the presence of 

opposing topogenic signals (opposite charges) can either repre-

sent a retention or driving force, which either supports or over-

rides the positive inside rule depending on the presence of PE and 

magnitude of negative charge density of the membrane surface. 

 Lipid-dependent topogenesis appears to depend on integra-

tion of responses to at least three parameters: charge of cytoplas-

mic domains containing confl icting acidic and basic topological 

signals, charge of the membrane surface, and the presence of 

hinge region. Sequence comparison within the closely related 

sugar permeases (Fig. S4) reveals a high content of negatively 

charged residues in the cytoplasmic face of the N-terminal bun-

dles. TMVII of all but the sucrose permease contains two nega-
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 Image acquisition and processing 
 Western blots were imaged using a Fluor-S Max MultiImager (Bio-Rad Lab-
oratories) equipped with a CCD camera and a Nikon 50-mm 1:1.4 AD 
(F 1.4) at the ultrasensitive chemiluminescence setting, which cools the 
camera to  � 33 ° C. Quantity One versions 4.6.5.094 and 4.4.1 (Bio-Rad 
Laboratories) were used to collect and store the images as TIFF fi les, which 
were later imported into Adobe Illustrator CS to construct the fi gures. Images 
were expanded or reduced so that the horizontal strip containing LacY (ap-
parent molecular mass of 33 kD) on all images within the same fi gure was 
approximately the same size. Images were then masked to only show the 
LacY strips, which were then aligned and labeled. The only valid compari-
son in intensity is between whole cell and sonicated sets (images treated 
identically) run on the same gel. Pairs of images from different gels or from 
discontinuous regions of the same gel are separated by white spaces on 
the fi gures. Final fi gures were saved at 300 dpi as EPS fi les. 

 Online supplemental material 
 Fig. S1 shows phospholipid composition as a function of  pssA  gene induc-
tion. Fig. S2 shows stability and read-through expression of LacY. Fig. S3 
shows transport function of LacY dependent on membrane PE content. 
Fig. S4 shows distribution of charged amino acids in homologous sugar 
permeases. Fig. S5 shows distribution of charged amino acids in homologous 
amino acid permeases. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200803097/DC1. 
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 Materials and methods 
 Plasmids 
  Amp  R  plasmids expressing LacY derivatives under  OP tac   regulation and 
containing single or multiple amino acid replacements in a derivative of 
LacY in which endogenous cysteines were replaced by serine ( Frillingos 
et al., 1998 ) were constructed by site-directed mutagenesis ( Ho et al., 
1989 ). These amino acid replacements did not affect steady-state LacY 
levels as determined by Western blot analysis as previously shown 
( Bogdanov et al., 2002 ). 

 Bacterial strains and growth conditions 
 Strain AT2033 ( P LtetO-1  - pssA  +   pss93 :: kan R  lacY :: Tn9 recA srl :: Tn10 ) in 
which the PE content of the cell can be regulated by the level of aTc (Spec-
trum Chemical Corp.) in the growth medium was constructed as follows. 
The spectinomycin resistance gene was isolated from plasmid pZS4int-1, 
which is integrated into the genome of strain DH5aZ1 ( Lutz and Bujard, 
1997 ), by PCR using primers 5 �  (TCGAGGTGAAGACGAAAGGG) and 
3 �  (TGCTGTTCAGCAGTTCCTGC). The PCR product was digested with 
AatII and SacI, as was plasmid pZE21-mcs1 ( Lutz and Bujard, 1997 ; to re-
move the  kan  R  gene), and both were ligated to create plasmid pZE41-1. 
The  P N25  - TetR  (regulatory protein TetR under N25 promoter control) locus of 
DH5aZ1 was isolated using the PCR primers 5 �  (TTTTTGACGTCGGCC-
GATTCATTAATGCAGC, adds an AatII site) and 3 �  (TTTTCCGGATTA-
AGACCCACTTTCACATTTAAGTTG, adds a BspEI site). The PCR product 
and plasmid pZE41-mcs1 were digested with AatII and BspEI and ligated 
resulting in plasmid pZT41. The  �  phage attachment site ( attP ) and a  cam  R  
gene were excised from plasmid pLDR10 ( Diederich et al., 1992 ) by diges-
tion with SacI and HincII and ligated with plasmid pZT41 digested with 
SacI and BsrBI to create plasmid pZTL41. The  pssA  gene of  E. coli  
( DeChavigny et al., 1991 ) was isolated using PCR primers 5 �  (GGGCTG-
CAGGAACAGAGAAGAAATGCACTGTG, adding a PstI site) and 3 �  (GCGG-
ATCCTGAATATTCATTTCCGGCG, adding a BamHI site). The PCR product 
and pZTL41 were digested with PstI and BamHI and ligated to place the 
 pssA  gene under  P LtetO-1   control. The  oriC  locus and the  cam  R  gene were re-
moved by NotI digestion of this plasmid and the remaining DNA ligated 
and used to integrate the origin-less plasmid at the  attB  site of strain 
W3899 ( DeChavigny et al., 1991 ) carrying plasmid pLDR8 ( Diederich 
et al., 1992 ), a thermosensitive plasmid encoding the  �  phage integrase 
and a  kan  R  cassette, followed by growth at 42 ° C. The  pss93 :: kan  R  null al-
lele of strain AD93/pDD72 ( DeChavigny et al., 1991 ) was introduced into 
the resulting strain by P1 transduction. The strain was made  lacY  null and 
 recA  null by P1 transduction using strains AL95/pDD72 ( lacY::Tn9 ) 
( Bogdanov et al., 2002 ) and AD93/pDD72 ( recA srl :: Tn10 ), respectively, 
as donors, resulting in strain AT2033. 

 The  � PE strain AL95 ( pss93 :: kan  R   lacY :: Tn9 ) was grown at 37 ° C, 
whereas the +PE strain (AL95/pDD72 ( pssA  +   cam  R )) was grown at 30 ° C 
because plasmid pDD72 contains a temperature-sensitive replicon ( Bogdanov 
et al., 2002 ). Strain AT2033 was grown at 37 ° C in the presence (+PE) 
or absence ( � PE) of 1  μ g/ml aTc. All cells were grown in Luria – Bertani me-
dium containing 50 mM MgCl 2  (necessary for growth in the absence of PE) 
supplemented with ampicillin (100  μ g/ml) to maintain LacY plasmids and 
IPTG (1 mM) when LacY expression was induced. 

 SCAM 
 SCAM, based on the controlled membrane permeability of the thiol-
specifi c reagent MPB (Invitrogen), was used to probe the TM topology 
of LacY, as previously described ( Bogdanov et al., 2002 ,  2005 ). Reac-
tion with MPB was performed at pH 7.5 or 10.5. Treatment under strong 
alkaline conditions before SCAM analysis was accomplished by mixing 
an equal volume of cells in reaction buffer with cold 0.2 N NaOH fol-
lowed by incubation for 5 min on ice and isolation of a pellet by centrif-
ugation at 40,000 rpm (TLA-100; Beckman Coulter) for 10 min. The 
pellet was homogenized by sonication and washed three times with re-
action buffer before reaction with MPB. Biotinylation of exposed cys-
teine residues was detected after isolation of biotinylated LacY using 
precipitation by antibody specifi c for the C-terminus of LacY (prepared 
by ProSci, Inc.), followed by SDS-PAGE and Western blotting using avi-
din linked to horseradish peroxidase and chemiluminescent reagents 
(Pierce Biotechnology). In all cases, equal amounts of cells were pro-
cessed from samples before and after sonication, and the same amount 
of sample was applied to SDS gels. Figures show the presence or ab-
sence of signal in the Western blot region at the apparent molecular 
mass for LacY (33 kD). The results presented are representative of two 
or more determinations. 
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