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A B S T R A C T   

Remote photoplethysmography (rPPG), which aims at measuring heart activities without any contact, has great 
potential in many applications. The emergence of novel coronavirus pneumonia COVID-19 has attracted 
worldwide attentions. Contact photoplethysmography (cPPG) methods need to contact the detection equipment 
with the patient, which may accelerate the spread of the epidemic. In the future, the non-contact heart rate 
detection will be an urgent need. However, existing heart rate measuring methods from facial videos are 
vulnerable to the less-constrained scenarios (e.g., with head movement and wearing a mask). In this paper, we 
proposed a method of heart rate detection based on eye location of region of interest (ROI) to solve the problem 
of missing information when wearing masks. Besides, a model to filter outliers based on residual network was 
conceived first by us and the better heart rate measurement accuracy was generated. To validate our method, we 
also created a mask dataset. The results demonstrated that after using our method for correcting the heart rate 
(HR) value measured with the traditional method, the accuracy reaches 4.65 bpm, which is 0.42 bpm higher than 
that without correction.   

1. Introduction 

Heart rate (HR) is an important physiological parameter reflecting a 
person’s health condition. Traditional heart rate detection mainly in-
cludes two ways: electrocardiograph (ECG) and contact photo-
plethysmography (cPPG) based on sensors. PPG, an optical method for 
detecting the blood volume pulse (BVP) from the skin, rely on the 
principle that blood absorbs more light than surrounding tissues, thus 
the change of blood volume can affect the transmittance or reflectivity of 
light accordingly. 

The cPPG sensors, such as fingertip pulse oximeter, require the 
equipment to make physical contact with the subject. However, this 
measuring method needs the skin to closely fit with the equipment 
without relative movement. Due to the limitations of cPPG methods, it is 
particularly important to study a non-contact HR detection method. 
Verkruysse et al. [1] proposed that rPPG (remote photo-
plethysmography) signal can be obtained from the face video collected 
by the camera under ambient light for the first time. The rPPG has been 
proven to be superior because it is non-intrusive. It may be suitable for 
continuous measurement of heart rate (HR) in many cases, such as 

neonatal ICU monitoring [2], driver status assessment [3] and online 
learning [4]. Since then, many scholars conducted research on how to 
measure vital sign remotely from facial videos. 

The emergence of covid-19 helps to increase the possibility of using 
non-contact techniques in detecting patients’ vital signs [5]. A patient’s 
heart rate, respiratory rate, blood oxygen and other physiological pa-
rameters can be detected through rPPG techniques. Besides, the risk of 
infection among healthy workers can also be reduced by using non- 
contact methods. 

At present, most algorithms detect vital signs of the human body 
through computer recorded videos. However, the widespread use of 
smart phones with video recording function provides an opportunity for 
the integration of rPPG methods to create non-invasive vital signs 
assessment (e.g., via an app download) [6]. Estimating the HR through 
rPPG methods by the front camera of smartphone device exist now [7,8]. 
This greatly facilitates the needs of people to detect physiological in-
formation anytime and anywhere. 

So far, the traditional methods and deep learning methods have 
made outstanding contributions in solving illumination changes and 
motion artifacts. Their common goal is to obtain better rPPG signals for 
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HR detection. But the video for testing is required to include the whole 
face. Under this framework, it has strong physical constraints on sub-
jects, making it not suitable for HR detection under the condition of lack 
of face information. However, in the light of recent research, combining 
face mask detection method [9] and efficient skin segmentation models 
[10] can also be used to detect HR when wearing a mask. Studies have 
shown that region of interest (ROI) from forehead and both cheeks 
contain good rPPG SNR signal quality [11]. Thus, we believe that the 
rPPG signal quality obtained by using the skin pixels of the forehead is 
higher than that obtained by using all the skin pixels of the upper part of 
the face. At present, there is no algorithm to directly detect the forehead 
region, but there are algorithms that can be used to detect eyes, such as 
Viola-Jones (VJ) [12]. When we detect the HR of a person wearing a 
mask, we can use the eyes to locate the forehead region and then carry 
out subsequent detection steps. 

The existing public datasets (PFF [13], VIPL [14], UBFC-RPPG [15], 
COFACE [16], PURE [17], etc) for physiological signal detection are 
diverse in terms of recording scene, equipment, environment and video 
format. However, the complete information of the face is all included. 
That means there is no lack of information such as wearing a mask in 
these datasets. In order to study how to detect the HR at the scene of face 
information missing, we add masks to the published datasets. 

A major concern in heart rate estimation today is to continue to 
improve the accuarcy. There are several reasons for causing detection 
error. The first reason is that the HR obtained by the contact device itself 
has slight errors. If the HR is compared with the measured value as an 
accurate value, it will cause the error. Up to now, the methods based on 
rPPG generally collect signals as input for a period of time, and the 
output result has only one value as HR. However, the real HR will 
fluctuate for a period of time. Only one value represents all possible 
heart rates in this time period, which is the second factor leading to 
error. In addition, none of the rPPG algorithm developed is perfect and 
sometimes the HR values measured in two adjacent time windows are 
quite different. The detection inconsistency is the third factor leading to 
the error. Existing methods prefer to use power spectrum to filter out-
liers, such as set threshold [18] and consistency check [19]. However, 
they cannot eliminate the noise in the heart rate frequency band. 
Therefore, we believe that it is not the best way to choose frequency for 
HR prediction, but it can be realized by means of self-learning through 
the network. A combination of deep learning and traditional method is 
realized by using the non end-to-end pattern developed recently. It has 
been shown that the results in non-contact HR measurement are 
promising. As far as we know, the current non end-to-end deep learning 
methods aim to create a HR estimator through the network. But these 
methods are established the mapping from the rPPG signal (image) to 
HR directly, without judging the quality of input signal. In the case of 
poor signal quality, the heart rate measured by traditional methods is 
likely to be an abnormal one. Therefore, we designed a model to judge 
whether the input signal is correct, which is used to filter the measured 
outliers. In summary, our contributions are: 

1) We propose a HR detection method using the human eyes to locate 
ROI with skin segmentation method to solve the problem of lacking face 
information. 

2) We propose a model to filter outliers based on residual network to 
improve the consistency of HR estimation. 

3) A method for creating mask datasets is designed. 

2. Related work 

2.1. Existing rPPG methods 

To suppress the influence of illumination variations, one possible 
way is to separate illumination variation signals from the pulse signals. 
For instance, Chen et al. [20] applied ensemble empirical mode 
decomposition (EEMD) algorithm to the green channel for separating 
environmental noise freed heart rate variation. Another solution to this 

problem is complementary adopting the RGB and the NIR domains from 
the cameras. Kado et al. [21] takes an RGB-NIR face video as an input 
and used spatial-spectral-temporal fusion method to improve the 
robustness of HR estimation against illumination fluctuations. 

To solve the influence of motion artifact on measuring heart rate, 
traditional methods can be divided into two categories, called BSS-based 
(blind source separation) and model-based methods [22]. 

Independent component analysis (ICA) is a classical algorithm for 
BSS methods. The premise of its application is that the pulse wave signal 
and motion noise signal are independent and uncorrelated. Poh et al. 
[18] used ICA to separate the pulsation information from RGB signals. 
Then the joint blind source separation (JBSS) method was applied to 
adapt to the situation that multiple facial sub regions are used as ROI 
[3]. Later, Qi et al. [23] proved that incorporate the data from different 
facial sub-regions can improve the remote measurement performance. 
Besides, principal component analysis (PCA) was proposed by Lew-
andowska et al. [24] to extract the periodic pulse signal and they 
demonstrated that PCA has similar accuracy with ICA. Project_ICA [25] 
was also used to robustly extract the pulse signal in real scene such as 
poor illumination and face movements. 

The common point of the model-based method is to eliminate the 
specular reflection component that independent of blood volume 
changes [26]. De Haan and Jeanne developed a chrominance-based 
approach, which is an optical skin model to reduce the influence of 
head movement [27]. Subsequently, De Haan and Leest derived the 
relative pulsatilities from the RGB channel of the camera and proposed 
PBV method for improving the motion robustness [28]. Another math-
ematical model combines the optical and physiological characteristics of 
skin reflections was present in [26], in which the POS tone in the 
temporally normalized RGB space was proposed. 

The development of rPPG technology emphasizes the importance of 
fair comparison of different algorithms, and promotes the research of 
repeatability. Thus, Boccignone et al. [29] provided a systemic open 
framework, allowing to assess eight traditional rPPG algorithms (ICA 
[18], PCA [24], GREEN [1], CHROM [27], POS [26], SSR [30], LGI [31], 
PBV [28]), by setting parameters and metaparameters. 

After denoising the raw signals by the traditional methods, Fast 
Fourier Transform (FFT) is usually applied to the purified signal for 
finding frequency that corresponding to the HR. Most traditional 
methods usually have certain assumptions and work based on a specific 
environment, and their performance may be invalid in the real scene. 
Thus, only use FFT may get a noise contaminated spectral distribution 
that leads to inaccurate measurement results. However, these traditional 
methods have potential to remove part of the noise from the raw signal. 
Using these methods as preprocessing tools can simplify the complexity 
in deep learning methods [32]. 

Besides, using deep learning (DL) approaches in the rPPG field have 
emerged and yielded excellent results in recent years. Ni et al. [33] and 
Cheng et al. [34] provided a comprehensive review of DL-based 
methods. Since training network needs a large amount of data 
collected in various real scenes, ensures the robustness and flexibility of 
the DL method for practical application. Up to now, DL methods can be 
divided into two categories, end-to-end and non-end-to-end. 

The end-to-end methods learn features by themselves and output the 
HR or rPPG signal. Chen and McDuff [35] presented the first end-to-end 
convolutional attention network DeepPhys, which used normalized 
frame difference as input and rPPG signals as output. HR-CNN [36], 
proposed by ̌Spetlík, used sequence of images of a subject’s face as input 
and heart rates as output. Huang et al. [37] proposed PRnet, a one-stage 
spatio-temporal framework, to estimate the pulse rate from a stationary 
facial video. Another method from Yu et al. fed face images with RGB 
channels to spatio-temporal networks (STVEN + rPPGNet) [38] and 
PhysNet [39] to recover rPPG signals for HR and HRV features 
measurement. 

In contrast, non-end-to-end methods utilize DL techniques at various 
stages. After extracting the rPPG signal, DL methods can be used for HR 
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estimation. For such methods, features need to be generated firstly. The 
rPPG signals can be converted into images through a specific way 
[13,32]. As a preprocessing step, creating feature images for rPPG sig-
nals plays a key role, with its quality directly affect the following 
training model and even the prediction results. Hsu et al. [13,40] 
generate 2D TFR maps through different preprocessing approach for 
training the Convolutional Neural Network (CNN). Qiu et al. [41] 
extracted feature images by using spatial decomposition and temporal 
filtering, which was then cascaded with CNN for HR prediction. Articles 
[14,32,42,43] all utilized ResNet-18 for mapping the spatial–temporal 
maps to HR value. In Reference [44], POS-STMap followed by NAS 
network, was used for HR estimation. 

Besides, DL methods can also be used at other steps in HR estimation. 
For example, PulseGAN [45] was designed for denoising the rough rPPG 
signals, and rPPG signals can be converted to contact BVP signals using 
dedicated deep learning solution [46]. 

However, if the signal includes a lot of noise, it will increase the 
difficulty of network learning and reduce the accuracy of HR prediction. 

2.2. Face detection 

Face detection is a crucial preprocessing step for the traditional rPPG 
methods and non end-to-end deep learning methods to measure HR. As a 
previous step in determining ROI, its accuracy has a direct impact on the 
accuracy of HR detection. At present, three mainstream methods VJ 
[12], Histogram of Oriented Gradients (HOG) [47] and MTCNN [48] are 
often used for face detection. The purpose of VJ algorithm is to detect 
face, but it can also be used to detect eyes. The VJ algorithm utilizes 
Harr-like features and AdaBoost algorithm to construct a cascade clas-
sifier. Dlib face detection method is based on HOG feature descriptor and 
linear SVM classification. HOG constructs the feature by calculating the 
gradient direction histogram of the local area of the image. MTCNN is a 
multi-task cascaded CNN based framework, which consists of three 
stages for joint face detection and alignment. Besides, face detection is 
also the basis of face segmentation and face swapping technologies [49]. 

However, few articles considered detecting heart rate in the absence 
of face information. When people turn their heads at a large angle or 
wear masks, it is impossible to detect faces. Thus, the HR cannot be 
detected. The face-eye location method was proposed for the first time 
by Zheng et al. [4] to detect HR when wearing a mask. Koen and Marnix 
[50] tested rPPG’s accuracy on most likely visible body parts like wrist, 
hand palm and calf. This shows that people aim to explore some new 
robust rPPG methods to be used in more realistic scenarios in future. And 
this article is also based on human eyes for ROI locating to estimate HR 
when face information is missing. 

2.3. Consistency check for HR estimate 

There are techniques that have been developed to solve inconsistent 
of heart rate measurement. In other words, outliers can occur at certain 
times. Poh et al. [18] proposed a threshold correction method after using 
FFT. If the pulse rate measured at time T differs by more than ± 12 bpm 
from the pulse rate measured at time T-1, the pulse rate measured at 
time T is rejected and the frequency corresponding to the second highest 
power that met the constraint is found. However, if the pulse rate 
measured at time T differs significantly from the real value, it is likely 
that the subsequent correction results will be invalid. Demirezen et al. 
[19] proposed History-based consistency check (HBCC) algorithm to 
improve the consistency of heart rate estimation. Although the highest 
power magnitude and the SNR value and consistency were taken into 
consideration, spectrum analysis was still a problem that could not 
distinguish the noise in the heart rate band. When the noise signal 
overwhelms the pulse signal, the measurement is still inaccurate. 

Besides, the reliability of using contact PPG sensors to measure heart 
rate has been proved. Article [51,52] assessed the accuracy of the 
wearable sensor in measuring HR in different conditions. Their 

experimental results show that the wearable sensor provides accurate 
HR measures compared to gold-standard equipment. 

3. Methods 

The goal of our method is to enable a non end-to-end measurement of 
HR when missing information. Fig. 1 is an outline of our method. We 
first locate the frontal ROI through human eyes’ location and generate 
spatio-temporal feature images. Then, the handmade feature images are 
fed into CNN to train a model to judge the authenticity of them. We 
choose ResNet-18, initialized with ImageNet pretraining, for feature 
learning. After that, we use the model to predict the authenticity of the 
input image. Our method is described in detail below. 

3.1. Generating mask dataset 

Due to the lack of mask dataset, we first generated one. We added 
masks to the three data sets of PFF, PURE, and UBFC. Face detection and 
68-point facial landmarks are applied to find the cheek area. Then the 
area is turned into black by image processing technology to simulate the 
situation of wearing a mask. 

Pulse From Face (PFF) database [13] contains 13 subjects, each 
subject has five scenarios. The five scenarios are Bright-Static (BS), 
Bright-Moving (BM), Dark-Static (DS), Dark-Moving (DM), Bright- 
Riding (BR). Each video clip was recorded for 3 min with frame rate 
50 Hz and resolution 1280 × 720 pixels. The subjects were sitting in 
front of the camera with an average distance of 0.5 m. A total of 24 
videos were selected from Normal Light Static (NS) and Dark Static (DS) 
static scenes without obvious bangs. 

The PURE database [17] consists 10 subjects, and each subject 
recorded head image sequences in six different setups. The six setups are 
Steady (01), Talking (02), Slow Translation (03), Fast Translation (04), 
Small Rotation (05), Medium Rotation (06). A total number of 60 se-
quences of 1 min each were recorded. We synthesized the image se-
quences to videos which have a frame rate of 30 Hz and resolution of 
640 × 480 pixels. The test subjects were placed in front of the camera 
with an average distance of 1.1 m. We chose 17 videos without obvious 
bangs in static and conversation scenes. 

The UBFC-Phys dataset [53] is a public multimodal dataset dedicated 
to psychophysiological studies. 56 participants followed a three-step 
experience that involved a rest task T1, a speech task T2 and an arith-
metic task T3. Each video is 3 min long and the frame rate is 35 fps. This 
dataset also gives the BVP signals measured by contact equipment 
during the three tasks. Through Fourier transform and spectrum analysis 
of BVP signal, we selected 33 videos with less noise interference and no 
obvious bangs under T1 task. 

Three datasets specifications are list in Table 1. 
We obtained a total of 74 videos from these three datasets. Dlib face 

detector is used to detect the subject’s face firstly. Then, the prediction 
model providing 68-point facial landmarks (https://dlib.net/files/shape 
_predictor_68_face_landmarks.dat.bz2)is applied to the detected front 
face to obtain the (x, y) coordinates of the facial in different postures. We 
selected the rectangle surrounded by points 1, 8 and 15 to add masks, 
the pixel value of the region is changed to 0, and the result is shown in 
Fig. 2. 

Some videos in the mask dataset are shown in Fig. 3. 

3.2. Frontal ROI localization and skin segmentation 

The ROI in the forehead was determined through the location of the 
human eyes, as shown in the yellow area in Fig. 4. The human eyes were 
first detected with VJ eye detector and then the forehead is selected as 
ROI through a fixed proportion. 

In order to exclude irrelevant areas such as eyebrows and hair, we 
obtained the following optimal proportion through experiments. 
Assuming that the point in the upper left corner of the human eyes re-
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gion is A(x1, y1), the length and width of the human eyes region are w1 
and h1, the point in the upper left corner of the forehead ROI is B(x2, y2), 
the length and width of the ROI are w2 and h2. The coordinates of the 
upper left corner of the ROI and the length and width are deduced ac-
cording to (1). 
⎧
⎪⎪⎨

⎪⎪⎩

x2 = x1 + 0.125*w1
y2 = y1 − 1.5*h1

w2 = 0.75*w1
h2 = h1

(1) 

Then we used a skin segmentation algorithm from the iPhys Matlab 
toolbox [54] to further extract skin pixels in ROI. 

3.3. Generating Spatio-temporal feature images and divide into dataset 

Raw RGB signal generated from skin with the chrominance-based 
signal processing [3] can obtain pure pulse signal. After that, we used 

Fig. 1. Algorithm flowchart. Firstly, we use ResNet-18 network to train the spatio-temporal feature images generated by the video in the training set to obtain a 
model that can judge the signal quality (shown in the upper part of the figure), and then we use the model to judge the quality of the spatio-temporal feature image 
generated in the testing set (shown in the lower part of the figure). 

Table 1 
Datasets Parameters.   

Camera Fps 
(Hz) 

Resolution Time 
(min) 

Scenarios 

PFF Nikon 
D5300 

50 1280 × 720 3 BS, BM, DS, 
DM, BR 

PURE Eco 
274CVGE 

30 640 × 480 1 01,02,03, 
04,05,06 

UBFC- 
Phys 

EO-23121C 35 1024 ×
1024 

3 T1,T2,T3  

Fig. 2. (a) Points 1, 8 and 15 are marked in red. (b) Schematic diagram of 
adding mask. 

Fig. 3. Video display of mask dataset.  

Fig. 4. ROI location.  
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the method of Song et al. [32] to construct a spatio-temporal feature 
images for each pulse wave signal in a time-delay manner. Fig. 5(a)–(e) 
displays a pipeline to generate spatio-temporal feature images from the 
input video. The window length is set to 20 s, increasing every second, as 
shown in Fig. 6. Then the test dataset was divided by spatio-temporal 
feature images. We referred to the ± 12 bpm threshold [18]. If the dif-
ference between the calculated heart rate and the real value after Fourier 
transform of the chrome signal at time T is<12 bpm, the spatio-temporal 
feature images at time T is classified as correct, otherwise, it is wrong. 

3.4. Training a model for judging signal quality 

After obtaining the spatio-temporal feature image, we use the deep 
learning method to judge its quality. Here, we selected ResNet-18 as the 
CNN model. Resnet-18 consists of a convolution layer, four residual 
structures, an average pooling layer and a full connection layer. We used 
transfer learning. After loading the weight, we replaced the fully con-
nected layer of the original network to predict the quality of the images. 
Cross entropy was defined as loss function to measure the difference 
between feature images and labels. The cross-entropy loss function is in 
the following equation:. 

Loss = − (pTrue(xi)log(qTrue(xi) + pFalse(xi)log(qFalse(xi)) (2)  

where pTrue(xi) represents the probability that the ith sample is divided 
into true class, qTrue(xi) represents the probability that the ith sample is 
predicted to be true class, pFalse(xi) represents the probability that the ith 

sample is divided into false class, and qFalse(xi) represents the probability 
that the ith sample is predicted to be false class. 

As shown in the prediction part of Fig. 1, the model is used to judge 
the quality of the input picture in the test. When the signal quality is 
good, the model outputs 0, continue to perform FFT processing on the 
chrominance signal to predict the HR. When the signal quality is bad, the 
model discards it and outputs 1. 

4. Experiments AND results 

4.1. Metrics 

We selected root mean square error (RMSE), Pearson correlation 
coefficient (R) and 5% and 10% of the effective measurements of each 
video to measure the proposed method. 

RMSE is defined as the mean square root of the square difference 
between the measured value and the real value. Its formula is:. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(HRpredicti − HRtruei )

2

√

(3)  

where predicti represents the average of all measured values of the ith 

video, truei represents the average of all given real values of the ith video, 

and n represents the total number of videos. Pearson correlation coef-
ficient formula is shown in (4). 

r =

∑n
i=1(Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Xi − X)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(Yi − Y)2

√ (4)  

where Xi represents the measured average value of the ith video, Yi 
represents the real average value of the video, and —X represents the 
average value of the vector X. 

4.2. Face detection result 

We carried out several sets of experiments to test the effectiveness of 
our mask adding method. VJ, Dlib and MTCNN face detection methods 
were used to detect the faces of 74 videos respectively. The proportion of 
face detection in each scene are shown in Table 2. We also computed the 
scene average detection rate (SADR) of three face detection algorithms 
and the average detection rate (ADR) of each algorithm. PURE 01 refer 
to the scenario in the PURE dataset. The rest are the same. 

4.3. Within-database testing 

We perform the within-database testing with our self-made mask 
dataset. 

From 74 videos processed with masks, we selected 53 videos for 
training and 21 for testing. According to the set signal processing 
method, video and BVP data are processed using a sliding window with a 
length of 20 s and an increment of 1 s each time. A total of 6766 spatio- 
temporal feature images were generated from our self-made mask 
dataset, including 6091 for training and 675 for validation. All the 
feature images were sampled to 300 × 300 before being input to the 
network. The learning rate was set as 0.0001 for the first 10 epochs and 
then 0.00001 for the next 3 epochs. The final accuracy on the validation 
set is 92%. The within-database estimation results are summarized in 
Table 3. It lists the measured average value of HR before correction 
(MABC), which refer to use forehead region only, and after correction 
(MAAC), which refer to use forehead region and our correction method 
on 21 test videos. The ground-truth average value (GT), and the pro-
portion of the measured value in the range of 5% and 10% above and 
below the GT are also list in Table 3. 

Table 4 lists the statistical measurement results of 21 video RMSE, 
<5% and<10%, as well as the Pearson correlation coefficient. 

To further analyze the estimation consistencies by individual 
approach, we also draw the Bland-Altman plots and regression plots of 
the within-database testing shown in Fig. 7, Fig. 8 respectively. It can be 
seen that filtering out outliers by residual network can narrow the gap 
between estimated HR and ground-truth. 

Moreover, 10-fold cross-validation was used to evaluate the 

Fig. 5. A pipeline for showing how to generate spatio-temporal feature images from the input video. When the face cannot be detected, traditional methods cannot 
continue to detect HR, but our method uses the eyes and ROI location to continue to detect HR. 
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generalization ability of the model. For the convenience of calculation, 
70 videos were randomly selected from the self-made mask dataset and 
randomly divided them into 10 groups. All the results are provided in 
Table 5. 

From the results, we can see that the highest accuracy is 96.7%, the 
lowest accuracy is 73.7%, and the average accuracy is 84.42%. This 
indicates that the selection of different training and testing data has a 
great impact on the accuracy of the training model. The difference be-
tween the highest accuracy and the lowest accuracy is 23%, which also 
shows the importance of randomly selected data for deep learning. 
Theoretically, the model accuracy obtained from other random choice 
method should be between 73.7% and 96.7%. 

4.4. Cross-database testing 

In order to validate the generalization ability of our model, we also 
conduct cross-database experiments on the COHFACE [16] database. 
This dataset is composed of 160 videos in two different illumination 
settings (studio lighting and natural lighting) collected from 40 healthy 
individuals. Their physiological signals are taken by a BVP sensor and a 
respiration belt, distributed using standard HDF5 containers. Studio 
lighting results in a uniform distribution of light on the face, while 
natural lighting results in a half bright and half dark on the face. Each 
client has a total of 4 videos, 2 of which are in studio lighting condition 
and 2 of which are in natural lighting condition. The heartpy, a python 
Heart Rate analysis toolkit, was applied to estimate HR using the signal 
processing method mentioned in Section III.C. We only selected 60 
videos with computable HR and uniform facial illumination to do 
experiments. 

The statistical measurement results are summarized in Table 6. The 
Bland-Altman plots and regression plots of the cross-database testing are 
also given in Fig. 9, Fig. 10 respectively. We can clearly observe that the 
results of all evaluation metrics decreased significantly. A mean reason 
for this phenomenon is the videos are heavily compressed, so noise 
artifact was unavoidably added [34,55]. McDuff et al. [56] also find that 
a considerable drop in SNR between raw and compressed videos through 
experiments. Thus, it is not surprising that RMSE is very large. The 
comparison results demonstrate that after correction, the RMSE de-
creases slightly from 13.16 bpm to 13.06 bpm. At the same time, the 

Fig. 6. Signal processing process.  

Table 2 
Mask video face detection result using different face detection alforithms.   

VJ Dlib MTCNN SADR 

PURE 01  0.90%  0.98%  9.85%  3.91% 
PURE 02  4.46%  11.79%  0.51%  5.59% 
PFF NS  0.38%  10.75%  21.94%  11.02% 
PFF DS  4.50%  27.46%  31.93%  21.30% 
UBFC-Phys T1  2.57%  10.12%  15.66%  9.45% 
ADR  2.56%  12.22%  15.98%   

Table 3 
Test Video MEASUREMENT RESULTS USING our mask dataset: A WITHIN- 
DATABASE CASE (MABC: measured average value of HR before correction, 
MAAC: measured average value of HR AFTER correction, GT: ground-truth 
average value).  

Video 
Number 

MABC MAAC GT Before 
correction 
(CHROM) 

After 
correction 
(CHROM +
DL) 

<5% <10% <5% <10% 

1  96.13  95.36  100.66  0.44  0.68  0.44  0.71 
2  68.23  68.18  68.51  0.99  1.00  0.99  1.00 
3  90.16  89.94  87.97  0.41  0.58  0.41  0.59 
4  79.49  79.47  80.19  0.81  0.94  0.80  0.94 
5  105.14  105.04  108.35  0.85  0.93  0.84  0.93 
6  100.09  101.03  108.89  0.57  0.70  0.59  0.72 
7  89.45  89.38  89.76  0.75  0.97  0.73  0.96 
8  87.39  87.33  89.68  0.91  0.99  0.91  0.99 
9  74.87  74.87  71.00  0.54  0.75  0.54  0.75 
10  87.39  87.16  85.00  0.75  0.90  0.77  0.92 
11  94.51  94.58  94.00  1.00  1.00  1.00  1.00 
12  60.73  60.73  53.00  0.27  0.39  0.27  0.39 
13  67.75  67.75  67.00  0.73  0.98  0.73  0.98 
14  84.45  84.45  84.00  0.82  0.94  0.82  0.94 
15  103.12  102.19  87.00  0.00  0.02  0.00  0.04 
16  94.81  94.71  94.00  0.96  1.00  0.95  1.00 
17  76.63  76.71  78.00  0.80  0.98  0.80  0.98 
18  74.25  74.25  73.00  0.83  1.00  0.83  1.00 
19  101.73  101.47  101.00  0.88  0.97  0.86  0.96 
20  103.29  103.25  104.00  0.88  1.00  0.89  1.00 
21  104.43  81.25  76.00  0.02  0.04  0.50  0.75  

Table 4 
Statistical measurement results: a within-database case.   

Before correction After correction 

RMSE  5.07  4.65 
<5%  0.68  0.70 
<10%  0.80  0.84 
R  0.85  0.95  
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proportion<5% and 10% increases slightly, from 26.63% to 27.04%, 
from 37.94% to 38.64% respectively. But Pearson correlation coefficient 
almost unchanged. 

5. Discussion 

In the previous section, we evaluated the effectiveness of the mask 
algorithm and effectiveness of using deep learning method to remove 
outliers. 

The results in Table 2 show that our mask algorithm has a certain 
inhibitory effect on face detection. However, the suppression ability is 
significantly different in different scenes for different algorithms. For the 
PURE dataset with dark light, the detection rate is small, up to 5.59%, 
while the detection rate of PFF and UBFC with strong light is up to 
21.30%. This shows that light is very important for face detection. In 
addition, the detection capabilities of VJ, Dlib and MTCNN are also 
different. VJ has the weakest detection ability, only 2.56% of faces can 
be detected, and MTCNN has the strongest detection ability, 15.98% of 
faces can be detected. Due to MTCNN is time consuming, most rPPG 
based algorithms use Dlib and VJ for face detection. Our mask algorithm 
has a good suppression effect on these two face detection methods. In the 
process of face detection on the video with masks, we found that the 
position of masks will be different due to the involuntary shaking of the 
face up and down. When the subject looks up, the nose area is not 
covered by the mask, which will cause the face to be detected. When the 
subject lowers his head, the mask will cover half of the eyes, so that the 
eye cannot be detected in the following step. Therefore, whether the 

Fig. 7. Bland-Altman plots between GT and estimated HR values for a within-database case: (a) for MABC (b) for MAAC.  

Fig. 8. The regression plots for (a) MABC, (b) MAAC for a within-database case.  

Table 5 
10-fold cross-validation RESULTS on self-made 
mask datasets.  

Number Accuracy (%) 

1  87.0 
2  88.0 
3  83.1 
4  84.6 
5  73.7 
6  78.8 
7  82.9 
8  96.7 
9  91.2 
10  78.2 
Average  84.42  

Table 6 
Statistical measurement results: a cross-database case.   

Before correction After correction 

RMSE  13.16  13.06 
<5%  26.63  27.04 
<10%  37.94  38.64 
R  0.31  0.31  
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mask can effectively shield the face detection algorithm largely depends 
on the pose of the original video subject. 

It can be seen from Table 3 that the measurement accuracy is 
improved after correction. For the 8 videos 1, 2, 4, 5, 7, 8, 11 and 20, the 
measurement accuracy decreases slightly after correction, that is, the 
measurement average is farther from the real average. The measurement 
effects of the five videos 9, 12, 13, 14 and 18 remain unchanged, and the 
accuracy of the eight videos 3, 6, 10, 15, 16, 17, 19 and 21 is improved. 
A further novel finding is that video No. 21 has the largest increase of 
23.18 bpm. This means that there is noise in the video that can not be 
removed by the chrome-based method alone, but the characteristics of 
this noise can be learned and eliminated through deep learning. In 
addition, only the proportion of No. 4, 5, 7, 16 and 19 video measure-
ment errors within 5% decreased slightly, and the proportion of No. 7 
and 19 video measurement errors within 10% decreased slightly. 
Together, the present findings confirm that although the measurement 
error of some videos decreases after correction, most outliers are filtered 
out, so that the number of values measured in the confidence interval 
increases. 

Table 4 shows the RMSE, Pearson correlation coefficient and the 
proportion of measured values in the 5% and 10% confidence intervals 
of 21 videos. It can be found that the corrected root mean square error is 
increased by 0.42 bpm, the Pearson correlation coefficient is increased 
by 0.1, and the increase range in the 10% confidence interval is 0.04, 
which is 2 percentage points higher than that in the 5% confidence in-
terval. This result is consistent with the conclusion in Table 3, that is, 
outliers can be effectively removed through the residual network. 

Although we randomly selected 21 out of 74 videos for testing, 
different videos may have slightly different training results. We only 

selected the still video in the three datasets, because the video duration 
of other data sets is short or the video has been compressed. Moreover, 
the influence of the setting of window length on the training results is 
also worth studying. The most important thing is how to measure the 
heart rate if the subjects wear masks and their forehead is also covered 
by their hair. In the future, we will not be limited to the measurement of 
heart rate only under static conditions. In real scenes such as head 
rotation or horizontal rotation, subjects moving, and various special 
situations mentioned above, we will conduct further research. 

6. Conclusion 

In this paper, we proposed a HR detection method when missing 
information and a model to filter outliers based on residual network. We 
first used the human eyes to locate ROI, and then combined traditional 
methods with deep learning for heart rate detection to solve the problem 
of lack of facial information and unstable output. Besides, in order to test 
the effectiveness of our algorithm, we also designed a method to create 
mask dataset. Through experiments, we concluded that after adding 
masks to the video, the detection rate of different face detection algo-
rithms is 15.98% at the highest and 2.56% at the lowest, which effec-
tively suppresses face detection. In the test dataset, the RMSE of our 
proposed algorithm is reduced to 4.65 bpm, the proportion<5% 
and<10% are increased by 2% and 4% respectively, and the Pearson 
correlation coefficient is increased by 0.1. In conclusion, the results 
show the effectiveness of our method on test datasets. We hope this work 
can provide effective help in the biomedical field in the future. 

Fig. 9. Bland-Altman plots between GT and estimated HR values for a cross-database case: (a) for MABC (b) for MAAC.  

Fig. 10. The regression plots for (a) MABC, (b) MAAC for a cross-database case.  
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