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Simple Summary: Minerals are important but often overlooked compounds that are required for a
variety of cellular biochemical processes and pathways that regulate cell proliferation. Their dietary
imbalance, which is becoming more common in the diets of industrialized countries, is linked to an
increased risk of cancer. The current review will present some of the most important minerals for
human physiology and evaluate their potential application as cancer biomarkers.

Abstract: Cancer is the second leading cause of death worldwide and is expected to increase by
one-third over the next two decades, in parallel with the growing proportion of the elderly population.
Treatment and control of cancer incidence is a global issue. Since there is no clear way to prevent or
cure this deadly malignancy, diagnostic, predictive, and prognostic markers for oncological diseases
are of great therapeutic value. Minerals and trace elements are important micronutrients for normal
physiological function of the body. They are abundant in natural food sources and are regularly
included in dietary supplements whereas highly processed industrial food often contains reduced
or altered amounts of them. In modern society, the daily intake, storage pools, and homeostasis of
these micronutrients are dependent on certain dietary habits and can be thrown out of balance by
malignancies. The current work summarizes the data on minerals and trace elements associated with
abnormal accumulation or depletion states in tumor patients and discusses their value as potential
tumor-associated biomarkers that could be introduced into cancer therapy.
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1. Introduction

After World War Two, the mean food intake increased drastically, reflected in an ongo-
ing obesity epidemic [1,2]. On the other hand, the quality of the food did not. Specifically,
there has been a decrease in several minerals in foods over the last five decades, most
notably zinc, copper, and iron [3–5]. Such an occurrence is mirrored in the worldwide
spread of “hidden hunger”, defined as a prolonged lack of vitamins or minerals (collectively
referred to as micronutrients) intake [6,7]. For example, it has been estimated that the daily
intake of selenium is half that of the reference nutrient intake [8].

Micronutrients are necessary for immunological functions as well as the general
cellular metabolism [9]. For instance, it has been shown that deficiency in micronutrients,
including minerals, worsens the pathogenesis of COVID-19 [10]. Moreover, given the link
between an abnormal immune system and oncogenesis [11], identifying factors that affect
the former can aid in predicting the latter. Quantification of biomolecules that can interfere
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with immune function, for example, could theoretically serve as an indicator for cancer risk.
Micronutrients in general and minerals in particular are suitable for this purpose.

Given that the cellular biochemistry requires micronutrients, the ongoing and unno-
ticed subclinical deficiency of micronutrients might cause significant global health issues. In
particular, the hidden hunger might increase the risk of cancer development. Consequently,
the measurement of micronutrients in general and minerals in particular might help the
early identification of people at higher cancer risk.

The present work aimed at addressing the potential of selected minerals as potential
cancer biomarkers. This review will first highlight the major molecular mechanisms linking
minerals to oncogenesis, followed by a report on clinical evidence relating mineral levels to
cancer risk, with a focus on the most recent findings.

The recommended daily intake and associated serum levels of the most common
minerals are summarized in Table 1 and serve as the basis for the categorization of these
in the research cited here. Hence, this review focuses on the possible role of minerals as
diagnostic markers for cancer providing an overview of the different molecular pathways
that link these micronutrients to the oncogenic process. Figure 1 summarizes the findings
of the present work.

Table 1. Recommended daily intakes and related serum levels of the minerals reported in the
present review *.

Mineral RDA/PRI
(µg/Day)

EAR/AR
(µg/Day)

UL
(µg/Day) Serum Levels Source References

Iron 8000 6000 45,000 30 µg/L † Meat, fish, cereals,
beans, nuts. [12–14]

Zinc 8000–11,000 9400 25,000 ≥800 µg/L ‡ Meat, legumes, eggs,
fish, grains. [12,15,16]

Selenium 30–70 70 300 47–145 µg/L Meat, fish. [12,17]
Phosphorus 700,000 580,000 n.d. 0.8–1.5 × 103 µmol/L Meat, fish. [12,18]

Calcium 1,000,000 750,000 2,500,000 2500 µmol/L Milk, fish, legumes. [12,14,19]

Copper 900 1600 5000 1200 µg/L Milk, fish,
eggs, vegetables. [12,20]

Iodine 150 95 600 40–80 µg/L Marine products, eggs,
milk, iodized salt. [12,21]

* Depicted data refers to male adults. AR: average requirement; EAR: estimated average requirement; n.d.: not
determined by EFSA; PRI: population reference intake; RDA: recommended daily allowance; UL: tolerable upper
intake level. † as ferritin. ‡ not reliable indicator for zinc status.
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C promotes the reload of iron inside the ferritin cages. ROS can interact with lipid bilayers, gener-
ating more ROS molecules by lipid peroxidation, a process inhibited by iodide. In addition, ROS 
can directly damage the DNA and proteins, including the DNA-repair enzymes that are activated 
by ROS-induced damage. Furthermore, ROS activates p53 and NF-κB, altering the cell cycle. Iodide, 
SOD1, and GPx2 inactivate ROS. For instance, SOD1 removes superoxide radicals by dismutation 
reaction generating H2O2, O2, and GPx2 by producing two H2O from auto-reduction. The DNA-
repair factors are modulated by the zinc-protein ERp72, which regulates the intake of vitamin D 
involved in the regulation of transcriptional factors. Cellular intake of vitamin D is also regulated 
by phosphorus. ERp72 reduces disulfide bonds in nascent proteins in the ER, in association with the 
calcium-proteins CNX and CRT. Moreover, ERp72 regulates NF-κB, the latter being also modulated 
by GPx2 and Sep15. GPx2 and Sep15 promote their own expression. A20 and AKT also activate NF-
κB, which then reduces the activity of A20 in a negative feedback loop. AKT is modulated by LOX, 
MEMO1, and IP3, and affects the cell cycle by promoting the expression of CycD1. LOX can alter 

Figure 1. Overview of the involvement of minerals in oncogenesis. Minerals are involved in several and
overlapping cellular pathways. Iron is sequestered by ferritin inside the cytoplasm. Iron leaking from the
ferritin cages can react with water to form hydroxyl radical, one of the many ROS. Vitamin C promotes
the reload of iron inside the ferritin cages. ROS can interact with lipid bilayers, generating more ROS
molecules by lipid peroxidation, a process inhibited by iodide. In addition, ROS can directly damage
the DNA and proteins, including the DNA-repair enzymes that are activated by ROS-induced damage.
Furthermore, ROS activates p53 and NF-κB, altering the cell cycle. Iodide, SOD1, and GPx2 inactivate
ROS. For instance, SOD1 removes superoxide radicals by dismutation reaction generating H2O2, O2,
and GPx2 by producing two H2O from auto-reduction. The DNA-repair factors are modulated by the
zinc-protein ERp72, which regulates the intake of vitamin D involved in the regulation of transcriptional
factors. Cellular intake of vitamin D is also regulated by phosphorus. ERp72 reduces disulfide bonds in
nascent proteins in the ER, in association with the calcium-proteins CNX and CRT. Moreover, ERp72
regulates NF-κB, the latter being also modulated by GPx2 and Sep15. GPx2 and Sep15 promote their
own expression. A20 and AKT also activate NF-κB, which then reduces the activity of A20 in a negative
feedback loop. AKT is modulated by LOX, MEMO1, and IP3, and affects the cell cycle by promoting the
expression of CycD1. LOX can alter genetic expression by modifying the histones. Some transcription
factors contain zinc, and a transcription regulator is p53, which TR1 modulates. ATOX1 is a zinc-
containing protein that can modulate gene expression, particularly that of cyclin D1 and SOD3 (which
regulates the oxidative environment outside the cell). Genetic transcription and cell cycle are regulated by
ERK, which MEK1 activates after being phosphorylated by the complex Ras/Braf. One of the modulators
of Ras is CaM, but also phosphorus can directly boost its activation. Similarly, phosphorus is also part of
active IP3 that, aside from its direct modulation of AKT, regulates the release of calcium (effectively a
second messenger on its own right) from the ER via the Ca2+ channel IP3R. The P-type ATPase SERCA
mediates the transport of cytosolic calcium back into the ER. CRT regulates both IP3R and SERCA.
Moreover, minerals are involved in DNA replication since they are embedded in several subunits of the
DNA replication complex (namely: iron in the helicase, primase, and DNA-polymerase α, the latter two
also containing zinc). Iron is present in the first three mitochondrial complexes and CytC, whereas copper
is present in complex IV. Thus, minerals are essential to the energetic balance of the cell and its oxidative
state. AKT, Ak strain transforming; A20, zinc finger protein A20; ATOX1, antioxidant-1; Braf, rapidly
accelerated fibrosarcoma isoform B; CaM, calmodulin; CNX, calnexin; CRT, calreticulin; CycD1, cyclin
D1; CytC, cytochrome c; DNA-pol, DNA polymerase; ER, endoplasmic reticulum; Erp72, endoplasmic
reticulum resident protein 72; ERK, extracellular signal-regulated kinase; GPx2, glutathione peroxidase
2; IκB, NF-κB inhibitor; IKK, IκB kinase; IP3, inositol 1,4,5-trisphosphate; IP3R, inositol trisphosphate
receptor; LOX, lysyl oxidase; MAPK, mitogen-activated protein kinase; MEK1, MAPK/ERK kinase1;
MEMO1, mediator of cell motility 1; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B
cells; Q, coenzyme Q; Ras, rat sarcoma virus; RNR, ribonucleotide reductase; ROS, reactive oxygen
species; Sep15, selenoprotein of 15-kDa; SERCA, sarco-/endoplasmic reticulum calcium ATPase; SOD,
superoxide dismutase; TR1, thioredoxin reductase 1.
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2. Copper and Zinc

Copper plays a fundamental role in the oxidation reactions; thus, it is part of many
enzymes like mono- and dioxygenases, dehydrogenases, oxidases, and reductases [22].
Cu transporter 1 (CTR1) transports dietary copper as Cu+ into epithelial cells of the small
intestine, from where it is then transferred by ATPase copper transporter 7A (ATP7A) to the
portal vein and finally released into the bloodstream from liver hepatocytes via ATP7B [23].
Genetic mutations affecting ATP7A result in Menkes disease (MD), a congenital condi-
tion characterized by the enterocytes’ inability to release copper in the portal vein and
generalized copper deficiency. Children affected by MD have limited life expectancy and
suffer from growth retardation, osteoporosis, and cellular fibers defects [24]. In the blood,
most of the copper is carried in the serum bound to ceruloplasmin and in minor amounts
associated with albumin and transcuprein. Hepatocytes accumulate copper, which is
subsequently either transported to other cells through the bloodstream or expelled in the
bile. Copper is uptaken by the CTR1 on the surface of the cells and stored associated with
metallothioneins [25]. Inhibition of the CTR1-copper axis was recently described to dimin-
ish AKT signaling and therefore tumorigenesis [26]. Since several studies have reported
increased levels of serum or tissue copper in cancer patients than healthy controls, copper
has gained interest for therapeutic purposes [27]. Chelators that lower cellular copper
bioavailability or ionophores that increase cellular copper bioavailability, respectively, are
promising compounds for cancer treatment [23]. Its potential as a drug candidate for cancer
therapy when present in a suitable complex was hypothesized to be due to formation
free radicals. However, the unfavorable solubility in physiological buffer systems and the
sometimes difficult-to-predict mechanism of action pose problems [28]. The concentrations
of copper and zinc are tightly bound, and an increased Cu/Zn ratio has been observed
in a plethora of cancer types [29–34]. Copper cellular concentration is regulated, among
others, by mouse U2af1-rs1 region 1 protein (MURR1), which is targeted for ubiquitination
by X-linked inhibitor of apoptosis (XIAP) [35,36].

There are about 50 human proteins containing copper, the majority being membrane
transporters, that play a major role in metastasis due to their involvement in angiogenesis
and cell-to-cell interactions [37–39]. Some of the non-transporter copper-proteins alter
the cell cycle at critical points. Lysyl oxidase (LOX), as well as the secreted protein acidic
and rich in cysteine (SPARC), mediate the cross-linking of the extra-cellular matrix, actin
polymerization, and the activation of the phosphoinositide 3-kinases (PI3K) signaling
pathway, thus promoting cellular proliferation and mobility [40,41]. The mediator of cell
motility 1 (MEMO1) is also an activator of the PI3K signaling pathway [42]. In addition,
LOX might be involved in chromatin remodeling by chemically modifying histones [43].
The mitogen-activated protein kinase kinase 1 (MAPKK, also known as MEK1 (MAPK/ERK
kinase 1). or MAP2K1) activates the mitogen-activated protein-kinase (MAPK) signaling
pathway, which is involved in proliferation and metastasis [44–47]. Antioxidant protein 1
(ATOX1) is a transcription factor that increases the expression of cyclin D1 and the extra-
cellular super-oxide dismutase isoform 3 (SOD3) [48–50].

Copper also influences autophagy, a cellular process where dysfunctional biological
components generated by reactive oxygen species (ROS) activity are sequestered inside
specific vesicles (autophagosomes) to maintain homeostasis [51]. Removing damaged
biological molecules from the cellular environment protects the cells from apoptosis with
the consequence of effectively extending tumor survival [52]. Copper in particular increases
the activity of the Unc-51-like autophagy activating kinase (ULK) complexes 1 and 2, which
are involved in autophagosome formation and thus promote cancer proliferation [53,54].

Zinc is structurally embedded into over 300 proteins located in the cytoplasm, mito-
chondria, Golgi apparatus, and nucleus (e.g., in metalloproteases, histone deacetylases,
dehydrogenases, hydrolases, transcription factors, DNA polymerase α, primase, etc.) in-
volved not only in gene expression but also in the oxidative status of the cell, thus, their
disruption is strongly linked to oncogenesis [55–57]. The association between zinc and
cancer is not completely understood, but it is known that this micronutrient is associated
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to both immune response and cellular proliferation. In particular, zinc is involved in the
regulation of several actors of the cell signaling pathways including protein kinase C,
cAMP-dependent protein kinase A, phophodiesterase, and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) [58]. NF-κB is part of the Wingless and Int-1
(Wnt) signal pathway, and the targets of this transcription factor include around 200 genes
involved in cell proliferation, metastasis, immune response, and inflammation [59,60]. A20
is a zinc-finger NF-κB suppressor whose expression is controlled by NF-κB, establishing
a negative feedback loop for the Wnt signaling pathway, and it has been described as
having both promoting and inhibiting carcinogenic properties [61]. Alteration of zinc levels,
therefore, can have substantial consequences in cellular proliferation, inflammatory state,
and immune response [62].

Zinc is also contained, together with copper, within the enzymes SOD1 and SOD3,
which neutralize ROS [63]. SOD1 is prevalently recovered in the cytoplasm but it is also
present in the nucleus and other cellular compartments; SOD3, instead, is present on the
extracellular environment [64]. The super-oxide anion (O2•−), which belongs to ROS, is
produced during the biochemical reduction of molecular oxygen, for instance in the mito-
chondrial electron transport chain (O2 + e−→O2•−). ROS can cause damage to virtually all
biological species within the cell, including DNA strands, proteins (inclusive of the enzymes
involved in the DNA damage repair and DNA replication), and lipidic membranes [65]. The
super-oxide anion can react with nitric oxide (NO), which has anti-inflammatory properties,
to form peroxynitrite (O2•− + NO• → ONOO−) that can damage cellular biomolecules,
for instance causing lipid peroxidation, and trigger inflammation [66]. While zinc has
a structural function, copper is part of SOD’s catalytic site and is involved in the reac-
tion of neutralization of super-oxide anion: 2O2•− + 2H+ + Cu2+ → H2O2 + O2 + Cu+ [64].
Unsurprisingly, alteration in SOD’s activity is associated with a wide range of diseases [67].

Furthermore, depletion of dietary zinc has been shown to alter the gut microbiota
in terms of species richness and diversity, as well as genetic expression [68]. Since the
alteration of the gut microbiota composition is associated with an increased risk of carcino-
genesis [69], zinc levels might pinpoint cancer risk.

Analysis of 26 breast cancer tissues by mass spectrometry reported a significantly
higher concentration of zinc in tumoral mass (3.5–19.5 parts per million (ppm)) than in the
surrounding stroma (0.8–11.4 ppm), with a constant ratio of stroma over cancer zinc levels
of 2.9 ± 1.6 [70]. A comparison of 27 oral squamous cell carcinoma patients and 86 controls
reported a non-significantly increased zinc intake in the former group (12,851 mg daily)
than in the latter (11,788 mg daily) group (Mann–Whitney U test p-value = 0.136) [71].

A survey of 989 hepatocellular carcinoma (HCC) patients did not show an association
between zinc concentration and liver cancer, but copper and the ratio of copper over zinc
did. When comparing patients in the upper against the lowest quartiles, the hazard ratio
(HR) for overall survival (OS) to cancer was 2.06 (1.36–3.11, test for trends p-value < 0.01)
for copper alone and 1.43 (0.99–2.08, test for trends p-value = 0.01) for the Cu/Zn ratio [72].
Blood zinc levels in patients with squamous cell carcinoma of the oral cavity were reduced
by approximately half (t-test, p-value < 0.001) compared to healthy controls [73]. Zinc
and copper were measured in colorectal cancer (966 cases and 966 matched controls) [29].
High zinc concentration was associated to reduced cancer risk (odds ratio (OR) = 0.65,
95% confidence interval (CI): 0.43–0.97, test for trends p-value = 0.07), whereas copper had
the inverse trend (OR = 1.50, 95% CI: 1.06–2.13, test for trends p-value = 0.02). The ratio of
copper over zinc was also associated with higher cancer risk (OR = 1.70, 95% CI: 1.20–2.40,
test for trends p-value < 0.001).

The mean concentration of copper in pancreatic cancer patients (n = 100) was 1432 µg/L
compared to the 1098 µg/L observed in the matched control group (n = 100), and the
comparison of people with copper levels in the highest two quartiles and the lowest
indicated a higher risk of cancer in high concentration of this micronutrient (OR = 4.9,
p-value < 0.001) [74]. In particular, the threshold of 1215 µg/L was identified as the level
above which cancer increased drastically.



Cancers 2022, 14, 1256 6 of 23

Blood copper levels in patients with squamous cell carcinoma were about 45.5% higher
(t-test, p-value < 0.001) compared to healthy controls [73]. Spectroscopic analysis of brain
sections reported a significantly higher copper concentration in tumoral masses than in
surrounding healthy tissues (0.0079 and 0.037 µg/cm2, respectively; Mann–Whitney U test
p-value < 0.05) [75]. Conversely, in the same sections, zinc had higher levels in tumoral
masses than healthy tissues (0.0403 and 0.0285 µg/cm2, respectively; Mann–Whitney U test
p-value < 0.05). Others have measured 3.9–9.1 times lower copper levels and 2.4–9.6 times
lower zinc levels in the tumoral mass than in the surrounding brain tissues [76]. Copper
levels in brain tumor patients were significantly higher than in healthy controls (t-test
p-value < 0.001) [77].

Copper and zinc were suggested as prognostic markers. A cohort of 175 HCC patients
reported that serum levels above 68.3 µg/dL and 81.1 µg/dL for copper and zinc, respec-
tively, allowed to identify patients at increased mortality risk with a sensitivity 78.3% and
60.4%, and a specificity of 48.1% and 65.2% [78]. Combining these two micronutrients as
Cu/Zn ratio gave a sensitivity of 68.1% and a specificity 75.5% for a cut-off set at 0.999.

3. Selenium

Until 1957, selenium was considered a toxin, but studies on liver necrosis in rats
revealed the biochemical importance of this element [79]. The effect of selenium on cellular
biochemistry is proportional to its concentration. Selenium is an antioxidant at nutritional
doses, but an oxidant at high (typically pharmacological) doses [80]. While the latter is
used to treat tumors because cancerous cells are more susceptible to the oxidative action
of selenium [81], dietary selenium deficiency is expected to rise in the near future [82].
The primary natural source of selenium, chiefly in the inorganic forms of selenate (SeO4

2–)
and selenite (SeO3

2−), is diet (notably fish and meat), whereas non-natural sources of
selenium include air pollution and cigarette smoke [83]. Deficiency in selenium intake
can result in cardiomyopathy, degenerative disorders (including Alzheimer’s disease),
and immunological dysfunctions, whereas chronic exposure to high levels of this element
(selenosis) may lead to hair loss, skin rash, fatigue, and irritability [84,85].

The organic form of selenium is principally selenocysteine (Sec) which is incorporated
into 25 human genes [86]. The triplet UGA, when present in the context of stem-loop
structure known as Sec insertion sequence (SECIS), is recognized by a tRNA initially
aminoacylated with serine and later converted to Sec [87]. Selenoproteins are widespread
in all living kingdoms, including viruses, and all are oxidoreductases with Sec as the
catalytic residue [88]. Thioredoxin reductase 1 (TR1), selenoprotein of 15 kDa (Sep15), and
glutathione peroxidase 2 (GPx2) are the most studied members of this family in relation
to cancer [89]. The main function of TR1 is maintaining the protein structural stability
by keeping exposed cysteine residues in reduced form [90], but TR1 can also activate the
tumor suppressor p53 [91]. Its overexpression in cancer tissues and cell lines suggests its
involvement in cancer promotion [92]. Sep15 is also involved in maintaining the structural
integrity of several proteins [93]. Like TR1, Sep15 is also overexpressed in several cancer
types [94] and, although its oncogenic involvement is not clear, it has been suggested that
it might be involved in cell cycle regulation and interferon-γmediated inflammation [95].
GPx2 is an antioxidant [89], thus, its imbalance can affect the cellular environment at several
levels. In addition, GPx2 is regulated by the Wnt pathway [96]. The link between selenium
and DNA damage fostered a widespread interest in the association between selenium
concentration and risk of cancer and the administration of selenium as an anti-cancer
treatment [97].

The levels of selenium were not linked to the development of any type of cancer [98],
whereas other studies reported that the median blood selenium was 58.8 µg/L in carcinoma
patients compared to 84.7 µg/L of healthy controls [99]. Serum selenium in lung cancer
patients (n = 48) was higher than in healthy controls (n = 39), with values of 166.0 and
144.7 ng per gram of serum, respectively, but the difference was not statistically signifi-
cant [100]. A comparison of patients with serum selenium in the upper tertile (77.8 µg/L)
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to those in the lower tertile (50.8 µg/L) in a group of 302 patients results in a higher risk of
lung cancer (HR = 1.64, 95% CI: 1.14–2.37, test for trends p-value < 0.01) [101]. Conversely,
serum selenium was lower in renal cancer patients (161.7 µg/L, n = 104) than in healthy
controls (228.8 µg/L, n = 774), resulting in an OR of 0.14 (95% CI: 0.10–0.20, test for trends
p-value < 0.01) [102].

The amount of selenium in prostate tissues was not significantly different (p-value = 0.347)
between cancer patients (n = 49) and healthy controls (n = 49), with mean concentrations of 191
and 168 µg/kg, respectively [103]. A comparison of prostate cancer cases (n = 467) and controls
(n = 936) showed no statistical association between serum levels of selenium [104]. However, the
stratification by ethnicity showed a trend (p-value = 0.02) for African-Americans, with the OR of
the third over the first tertile being 0.59. Selenium serum levels were, instead, significantly lower
in hepatoma patients (n = 187, mean concentration: 67.47µg/L) than in healthy controls (n = 120,
mean concentration: 108.38 µg/L) [105]. A study of 966 colorectal cancer cases and 966 matched
healthy controls reported no significant differences in serum selenium levels between the two
groups (84.0 and 85.6 µg/L, respectively), but stratification by gender showed a statistically
significant decrease in cancer risk in women with the higher concentration of selenium than
women with the lowest concentration (incidence rate ratio = 0.83, 95% CI: 0.70–0.97, test for
trends p-value 0.032) [106]. Higher selenium was reported to be significantly higher (univariate
ANOVA p-value < 0.001) in esophageal tumors than in healthy surrounding tissues [107].

The mean concentration of selenium in pancreatic cancer patients (n = 100) was 60 µg/L
compared to the 76 µg/L observed in the matched control group (n = 100), and the ratio of
people with selenium levels in the lower two quartiles and the upper indicated a higher risk
of cancer in the presence of depletion of this micronutrient (OR = 41, p-value < 0.001) [74].
In particular, the threshold of 67 µg/L was identified as the level below which cancer
increased drastically. In liver cancer patients, serum selenium (52.5 µg/L) was lower than
the average level of healthy controls [108]. Specifically, 93.7% of the patients had serum
levels below the threshold of 70 µg/L indicating dietary deficiency for this micronutrient.

Similarly, in breast cancer, women in the upper quartile of serum selenium con-
centration had a lower risk of mortality than women in the lowest quartile (HR = 0.63,
95% CI: 0.44–0.89) [109]. Blood selenium levels dropped from 74.3 µg/L in breast cancer
patients with tumors smaller than 2 cm in diameter to 64.8 µg/L in those with tumors larger
than 5 cm in diameter (χ2 p-value = 0.03) [110]. In the same study, the ratio of breast cancer
patients with serum selenium in the first and fourth quartiles was associated to a higher
mortality rate (HR = 2.03, 95% CI: 1.12–3.65, p-value = 0.02). Conversely, the comparison of
27 oral squamous cell carcinoma patients and 86 controls reported higher selenium intake
in the former (142.9 µg daily) than in the latter (106.7 µg daily) group (Mann–Whitney
U test p-value = 0.002) [71].

4. Phosphorus

Phosphorus is one of the most abundant elements in the human body (after oxygen,
hydrogen, carbon, nitrogen, and calcium), accounting for about 1% of body weight and
being stored in the bones as hydroxyapatite (Ca10(PO4)6(OH)2) [111]. Dietary phospho-
rus is usually present in organic form (embedded mostly in proteins, nucleic acids, and
phospholipids) and requires specific enzymes to be recovered during digestion, hence its
adsorption rate has relatively low efficiency [112]. Phosphorus is present in virtually all
types of food [113], thus, even if deficiency of this mineral has been described and was
associated with a series of diseases, chiefly bone demineralization and myopathy, it is
hyperphosphatemia that is relevant in developed countries [114]. In particular, inorganic
phosphorus, in the form of phosphoric acid (H3PO4) is a common additive in soft drinks
and foodstuff and it is rapidly absorbed with approximately 100% efficiency [112,115,116].
The addition of phosphates to processed foods and canned drinks almost doubles the daily
intake of phosphorus [112,117,118]. Excess dietary phosphorus is linked to arteriosclerosis,
renal dysfunction, premature aging, and cancer [119]. Intake of phosphorus is complicated
by the fact that it is entangled with that of calcium and vitamin D, whose imbalance is also
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associated with an increased risk of cancer [120]. Moreover, even dietary fructose acts as an
additional bias because it decreases the intestinal adsorption of phosphate [121].

Vitamin D, in the active form of calcitriol, increases intestinal phosphate absorption
while decreasing renal excretion, thereby increasing phosphorus serum levels, whereas
hyperphosphatemia decreases calcitriol serum levels [122]. Calcium, on the other hand,
chelates phosphates, thus reducing the serum levels of phosphorus [123]. The interrelation
between calcitriol and phosphate generates a feedback mechanism that maintains the
homeostasis of phosphorus in the human body, but chronic hyperphosphatemia determines
the obliteration of the protective role of vitamin D, increasing the risk of cancer [123].
Vitamin D could reduce the insurgence of dysbiosis, reducing the risk of developing
colon cancer [124]. Interestingly, patients of different cancer types showed consistent
hyperphosphatemia [125] and cancer cells derived from several tissue types showed high
cellular levels of phosphate [126].

Experiments on mice showed that high phosphorus intake increases the risk of lung
cancer by activating the PI3K signaling pathway [127], whereas studies on cell lines
showed that phosphate can directly activate the protein kinase B (Ak strain transform-
ing (AKT)) [128]. The aberrant activation of the inositol 1,4,5-trisphosphate (IP3)/AKT
signaling pathway due to excess phosphate in the cells can explain the association of
hyperphosphatemia with several types of cancer [117]. Another role associated with high
increase in phosphorus intake is the fact that phosphate makes insoluble complexes with
calcium, depleting this mineral from binding bile acids known to foster bacteriosis and
oncogenesis [129–131].

Spectroscopic analysis of brain sections reported a significantly lower phosphorus
concentration in tumoral masses than in surrounding healthy tissues (1.71 and 3.01 µg/cm2,
respectively; Mann–Whitney U test p-value < 0.05) [75].

Comparison of men (n = 4123) in the upper over the lower quintile of the phosphorus
dietary intake showed a non-significant risk of prostate cancer (relative risk (RR) = 1.1,
95% CI: 0.7–1.8, test for trends = 0.45) [132]. Quantification of micronutrients in the diet in
a group of 6403 volunteers did not find a significant linear relation between phosphorus
intake and concentration of serum prostate specific antigen, but there was a non-linear
relationship due to an inflection point at a daily intake of 1151 mg [133]. A comparison
of 27 oral squamous cell carcinoma patients and 86 controls reported an increased intake
of phosphorus in the former (1761 mg daily) than in the latter (1431 mg daily) group
(Mann–Whitney U test p-value = 0.003) [71].

Comparison of the upper and the lower quartiles in 516 cases of colorectal adenomas
indicated a decreased risk of the insurgence of neoplasm (RR = 0.70, 95% CI: 0.54–0.90,
test for trends p-value = 0.005) [134]. Such a trend was not observed in the 172 colorectal
cancer-associated cases in the same study (RR = 0.73, 95% CI: 0.48–1.10, test for trends
p-value = 0.11). There was a slightly non-significant higher risk of bladder cancer when
comparing cases in the upper over the lower tertiles of daily phosphorus intake (OR = 1.82,
95% CI: 0.95–3.49, test for trends p-value = 0.06) [135]. When comparing cases in the upper
over the lower quintiles of daily phosphorus intake, there was a non-significant higher risk
of prostate cancer (OR = 1.20, 95% CI: 0.79–1.84, test for trends p-value = 0.39) [136]. There
was an increased relative risk of prostate cancer when comparing patients in the upper
over the lowest quintiles of daily phosphorus intake (RR = 1.12, 95% CI: 1.03–1.23, test for
trends, p-value = 0.003) in a cohort of 19 147 patients [137].

5. Iron and Iodine

Iron, like copper, is fundamental for cellular biochemistry due to its oxidoreductase
properties [138]. In particular, the link between cancer and iron is due to its involvement
in the oxidative status of the cell [65]. The bulk of dietary iron is absorbed in the duode-
num, whereas a large proportion of iron for human physiology is derived by recycling
old erythrocytes [139]. The iron found in fruits, vegetables, nuts, grains, and the majority
of meat is ferric (Fe3+) and not associated with the heme group, whereas approximately
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40% of meat-derived iron is part of the metalloporphyrin complex. Ferric iron is converted
to ferrous iron (Fe2+) by the duodenal cytochrome B reductase and transported by diva-
lent metal transporter 1 (DMT-1) inside intestinal epithelial cells (enterocytes), whereas,
an independent process internalizes the heme group, which contains ferrous iron [140].
Colonocytes are less efficient in heme uptake than enterocytes because they express less
DMT-1; as a result, these cells normally have low iron content. The meat-rich Western diet
has been associated with a daily intake of about 15 mg of iron (10% of it actually being
absorbed by the enterocytes) and has increased colorectal carcinoma (CRC) risk [138,141].
Vitamin C increases enterocytes heme-iron intake while calcium decreases it [142–144].
Ferrous iron is trapped inside proteinaceous shells made of ferritin, forming molecular
cages capable of holding up to 5000 iron atoms [145]. Iron is released into the bloodstream
by the enterocytes via ferroportin, where it is converted to ferric form and bound to plasma
transferrin [140]. The amount of serum iron is regulated by modulating the expression of
ferroportin and hepcidin; the latter binds ferroportin causing the degradation of this mem-
brane transporter [140]. Excess serum iron is deposited in several organs including liver,
pancreas, and heart causing several diseases such as cirrhosis, cardiomyopathy, diabetes,
and cancer. The oncogenesis of CRC and HCC has been linked to excess cellular iron and
the process is the same in the two tissues [146]. In animal models, a diet high in red meat
has been shown to increase the amount of heme in the colon, leading to an increase in the
frequency and size of colorectal polyps [143,147,148]. Colonocytes will be used to describe
the oncogenic process linked to iron.

The amount of iron inside cells is tightly regulated, and oncogenesis associated with
this micronutrient is caused by high levels of a powerful oxidoreductive species in the cellu-
lar environment. Through the Fenton reaction (Fe2+ + H2O2 + H+ → Fe3+ + H2O + HO•),
iron can produce hydroxyl radical (HO•) that belongs to ROS. Lipid peroxidation, in par-
ticular, will increase the number of radicals within the cell, alter cellular permeability, and
initiate an inflammatory response [149]. Vitamin C, in the form of ascorbate (AscH–) rescues
leaked ferrous iron by converting ferric iron to Fe2+, which can be taken up by ferritin,
but in the presence of a large amount of iron, it boosts the Fenton reaction by providing
even more ferrous iron: Fe3+ + AscH− → Fe2+ + H+ + Asc•− [150]. The ascorbic radical
(Asc•−) can also affect the mitochondrial respiration producing a ROS burst that causes
even further cellular damage [120]. ROS is also part of several signal pathways (such as
NF-κB, PI3K, and MAPK), hence, high levels of these free radicals promote aberration in
cellular proliferation and inflammation [151,152]. Iron is also included in the catalytic cen-
ters of the mitochondrial complexes I (nicotinamide adenine dinucleotide hydride (NADH)
dehydrogenase), II (succinate dehydrogenase), and III (cytochrome bc-1 complex) [153].

It is known that the amount of cellular iron is directly related to the proliferation of the
cells [65], due to the fact that iron is part of several enzymes that are involved in the DNA
replication (polymerases α, ε, and δ, DNA primase, and helicase) and repair (polymerase ζ,
helicase, DNA glycosylase, Fe2+/2-oxoglutarate-dependent dioxygenase) [154]. Iron is also
a component of the ribonucleotide reductase (RNR) enzyme that transforms ribonucleotides
to deoxyribonucleotides, without which DNA replication would be impossible [155,156].
Moreover, iron can promote cellular proliferation by activating the Wnt signaling pathway
in presence of adenomatous polyposis coli (APC) mutations, thus, increasing the CRC
risk [157].

Iodine is incorporated primarily in thyroid hormones, whereas its non-hormonal
activity is less understood but is believed to be also involved in the oxidative state of the
cells [158]. The biological role of iodine in oncogenesis is due to its role as a ROS scavenger
and lipoperoxidation inhibitor in the reduced form of iodide (I−) [159]. The RDA for iodine
is 150–299 µg daily, and abnormal intake is associated with widespread dysfunctions,
including disrupting the immune system.

The risk of developing any cancer was lower in people under a regime of low iron in-
take (n = 60) than in people under regular diet (n = 38), with an HR of 0.65 (95% CI: 0.43–0.97,
test for trends p-value = 0.36) [160]. Interestingly, a study on 11 026 cancer cases showed
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that the cancer risk increased at high (above 80 µg/dL) and low (below 60 µg/dL) serum
iron [161]. Low serum iron was associated with an HR of 1.18 (95% CI: 1.08–1.29), whereas
high levels had an HR of 1.25 (95% CI: 1.16–1.35).

A meta-analysis of the scientific literature reported that high serum iron was associated
with a higher risk of colorectal cancer (RR = 1.02, 95% CI: 0.75–1.38) as was high intake of
heme iron (RR = 0.93, 95% CI: 0.62–1.42) [162]. Other meta-analysis did not support such
trends, indicating an RR of 0.97 (95% CI: 0.82–1.14) in relation to iron intake [163]. Such
disparate findings highlight the paucity of knowledge about the role of iron in oncogenesis
and the need for additional research.

Serum iron below 60 µg/dL was associated with more prolonged survival of gastric
cancer patients in Stage III (log-rank test p-value = 0.033) [164]. A comparison of 27 oral
squamous cell carcinoma patients and 86 controls reported an increased iron intake in
the former (22.4 mg daily) than in the latter (18.9 µg daily) group (Mann–Whitney U test
p-value = 0.029) [71]. The comparison of blood iron in oral squamous-cell carcinoma was
significantly higher (t-test p-value < 0.001) than in healthy controls (194.6 and 128.6 µg/dL,
respectively) [73].

A comparison of breast cancer patients (n = 24) and healthy volunteers (n = 48) showed
a higher proportion of cases with urine iodine concentration above 200 µg/L (33.3%)
compared to the controls (2.1%) (χ2 test p-value = 0.001) [165]. A study of 5926 breast
cancer patients found an HR of 1.06 (95 % CI: 0.90–1.25) when comparing the upper quartile
of serum iron to the first quartile, though no significant relationship was found [166].
Measurement of iodine concentration by computed tomography in 80 rectal cancer patients
showed a correlation with the marker of cellular Ki-67 (Spearman correlation coefficient
r = 0.344, p-value = 0.002) and the tumor biomarker hypoxia-inducible factor 1α (HIF-lα)
(r = 0.598, p-value < 0.001), the latter used at a threshold of 0.584 g/cm3 to attain a 78%
sensitivity and 87% specificity in the detection of cancer [167].

Spectroscopic analysis of brain sections reported a significantly lower iron concen-
tration in tumoral masses than in surrounding healthy tissues (0.118 and 0.088 µg/cm2,
respectively; Mann–Whitney U test p-value < 0.01) [75]. When patients in the upper quartile
were compared to those in the lower quartile, low iron concentration in urine was associated
with a lower risk of developing large thyroid tumors, with an OR of 0.56 (95% CI: 0.35–0.9,
test for trends p-value = 0.026) [168].

6. Calcium

Calcium is part of many signaling pathways as second messenger and it takes part
directly in the cell-to-cell adhesion, hence calcium impairment has a profound effect on the
cell cycle, cellular proliferation, resistance to apoptosis, and metastasis [169,170]. Calcium is
also involved in the folding of proteins synthesized in the endoplasmic reticulum (ER) [171].
In particular, calnexin (CNX) is an enzyme embedded in the ER’s membrane that can
interact with nascent glycosylated proteins in a calcium-dependent manner [172].

Calcium is stored inside the ER by specific membrane pumps known as sarco/endoplasmic
reticulum calcium ATPases (SERCA) and released in the cytoplasm upon stimulation with
IP3 by channels known as IP3 receptors (IP3R) [173]. SERCA has been proposed as a tumor
biomarker due to the relation between its altered expression and cancer development [174].
Calreticulin (CRT) is present in the ER’s lumen and regulates both the intake and release of
calcium [175]. Both CNX and CRT has been linked to several diseases including cystic fibrosis,
atherosclerosis, Alzeimer’s disease, and cancer [171] and both can interact with the zinc-
containing endoplasmic reticulum resident protein 72 (ERp72) [176]. ERp72 over-expression is
associated to cellular proliferation and has been identified not only as part of the CNX/CRT
complex for the maturation of glycoprotein (where it acts as a disulfide isomerase), but is also
involved in the rapid internalization and nuclear translocation of vitamin D3 (in the form of
calcitriol), the activation of several transcription factors (such as NF-κB, mammalian target
of rapamycin complex 1 (mTORC1), and eukaryotic translation initiation factor 4E binding
protein 1 (4E-BP1)), and DNA repair (by modulating the activity of the redox factor-1 and by
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directly regulating the phosphorylation of histone H1AX) [177]. Moreover, calcium is loaded
onto calmodulin (CaM), which binds and modulates not only one member of the Ras family
of GTPases, Kirsten rat sarcoma (K-Ras), but many kinases, phosphatases, membrane pumps,
transcription factors, and proteins of the extracellular matrix [178,179].

The tissue calcium levels were measured at 1431 mg/kg in healthy subjects (n = 49)
and 657 mg/kg in prostate cancer patients (n = 50), with a statistically significant differ-
ence (p-values < 0.001) [103]. Serum calcium levels were similar between ovarian cancer
patients and healthy controls (9.34 and 9.31 mg/dL, respectively) but the normalization by
serum albumin content was significantly higher in cases than in controls (9.95 mg/dL and
9.53 mg/dL, respectively; p-value < 0.01) [180]. High serum calcium levels reduced the risk
of breast cancer: the ratio of the fourth over the first quartiles in a group of 10 863 patients
gave HR = 0.94 (CI: 0.8–0.99, test for trends p-value = 0.04) [181].

The comparison of blood calcium in oral squamous-cell carcinoma was significantly
higher (t-test p-value < 0.001) than in healthy controls (14.7 and 9.4 mEq/L, respec-
tively) [73]. Spectroscopic analysis of brain sections reported a significantly lower cal-
cium concentration in tumoral masses than in surrounding healthy tissues (0.088 and
0.182 µg/cm2, respectively; Mann–Whitney U test p-value < 0.01) [75].

Calcium levels can also identify patients at higher risk for metastases. However, a
cut-off of 2.5 mmol/L of calcium could identify bone metastases in bladder cancer patients
with a sensitivity of 32% and a specificity of 94%, with high calcium levels providing an
increased risk of metastasis (OR = 13.049, CI: 3.836–44.384, p-value < 0.001) [182]. A cut-off
of 2.7 could identify HCC patients at risk of ocular metastasis with a sensitivity of 19% and
a specificity of 97%, with high calcium levels providing an OR of 1.062 (CI: 1.028–1.096) for
the risk of metastasis [183].

7. Discussion

Nutrition’s role in oncogenesis is increasingly being researched and supported by new
scientific data. As a result, scientists are becoming more and more interested in determining
the role of micronutrients in DNA stability, epigenetic regulation, immunological response,
and in assessing their role as biomarkers.

Tumorigenesis is extremely complex and varies greatly between tumor entities due
to the involvement of multiple molecular processes. The present analysis revealed some
intriguing tendencies, even though there is no unified trend relating mineral intake and
cancer risk. Specifically, higher levels of copper, iron, and iodine were linked to higher
cancer risk, but zinc, selenium, calcium, and phosphorus had a more mixed relationship.
A higher mineral intake was linked to an increased risk of oral cancer (iron, selenium,
phosphorus, and zinc). Higher levels of zinc and copper, but lower levels of selenium,
were more associated with liver cancer. Prostate cancer, on the other hand, was associated
with higher phosphorus intake. The association between minerals and risk of cancer in
observational and intervention studies is summarized in Tables 2–4, respectively.

Table 2. Summary of the association between minerals and risk of cancer in observational studies.

Mineral Organ Sample Association * Measure † Reference

Zinc Breast Tissue Direct Qt [70]
Brain Tissue Inverse Qt [76]

Intake Inverse Qt [75]
Mouth Intake None Qt [71]

Serum Inverse Qt [73]
Liver Serum None HR [72]

Serum Direct Qt [78]
Colon Tissue Inverse OR [29]



Cancers 2022, 14, 1256 12 of 23

Table 2. Cont.

Mineral Organ Sample Association * Measure † Reference

Copper Liver Serum Direct HR [72]
Serum Direct Qt [78]

Mouth Serum Direct Qt [73]
Colon Tissue Direct OR [29]
Brain Tissue Inverse Qt [76]

Serum Direct Qt [77]
Intake Inverse Qt [75]

Pancreas Serum Direct Qt [74]
Selenium Esophagus Tissue Direct Qt [107]

Prostate Tissue None Qt [103]
Serum None
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rate ratio; OR: odds ratio; RR: relative risk. ║ Observed inverse trend by ethnic stratification. ¶ Ob-
served inverse trend by sex stratification. # Observed in adenomas but not in carcinomas. 

Table 3. Summary of the mineral levels in the studies retrieved for the present work. 

Mineral Cancer Entity Sample 
Case Group (Cancer) 

Mean Mineral Content  
Number of Patients 

Control Group (Healthy) 
Mean Mineral Content 

Number of Patients 
Reference 

Zinc Breast Tissue † 3.5–19.5 ppm (n = 26) 0.8–11.4 ppm (n = 26) [70] 
 Glioblastoma Tissue 0.0403 µg/cm2 (n = 11)   0.0285 µg/cm2 (n = 11) [75] 
  Tissue † 0.20 g/kg (n = 6) 0.27 g/kg (n = 6) [76] 
 Colon Serum 96.4 µg/dL (n = 966) 97.1 µg/dL (n = 966) [29] 

Copper Glioblastoma Tissue 0.0090 µg/cm2 (n = 11)   0.0079 µg/cm2 (n = 11) [75] 
  Tissue † 0.48 g/kg (n = 6) 1.26 g/kg (n = 6) [76] 
  Serum 27.5 µmol/L (n = 52) ‡ 19.7 µmol/L (n = 52) ‡ [77] 
 Colon Serum 138.6 µg/dL (n = 966) 135.8 µg/dL (n = 966) [29] 
 Pancreas Serum 1432 µg/L (n = 100) 1098 µg/L (n = 100) [74] 

Selenium Any Serum 58.8 µg/L * 84.8 µg/L (n = 966) [99,106] 
 Esophageal Tissue † 0.73 µg/g (n = 30) ‡ 0.59 µg/g (n = 30) ‡ [107] 
 Prostate Tissue 191 µg/kg (n = 49) 168 µg/kg (n = 49) [103] 
  Serum 0.13 µg/g (n = 467) 0.14 µg/g (n = 936) [104] 
 Breast Serum 90.5 ng/mL (n = 100) 91.3 ng/mL (n = 1186) [109] 
 Liver Serum 67.47 µg/L (n = 187) 108.38 µg/L (n = 120) [105] 
 Colon Serum 84.0 µg/L (n = 966) 85.6 µg/L (n = 966) [106] 
 Pancreas Serum 60.0 µg/L (n = 100) 76.0 µg/L (n = 100) [74] 
 Lung Serum 166.00 ng/g (n = 48) 144.74 ng/g (n = 39) [100] 
 Renal Serum 161.7 µg/L (n = 401) 288.8 µg/L (n = 774) [102] 

Phosphorus Glioblastoma Tissue 1.71 µg/cm2 (n = 11) 3.01 µg/cm2 (n = 11) [75] 
Iron Glioblastoma Tissue 0.037 µg/cm2 (n = 11) 0.118 µg/cm2 (n = 11) [75] 

 Oral Serum 194.6 µg/dL * 128.6 µg/dL * [73] 
Calcium Prostate Tissue 657 mg/kg (n = 50) 1431 mg/kg (n = 49) [103] 

 Oral Serum 14.7 mEq/L * 9.4 mEq/L * [73] 
 Ovary Serum 9.34 mg/dL (n = 170) 9.31 mg/dL (n = 344) [180] 

* No number of people per group reported. † Comparison between tumoral mass and healthy sur-
rounding tissues. ‡ Estimated from article’s figures using WebPlotDigitizer v. 4.5 [184]. 

Table 4. Summary of the daily intake of minerals in the studies retrieved for the present work. 

Mineral Cancer Entity 
Case group (Cancer) 
Mean Mineral Intake 
Number of Patients 

Control Group (Healthy) 
Mean Mineral Intake 
Number of Patients 

Reference 

Zinc Oral 12 851 µg/day (n = 27) 11 788 µg/day (n = 86) [71] 
 Bladder 14.5 mg/day (n = 198) 14.7 mg/day (n = 377) [135] 

Copper Bladder 2.5 mg/day (n = 198) 2.8 mg/day (n = 377) [135] 
Selenium Oral 142.9 µg/day (n = 27) 166.7 µg/day (n = 86) [71] 

Phosphorus Oral 1761 mg/day (n = 27) 1431 mg/day (n = 86) [71] 
 Bladder 1898.3 mg/day (n = 198) 1940.4 mg/day (n = 377) [135] 

Iron Oral 22.4 mg/day (n = 27) 18.9 mg/day (n = 86) [71] 
 Bladder 21.3 mg/day (n = 198) 23.1 mg/day (n = 377) [135] 

Calcium Bladder 1127.2 mg/day (n = 198) 1194.5 mg/day (n = 377) [135] 

Qt [104]
Any Serum None Qt [98]

Serum Inverse Qt [99]
Liver Serum Inverse Qt [105]

Serum Inverse Qt [108]
Colon Serum None ¶ IR [106]

Pancreas Serum Inverse OR [74]
Breast Serum Inverse HR [109]

Serum Inverse HR [110]
Lung Serum None Qt [100]
Lung Serum Direct HR [101]

Kidney Serum Inverse OR [102]
Mouth Intake Direct Qt [71]

Phosphorus Brain Intake Direct Qt [75]
Prostate Intake None RR [133]

Intake Direct Cr [133]
Intake Direct OR [137]
Intake None OR [136]

Colon Intake Inverse # RR [134]
Bladder Intake None OR [135]
Mouth Intake Direct Qt [71]

Calcium Prostate Tissue Direct Qt [103]
Brain Intake Direct Qt [75]
Ovary Serum Direct Qt [180]
Breast Serum Inverse HR [181]
Mouth Serum Direct Qt [73]

Iron Any Serum Direct/Inverse HR [161]
Intake Direct HR [160]

Stomach Tissue Direct Qt [164]
Brain Intake Direct Qt [75]

Mouth Intake Direct Qt [71]
Serum Direct Qt [73]

Breast Serum None HR [166]
Thyroid Urine Direct OR [168]

Iodine Breast Urine Direct Qt [165]
Rectum Tissue Direct Cr [167]

* Direct: high micronutrient concentration is linked to an increased risk of cancer; inverse: low micronutrient
concentration is linked to an increased risk of cancer; none: no significance observed. † Cr: correlation; Qt: com-
parison of levels between groups; HR: hazard ratio; IR: incidence rate ratio; OR: odds ratio; RR: relative risk.
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Table 3. Summary of the mineral levels in the studies retrieved for the present work.

Mineral Cancer Entity Sample
Case Group (Cancer)

Mean Mineral Content
Number of Patients

Control Group (Healthy)
Mean Mineral Content

Number of Patients
Reference

Zinc Breast Tissue † 3.5–19.5 ppm (n = 26) 0.8–11.4 ppm (n = 26) [70]
Glioblastoma Tissue 0.0403 µg/cm2 (n = 11) 0.0285 µg/cm2 (n = 11) [75]

Tissue † 0.20 g/kg (n = 6) 0.27 g/kg (n = 6) [76]
Colon Serum 96.4 µg/dL (n = 966) 97.1 µg/dL (n = 966) [29]

Copper Glioblastoma Tissue 0.0090 µg/cm2 (n = 11) 0.0079 µg/cm2 (n = 11) [75]
Tissue † 0.48 g/kg (n = 6) 1.26 g/kg (n = 6) [76]
Serum 27.5 µmol/L (n = 52) ‡ 19.7 µmol/L (n = 52) ‡ [77]

Colon Serum 138.6 µg/dL (n = 966) 135.8 µg/dL (n = 966) [29]
Pancreas Serum 1432 µg/L (n = 100) 1098 µg/L (n = 100) [74]

Selenium Any Serum 58.8 µg/L * 84.8 µg/L (n = 966) [99,106]
Esophageal Tissue † 0.73 µg/g (n = 30) ‡ 0.59 µg/g (n = 30) ‡ [107]

Prostate Tissue 191 µg/kg (n = 49) 168 µg/kg (n = 49) [103]
Serum 0.13 µg/g (n = 467) 0.14 µg/g (n = 936) [104]

Breast Serum 90.5 ng/mL (n = 100) 91.3 ng/mL (n = 1186) [109]
Liver Serum 67.47 µg/L (n = 187) 108.38 µg/L (n = 120) [105]
Colon Serum 84.0 µg/L (n = 966) 85.6 µg/L (n = 966) [106]

Pancreas Serum 60.0 µg/L (n = 100) 76.0 µg/L (n = 100) [74]
Lung Serum 166.00 ng/g (n = 48) 144.74 ng/g (n = 39) [100]
Renal Serum 161.7 µg/L (n = 401) 288.8 µg/L (n = 774) [102]

Phosphorus Glioblastoma Tissue 1.71 µg/cm2 (n = 11) 3.01 µg/cm2 (n = 11) [75]
Iron Glioblastoma Tissue 0.037 µg/cm2 (n = 11) 0.118 µg/cm2 (n = 11) [75]

Oral Serum 194.6 µg/dL * 128.6 µg/dL * [73]
Calcium Prostate Tissue 657 mg/kg (n = 50) 1431 mg/kg (n = 49) [103]

Oral Serum 14.7 mEq/L * 9.4 mEq/L * [73]
Ovary Serum 9.34 mg/dL (n = 170) 9.31 mg/dL (n = 344) [180]

* No number of people per group reported. † Comparison between tumoral mass and healthy surrounding tissues.
‡ Estimated from article’s figures using WebPlotDigitizer v. 4.5 [184].

Table 4. Summary of the daily intake of minerals in the studies retrieved for the present work.

Mineral Cancer Entity
Case Group (Cancer)
Mean Mineral Intake
Number of Patients

Control Group (Healthy)
Mean Mineral Intake
Number of Patients

Reference

Zinc Oral 12,851 µg/day (n = 27) 11,788 µg/day (n = 86) [71]
Bladder 14.5 mg/day (n = 198) 14.7 mg/day (n = 377) [135]

Copper Bladder 2.5 mg/day (n = 198) 2.8 mg/day (n = 377) [135]
Selenium Oral 142.9 µg/day (n = 27) 166.7 µg/day (n = 86) [71]

Phosphorus Oral 1761 mg/day (n = 27) 1431 mg/day (n = 86) [71]
Bladder 1898.3 mg/day (n = 198) 1940.4 mg/day (n = 377) [135]

Iron Oral 22.4 mg/day (n = 27) 18.9 mg/day (n = 86) [71]
Bladder 21.3 mg/day (n = 198) 23.1 mg/day (n = 377) [135]

Calcium Bladder 1127.2 mg/day (n = 198) 1194.5 mg/day (n = 377) [135]

Remarkably, the observation that cancer risk increases with both low and high serum
iron levels [161] implies that maintaining physiological levels of micronutrients is critical to
avoiding an imbalance of cellular biochemistry that can promote oncogenesis. A balanced
diet can ensure the intake of the Goldilocks’ quantities of micronutrients, but the depletion
of minerals and vitamins in foodstuff makes this increasingly difficult. Regularly checking
the mineral levels can help identify whether the physiological range has been met or if the
“hidden hunger” has developed increasing the cancer risk.

Given the interdependence of many micronutrients, predicting the role of a single
mineral on the oncogenic pathway is cumbersome. For example, serum phosphorus is also
linked to calcium and vitamin D and the cellular bioavailability of iron depends on that of
vitamin C. Such complexities suggest that minerals may not be suitable cancer biomarkers
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individually, but a panel of said micronutrients, including vitamins, may provide a more
complete picture. Because multiple variables must be considered, it is plausible to expect
that micronutrient panels would be best analyzed using machine learning approaches,
providing personalized indices to assess a potential increased cancer risk.

An imbalanced diet that is often involved in cancer development, is a clear and
present danger, especially in industrialized countries. It is not only the high food intake
that represents a problem. The vast majority of consumers are unaware of the actual
composition of the food or beverages they consume, a situation exacerbated by the fact
that food safety authorities do not require manufacturers to declare the actual amounts of
micronutrients present in the aliments [185]. The trend in micronutrient depletion reported
in the last decades, coupled with the increasing prevalence of the “hidden hunger”, suggests
that health issues associated with the nutritional deficiency will become more prominent
in the near future. According to the World Health Organization, two billion individuals
worldwide, including those in wealthy countries, suffer from micronutrient deficiency that
is largely clinically undetected [186]. The addition of micronutrients to food (fortification)
has been purposely introduced to fight the spread of nutritional deficiencies [187]. However,
the effectiveness of this precaution is still debated and does not consider its role on cancer
prevention [188–191].

While most knowledge on the medical effect of minerals is associated with high
intakes, the impact of mineral deprivation on oncogenesis is still not fully understood. The
most recognized medical conditions associated with minerals deficiencies, such as MD, are
congenital and include stillbirth, high infant mortality, and impaired development. The role
of the mineral deficiency in adulthood and its involvement in oncogenesis is still unclear.

The data gathered here highlight a direct association between high intake of micronu-
trients (namely copper, iron, and iodine) and cancer risk. The message of this review may
point to a potential contradiction: while the average amount of micronutrients in food is de-
creasing, a higher cancer risk is associated with a higher amount of minerals. The solution
to this paradox could be two-sided. On the one side, while most mineral concentrations in
food are reduced, some minerals are augmented; this is particularly true for phosphorus
and iron, particularly from heme. Mineral depletion, on the other side, may cause cells
to adopt a transformed phenotype that abnormally increases the intracellular amount of
micronutrients, for example, through the aberrant expression of surface importers.

Assuring a well-balanced diet is a difficult task, especially in a food market dominated
by advertisements for “junk food”. Rather than relying on labels to report the amounts
of selected ingredients (a process hampered by manufacturers’ use of incomprehensible
chemical names for key health-associated micronutrients), it is more feasible to embrace
population-wide nutritional education. If children are educated on a balanced diet be-
ginning in primary school in a few generations, consumers will be the advisors of their
nutritional intake without relying too much on labels. Nutrition deficiency will be reduced
in this context, as will the biochemical risks associated with micronutrient overload.

8. Conclusions

In conclusion, the present review confirms the potential of micronutrients as biomark-
ers, although the strong interdependence of micronutrient levels, could necessitate looking
at a wide range of micronutrients to increase significance of the findings. There was a
tendency of a direct link between copper, iron, iodine, phosphorus, and zinc levels and
development of different cancer types, with the exception of colon cancer. Selenium serum
levels were instead inversely related to cancer risk. However, more data are needed to
assess the effectiveness of these biomarkers and if they are suitable only for specific types
of cancer. Clustered micronutrient analyses could help the establishment of suitable mi-
cronutrient panels with diagnostic value to predict individual cancer risk and to facilitate
predictions about the prognosis of particular types of cancer. Furthermore, the individual
necessity of supplementation with food supplements, especially micronutrients, should
always be critically questioned as long as there is no evident deficiency.
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4E-BP1 eukaryotic translation initiation factor 4E binding protein 1
A20 zinc finger protein A20
AKT Ak strain transforming
APC adenomatous polyposis coli
AR average requirement
AscH− ascorbate
ATP7A ATPase copper transporter 7A
ATOX1 antioxidant-1
Braf rapidly accelerated fibrosarcoma isoform B
CaM calmodulin
CI confidence interval
CNX calnexin
Cr correlation
CRC colorectal carcinoma
CRT calreticulin
CytC cytochrome c
DMT-1 divalent metal transporter 1
DNA-pol DNA polymerase
EAR estimated average requirement
ER endoplasmic reticulum
Erp72 endoplasmic reticulum resident protein 72
ERK extracellular signal-regulated kinase
GPx glutathione peroxidase
HCC hepatocellular carcinoma
HIF-lα hypoxia-inducible factor 1α
HR hazard ratio
IκB NF-κB inhibitor
IKK IκB kinase
IP3 inositol 1,4,5-trisphosphate
IP3R inositol trisphosphate receptor
K-Ras Kirsten rat sarcoma
LOX lysyl oxidase
MAPK mitogen-activated protein kinase
MAPKK mitogen-activated protein kinase kinase
MD Menkes disease
MEK MAPK/ERK kinase
MEMO1 mediator of cell motility 1
mTORC1 mammalian target of rapamycin complex 1
MURR1 mouse U2af1-rs1 region 1
NADH nicotinamide adenine dinucleotide hydride
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
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OR odds ratio
OS overall survival
PI3K phosphoinositide 3-kinase
PRI population reference intake
ppm parts per million
Q coenzyme Q
Qt quantitative comparison of levels between groups
Raf rapidly accelerated fibrosarcoma
Ras rat sarcoma virus
RDA recommended daily allowance
RNR ribonucleotide reductase
ROS reactive oxygen species
RR relative risk
Sec selenocysteine
SECIS Sec insertion sequence
Sep15 selenoprotein of 15-kDa
SERCA sarco/endoplasmic reticulum calcium ATPase
SOD superoxide dismutase
SPARC secreted protein acidic and rich in cysteine
TR1 thioredoxin reductase 1
UL tolerable upper intake level
ULK Unc-51-like autophagy activating kinase
Wnt wingless/int-1
XIAP X-linked inhibitor of apoptosis
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