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Abstract
The paper-based immunoassay for point-of-care diagnostics is widely used due to its low

cost and portability over traditional lab-based assays. Lateral-flow immunoassay (LFA) is

the most well-established paper-based assay since it is rapid and easy to use. However,

the disadvantage of LFA is its lack of sensitivity in some cases where a large sample vol-

ume is required, limiting its use as a diagnostic tool. To improve the sensitivity of LFA, we

previously reported on the concentration of analytes into one of the two bulk phases of an

aqueous two-phase system (ATPS) prior to detection. In this study, we preserved the

advantages of LFA while significantly improving upon our previous proof-of-concept studies

by employing a novel approach of concentrating gold nanoparticles, a common LFA colori-

metric indicator. By conjugating specific antibodies and polymers to the surfaces of the par-

ticles, these gold nanoprobes (GNPs) were able to capture target proteins in the sample

and subsequently be concentrated within 10 min at the interface of an ATPS solution com-

prised of polyethylene glycol, potassium phosphate, and phosphate-buffered saline. These

GNPs were then extracted and applied directly to LFA. By combining this prior ATPS inter-

face extraction with LFA, the detection limit of LFA for a model protein was improved by

100-fold from 1 ng/μL to 0.01 ng/μL. Additionally, we examined the behavior of the ATPS

system in fetal bovine serum and synthetic urine to more closely approach real-world appli-

cations. Despite using more complex matrices, ATPS interface extraction still improved the

detection limit by 100-fold within 15 to 25 min, demonstrating the system’s potential to be

applied to patient samples.

Introduction
Developing a detection assay for proteins that is rapid, portable, and also sensitive has been
challenging in the field of diagnostics [1]–[3]. Lab-based immunoassays, such as the enzyme-
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linked immunosorbent assay (ELISA), display good sensitivity and are the gold standard for
detecting protein targets. However, lab-based assays are not practical for use in resource-poor
settings that lack power, equipment, and trained personnel. On the other hand, the paper-
based lateral-flow immunoassay (LFA) is inexpensive, rapid, portable, and easy to use. How-
ever, the sensitivity of LFA is lower than that of lab-based assays, and LFA cannot therefore be
used to detect target proteins that are present at low concentrations [4], [5]. Hence, while LFA
is very popular and effective in detecting the glycoprotein human chorionic gonadotropin
(hCG), a biomarker for pregnancy which exists abundantly in urine from a pregnant woman
[6], LFA is not widely used in areas where the target proteins in sample solutions are not as
abundant, such as in the detection of infectious and biowarfare agents [3], [7], [8].

The detection limit of LFA is typically 1–2 orders of magnitude higher than ELISA [2].
While concentrating targets in a sample prior to detection can improve the detection limit,
concentrating proteins generally requires lab-based equipment and therefore typically cannot
be combined with point-of-care assays. Our laboratory however has been focusing on concen-
trating the target analytes into one of the bulk phases (top or bottom) of aqueous two-phase
systems (ATPSs).

The ATPS is adaptable to a practical, clinical laboratory test since it is also portable, easy to
use, and phase separation does not require laboratory equipment. Some ATPSs like the poly-
ethylene glycol (PEG)-salt system exhibit a homogeneous, isotropic phase at low temperatures,
but upon increasing temperature phase separation is induced [9]. If biomolecules are present
in an ATPS solution, they will distribute, or partition, between the two bulk phases based on
their physical and chemical properties, such as size and hydrophobicity.

We previously concentrated biomolecules by adjusting the operating conditions of the
ATPS to establish a volume ratio, defined as the ratio of the volume of the top phase to that of
the bottom phase, that was much greater or much less than 1. This reduced the volume of the
phase where the target molecules partitioned, effectively concentrating the target molecules in
a small volume phase that was then extracted and applied to the subsequent detection assay.
Specifically, we successfully used micellar and PEG-salt ATPSs to concentrate a model virus by
10-fold and subsequently improved the detection limit of LFA by 10-fold [9], [10]. For protein
biomarkers, which are smaller than viruses and thus require the use of different concentration
techniques, we captured the protein of interest in the sample using gold nanoprobes (GNPs),
or gold nanoparticles decorated with specific antibodies. The large size of the GNPs was then
used to concentrate the model protein by 10-fold, which improved the detection limit of LFA
by 10-fold [11], [12].

While we have demonstrated the combination of ATPS with LFA, the improvement of LFA
depends on the fold-concentration that can be achieved in the ATPS, and this depends entirely
on how small of a volume can be achieved for the target-rich phase. A more extreme volume
ratio therefore will yield a more concentrated target biomolecule. A higher concentration of
biomolecules will ensure that true results are obtained for the LFA competition assay format
unlike the increased possibility of false negative results for the sandwich assay format as
described by the hook effect [13]. However, more extreme volume ratios result in longer phase
separation times since it takes longer for the microscopic domains that form the smaller phase
to find each other, coalesce, and travel to the respective top or bottom phase [14]. In this study,
we optimized the concentration of biomolecules using a single ATPS step by driving the target
biomolecules towards the interface between the two bulk phases. Since the interfacial region
represents a very small volume region that can form irrespective of the volume ratio, this novel
approach allows us to concentrate the targets without dependence on extreme volume ratios,
which have long phase separation times. Instead, the volume ratio that can reach equilibrium
the fastest was chosen, and this reduced the extraction time to within 10 min in phosphate-
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buffered saline (PBS), a significant improvement over our previous approach. We also view
this approach as moving towards the maximum fold-concentration that can be achieved in a
single ATPS step since the volume of the interface is much smaller than the two macroscopic
bulk phases. Last but not least, increasing the sample volume would increase the total number
of target molecules, and would potentially lead to saturation of the antibodies for a given fixed
amount of GNPs. However, the volume that can flow through the LFA test strip is limited by
the size of the strip. Interface extraction allows for the sample volume to be increased without
increasing phase separation time in order to detect low concentrations of target proteins,
improving the sensitivity of an assay. Fig 1 pictorially compares interface extraction with
extraction of one of the two bulk phases.

The technological innovation described in this manuscript is the development of nanop-
robes that can localize at the interface and also serve as the colorimetric indicator for LFA. We
investigated the volume ratio that phase separated the fastest and also allowed for the greatest
recovery of GNPs. Subsequently, using a model protein transferrin (Tf), we demonstrated that
our novel method of combining LFA with the ATPS interface extraction step is an effective yet
rapid approach by improving the detection limit for LFA for Tf by 100-fold. We then extended
our studies to more closely approach real-world applications, and reoptimized the system for
fetal bovine serum (FBS) [15], [16] and synthetic urine [17], [18], in smaller volumes, which
are preferable for blood sampling. Our data shows that, even in the more complex systems
which required a few procedural modifications such as increasing the incubation time allotted
for phase separation to occur, ATPS interface extraction can be performed within 15–25 min
to concentrate the target 100-fold. This led to a 100-fold improvement in the detection limit of
LFA for Tf, which allowed us to detect concentrations as low as 0.01 ng/μL, closing the gap in
sensitivity between lab-based and paper-based immunoassays. An improved LFA with
increased sensitivity would improve point-of-care solutions that require concentration of the
target ligand. Overall, the ATPS interface extraction protocol is a general pre-concentration
technique applicable to LFA and other detection methods when the concentration of targets is
low.

Materials and Methods

Radiolabeling the anti-Tf antibody
All reagents and materials were purchased from Sigma-Aldrich (St. Louis, MO) unless noted
otherwise. Iodine-125 (125I) was used to radiolabel the tyrosine residues of goat anti-human Tf
polyclonal antibody (Catalog # A80-128A, Bethyl Laboratories, Montgomery, TX). Briefly,
Na125I (MP Biomedicals, Irvine, CA) was activated by IODO-BEADS (Pierce Biotechnology,
Rockford, IL). Subsequently, the activated 125I was reacted with goat anti-Tf antibodies for 15
min. The radiolabeled proteins were purified, and free 125I was removed using a Sephadex G10
size-exclusion column. The phosphotungstic acid assay was used to quantify the radioactivity
and concentration of the radiolabeled proteins.

Preparing GNPs
The naked gold nanoparticles were prepared using a protocol described by Frens [19], [20],
resulting in a clear, cherry-colored solution with particle sizes approximately 20 nm in diame-
ter, measured using transmission electron microscopy (TEM). Specifically, 27 mg of sodium
citrate was added to 50 mL of filtered ultrapure water and 500 μL of 1% gold (III) chloride that
was maintained at 100°C while stirring at 400 revolutions per minute for 2 min. The absorption
(A) wavelength of the maximum Plasmon peak of the gold particles was found using a UV-Vis
spectrophotometer. The diameter size of the particles was found using dynamic light scattering
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and was compared to a molar decadic extinction coefficient (ε) chart provided by BBInterna-
tional Life Sciences (S1 Table) to determine the corresponding ε value. For a path length (l) of
1 cm, we were able to calculate the molar concentration (C) of the gold particles by rearranging
Beer’s law (A = εlC). TEM was then used to image the naked gold nanoparticles (Fig 2). 2.5 μL
of the sample was placed on an EMS carbon film 200 mesh grid (Electron Microscopy Sciences,
Hatfield, Pennsylvania) and filter paper was used to wick away any excess. The grid was left to
air dry at ambient temperature prior to being imaged using a FEI TF20 transmission electron
microscope (FEI Company, Hillsboro, Oregon) at 200 kV. The average size of the gold nano-
particles was found to be 20.0 ± 3.0 nm from analysis of the TEM image in Fig 2 using ImageJ.

To prepare the GNPs, 320 mg of goat anti-Tf antibody was incubated with 3.60 x 1018 col-
loidal gold particles, prepared in an NaOH buffer adjusted to pH 9, for 30 min, followed by the
addition of 0.1 mg/mL thiolated-PEG5000, using a molar ratio of 3500:1 for PEG:GNP and an
additional incubation of 30 min. To prevent nonspecific binding of other proteins to the sur-
faces of the colloidal gold, 2 mL of a 10% bovine serum albumin (BSA, Sigma Aldrich catalog
#B4287, lyophilized crystal form dissolved in filtered ultrapure water) solution was added to
the mixture and mixed for an additional 10 min. The resulting solution was gently mixed on a
shaker during the incubation period. To remove free (unbound) antibodies, PEG, and BSA, the
mixture was subsequently centrifuged for 30 min at 4°C and 9,000 g. The pellet of GNPs was
washed twice with a 1% BSA solution. Finally, the recovered GNPs were resuspended in 2 mL
of a 0.1 M sodium borate buffer at pH 9.0.

Partitioning GNPs
The GNPs decorated with radiolabeled anti-Tf antibodies were partitioned in the ATPS at the
different conditions shown in Table 1 to determine the volume ratio that could yield the fastest

Fig 1. Summary of the technical innovation of engineering particles capable of partitioning to the
interface of an ATPS to concentrate a target and the improvements in PBS relative to our previous
proof-of-concept studies.

doi:10.1371/journal.pone.0142654.g001
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and highest GNP recovery. For each partitioning experiment, 3 identical PEG-salt solutions in
Dulbecco’s phosphate-buffered saline (PBS; Invitrogen, pH 7.4, ionic strength 154 mM) were
prepared to a total volume of 1500 μL. PEG-salt ATPS solutions with three different volume
ratios (1:1, 6:1 and 1:6) were prepared using specific concentrations of PEG and potassium
phosphate. Subsequently, 10 μL of GNP decorated with radiolabeled anti-Tf antibodies were
added to each ATPS solution. The solutions were equilibrated at 0°C to ensure that the solu-
tions were homogeneous. Once equilibrium at 0°C was attained, the solutions were incubated
in a water bath at 37°C to induce phase separation, and the GNPs were found to partition
between the two coexisting phases. The GNPs at the interface were withdrawn carefully using a

Fig 2. Transition electronmicroscopy (TEM) image of naked gold nanoparticles. Nanoparticles were suspended in filtered ultrapure water. Length of
the scale bar corresponds to 40 nm. ImageJ analysis indicated the particle diameter to be 20.0 ± 3.0 nm (n = 275).

doi:10.1371/journal.pone.0142654.g002
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pipette, and 30 μL of the interface solution were withdrawn to ensure most, if not all, of the
GNPs at the interface were collected. The two coexisting phases were also completely with-
drawn separately using pipettes. The amounts of GNPs at the interface and in the two coexist-
ing phases were quantified by measuring the amount of radioactivity in each region using the
Cobra Series Auto-Gamma Counter since the GNPs were bound to radiolabeled anti-Tf anti-
bodies. The quantified amount of GNPs in each of the three regions was used to calculate the
recovery percentage of the GNPs at the interface using a mass balance equation.

Preparing the LFA test strip
A competition mechanism was implemented for the LFA (Fig 3). In the competition assay
[12], the target of interest is immobilized on a nitrocellulose membrane to form the test line.
Immobilized secondary antibodies against the primary antibodies on the GNPs make up the
control line. The antibodies on the GNPs will always bind to the immobilized secondary anti-
bodies, creating a visible control line which indicates a valid test. The GNPs form a visual band
at the test line if their conjugated antibodies are not saturated with the target. As shown in Fig

Table 1. Recovery of the GNPs as a function of different phase volume ratios.a

Volume ratio (top phase:bottom phase)

1:1 6:1 1:6

Phase separation time (min) 10 60 30

Radioactivity of GNP at interface (cpm ± SD) 4130 ± 290 3240 ± 200 2390 ± 520

GNP recovery at interface (%) 84.1 ± 1.8 64.8 ± 1.8 70.9 ± 6.6

Radioactivity of GNP in top phase (cpm ± SD) 371 ± 80 940 ± 71 547 ± 140

GNP recovery in top phase (%) 7.5 ± 1.3 18.8 ± 1.5 16.1 ± 0.9

Radioactivity of GNP in bottom phase (cpm ± SD) 408 ± 61 818 ± 110 450 ± 180

GNP recovery in bottom phase (%) 8.3 ± 1.1 16.3 ± 1.8 13.0 ± 3.2

aStudies were performed using 1.5 mL of ATPS. Data are reported as mean ± standard deviation (SD), where n = 3.

doi:10.1371/journal.pone.0142654.t001

Fig 3. Schematic representation of the integration of ATPS interface extraction with competition-
based LFA and the interpretations of the positive and negative results. An ATPS solution was
constructed and allowed to phase separate for 10 min in PBS and 25 min in FBS and synthetic urine in a
glass tube prior to the extraction of 30 μL of the interface containing GNPs. The extracted sample was then
applied to an LFA test strip and results were read after 10 min for the PBS system and after 25 min for the
FBS and synthetic urine systems. The appearance of only the control line indicated a positive result while the
appearance of both the control and test lines indicated a negative result.

doi:10.1371/journal.pone.0142654.g003
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3, a positive result will be indicated by the presence of one visual band while a negative result
will be indicated by the presence of two visual bands.

The lateral flow strip consists of a nitrocellulose membrane, as well as cellulose paper for the
sample pad and absorbance pad. 50 μL sucrose solutions were prepared to be printed across
the nitrocellulose membrane using a Becton Dickinson plasti-pak syringe and a Harvard Appa-
ratus PHD 2000 microfluidic syringe pump set at an infuse rate of 250 μL/min. The control
line was printed using a 0.5 mg/mL solution of anti-goat IgG (Bethyl Laboratories). The test
line was printed using a 2.5 mg/mL solution of Tf. The three paper components of the lateral
flow strip were connected through an adhesive backing.

Performing LFA with Tf but without pre-concentration
Tf stock solutions containing varying concentrations of Tf were prepared in PBS. Subsequently,
20 μL of each Tf stock solution were added to 10 μL of the GNP suspension and 20 μL of test
buffer (0.2% BSA, 0.3% Tween20, 0.2% sodium azide, 0.1% PEG, 0.1 M Trizma buffer, pH 8),
which were used to aid the flow of the samples through the test strips. A total of 5 sample solu-
tions (50 μL each) with various concentrations of Tf were prepared (0 (negative control), 0.001,
0.01, 0.1, and 1 ng/μL). A test strip was dipped vertically into each sample solution, where the
sample pad would come in contact with the solution. After 10 min, the test strips were taken
out, and an image of each strip was immediately taken by a Canon EOS 1000D camera (Canon
U.S.A., Inc., Lake Success, NY).

In the experiments performed in FBS (HyClone, characterized, pH 7.4), a 270.6 ng/mL
GNP suspension was used so that the volume of GNP could be scaled down appropriately for
the lower-volume experiments. The concentrations of Tf in the FBS stock solutions were
adjusted to achieve the same final Tf concentrations used in the PBS experiments by adding
5 μL of a Tf stock solution to 5 μL of GNP suspension, followed by 40 μL of test buffer. Simi-
larly, experiments were conducted using synthetic urine prepared with a method described by
Martinez [21].

Combining the ATPS interface extraction with LFA for Tf
A volume ratio of 1:1 was used for the study conducted in PBS based on the findings from the
Partitioning GNPs experiment. By utilizing anti-Tf antibodies, the GNPs first captured Tf in
the sample, followed by the entire Tf-GNP complex being concentrated at the interface. A simi-
lar protocol to that described in the Partitioning GNPs section was used except that various
concentrations of Tf were also spiked into the ATPS solutions. Briefly, 10 μL of the 69.7 ng/mL
GNP suspension were added to 4990 μL of the Tf-spiked ATPS solution that yielded a 1:1 vol-
ume ratio and that contained various Tf concentrations (0 (negative control), 0.001, 0.01, and
0.1 ng/μL). The solutions were equilibrated at 0°C to ensure that the solutions were homoge-
neous. Once equilibrium was attained, the solutions were placed in a water bath at 37°C to trig-
ger phase separation. After 10 min, 30 μL of the interface solution, which contained the Tf and
the 19 ng/mL concentrated GNPs that were concentrated approximately 42-fold, were with-
drawn. This interface solution was mixed with 20 μL of test buffer to form the 50 μL sample
solutions. The lateral flow strip was inserted vertically into a tube containing the solution, and
the tube container held the strip. After 10 min, the test strips were taken out, and an image of
each strip was immediately taken by a Canon EOS 1000D camera.

For the studies conducted in FBS and synthetic urine, the PEG and potassium phosphate
concentrations needed to first be adjusted to achieve the 1:1 volume ratio. The ATPS in FBS
also phase separated more slowly, and instead of the 10 min incubation used in the PBS system,
the solutions were kept in a 37°C water bath for 25 min. In addition, as mentioned earlier, the
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volumes were reduced to more closely resemble a practical application. Therefore, rather than
show a detection limit increase using 5000 μL (100 times more volume than the 50 μL Tf stock
solution used in the LFA only experiments), the studies performed in FBS and synthetic urine
showed an equivalent improvement using 1000 μL (100 times more volume than the 10 μL Tf
stock solution used in the LFA only experiments). The protocol previously described for PBS
was modified for the lower volumes, so that 5 μL of the more concentrated gold suspension
were added to 995 μL of the Tf-spiked ATPS solution in FBS or synthetic urine. 20 μL of the
interfacial region were extracted, followed by the addition of 30 μL test buffer. Each LFA strip
was dipped in the suspension for 15 min before being taken out and imaged.

Quantitative Analysis of LFA Results
The images taken of the LFA test strips were analyzed using a custom MATLAB script. To
quantify the line intensities of our results, the images were cropped and converted to 8-bit gray-
scale matrices. These matrices were split in half in order to produce one matrix containing the
control line and the other containing the test line. Each matrix was then analyzed separately to
determine the location of the control or test line by identifying the darkest spot with minimum
intensity using vectors perpendicular to the line of interest. The average location of the minima
found was centered on a 15 pixel-high rectangular region that spanned the length of the control
and test lines, where the average grayscale intensities were denoted as Icontrol and Itest, respec-
tively. In order to normalize the intensities of the control and test lines, the average grayscale
intensity of a reference region, denoted as Ireference, was used to remove the effects of any back-
ground color present. The reference region was defined to be 15 pixels wide and 50 pixels
upstream from the test line. Signal intensities of the control and test lines were then found
using the following equations:

Signalcontrol ¼ Ireference � Icontrol

Signaltest ¼ Ireference � Itest

Signal intensity of each test line was then converted to relative test signal intensity through
division by the maximum test signal intensity in the corresponding set of images. Plots of rela-
tive test signal intensity versus transferrin concentration were then made.

Results and Discussion

Engineering of the GNPs for Optimal Interface Partitioning
In order to combine the ATPS interface extraction with the paper-based LFA detection assay,
the GNPs developed in this study possessed three functions. First, the decorated specific anti-
bodies on the surfaces of the GNPs captured the target proteins present in the sample. Second,
the optimized formulation of PEG and proteins on the surfaces of the GNPs caused the GNPs
to partition to the interface and not the bulk phases. Lastly, the GNPs acted directly as the col-
orimetric indicator for LFA, and hence allowed the subsequent detection assay to be performed
immediately without extra washing or other preparation steps. A schematic of the GNP is
shown in Fig 4. The GNP has 3 main components: the PEG polymers, the gold nanoparticle,
and the anti-Tf antibodies. Each component by itself would drive the nanoparticle into one of
the two bulk phases. First, decorated PEG drives the nanoparticle into the top PEG-rich phase
due to the favorable PEG-PEG interactions between the polymer on the particle surface and
the abundant polymers in the top phase (Fig 5A). Specifically, increasing the molar ratio of
PEG:GNP changes the conformation of the bound PEG to more closely resemble a “brush”
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conformation, expanding the amount of surface area exposed to increase PEG-PEG interac-
tions [22]. On the other hand, the large size of the gold nanoparticle causes the nanoparticle to
partition into the bottom PEG-poor phase where it experiences fewer repulsive, excluded-vol-
ume interactions with the PEG polymers. The hydrophilic proteins (anti-Tf Ab and BSA) on
the GNP increase the hydrophilicity of the GNP, and also cause it to partition into the bottom
PEG-poor phase, which is more hydrophilic than the top PEG-rich phase (Fig 5B). In combi-
nation, the 3 components of the GNP can be varied and delicately balanced to ultimately drive
the GNP to the interface in our ATPS (Fig 5C).

Identifying the Optimal Volume Ratio
Three volume ratios were tested to determine the optimal volume ratio that could recover the
most GNPs within the shortest period of incubation. The results are shown in Table 1. It is not
surprising to observe that the 1:1 volume ratio phase separated the fastest and allowed for the
greatest recovery of the GNPs. When phase separation is triggered by increasing the tempera-
ture, microscopic PEG-rich and PEG-poor domains are formed, and similar domains will find
each other and coalesce. As the domains coalesce, they travel and eventually form the macro-
scopic PEG-rich, salt-poor phase on top and the macroscopic PEG-poor, salt-rich phase on the
bottom due to the interfacial tension and the density difference between the two phases. A 1:1

Fig 4. Surface modification of GNP to influence partitioning behavior in ATPS. Schematic of GNP and
the functionality of each component.

doi:10.1371/journal.pone.0142654.g004

Fig 5. Demonstration of the partitioning behavior of GNPs in our PEG-salt ATPS. Various amounts of
PEG were conjugated to the GNPs to manipulate their partitioning behavior: (A) Using a molar ratio of 5800:1
PEG:GNP during conjugation, the resulting GNPs partitioned preferentially into the PEG-rich top phase. (B)
Using a molar ratio of 1200:1 PEG:GNP during conjugation, the GNPs partitioned into the PEG-poor bottom
phase. (C) Using a molar ratio of 3500:1 PEG:GNP during conjugation, the resulting GNPs partitioned
exclusively to the interface. For (A), (B), and (C), the red observed at the very top of the liquid-air interface
was due to a reflection and not due to the presence of nanoprobes. Studies were performed in glass tubes 12
x 75 mm in size.

doi:10.1371/journal.pone.0142654.g005
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volume ratio phase separates faster than the 6:1 or 1:6 volume ratios since the domains have an
easier time finding each other and coalescing when there is a significant amount of each phase.
For more uneven volume ratios, domains of the smaller volume phase can be entrained in the
larger continuous phase due to the domains experiencing difficulty coalescing. Moreover, the
6:1 volume ratio is expected to phase separate more slowly than the 1:6 volume ratio since the
PEG-rich phase is the continuous phase for the 6:1 volume ratio, and the PEG-poor domains
experience more difficulty finding each other and moving to their respective macroscopic
phase in the more viscous PEG-rich continuous phase.

Since the GNPs do not partition into either domain, they remain between the domains as
the domains coalesce. Eventually, the GNPs appear as a thin red film at the interface when
phase separation is completed. The recovery of GNPs is more efficient when using the 1:1
volume ratio as entrainment is minimized at this volume ratio and less of the GNPs would
therefore be lost to the interfaces that are present between the entrained domains and the con-
tinuous phase. Since the 1:1 volume ratio phase separated the fastest while yielding the highest
GNP recovery, it was used in the subsequent experiments.

Improving LFA Detection by Using Interface Extraction
To demonstrate the enhancement of LFA by incorporating the ATPS interface extraction step,
we utilized the model protein transferrin (Tf). Tf is a serum protein for iron transport, and in
addition to both Tf and its antibody being commercially available and inexpensive, we have
experience radiolabeling the Tf antibody, which was important in determining GNP recovery.
To establish the detection limit of Tf in LFA, we performed a series of LFA tests with various Tf
concentrations without any prior concentration step. If a sample contained enough Tf mole-
cules to saturate the anti-Tf antibodies decorated on GNP, then these anti-Tf antibodies did
not bind to the immobilized Tf on the nitrocellulose membrane at the test line and therefore
did not form a visual band at the test line. This indicated a positive result, which was observed
when testing the sample with a Tf concentration of 1 ng/μL (Fig 6A, top panel). On the other
hand, if insufficient or no Tf was present in the sample to saturate the anti-Tf antibodies, then
these anti-Tf antibodies did successfully bind to the immobilized Tf on the nitrocellulose mem-
brane and therefore formed a visual band at the test line. This indicated a negative result,
which was observed when testing samples with Tf concentrations less than 1 ng/μL. Since 1 ng/
μL is the lowest Tf concentration that showed a true positive result, this indicated a detection
limit of approximately 1 ng/μL for Tf when performing LFA without the prior concentration
step.

To determine if the ATPS interface extraction step could improve the detection limit of Tf
by 100-fold using LFA, we applied the same amount of the GNPs to the ATPS solutions with
Tf concentrations that were 100 times lower than the detection limit of LFA (0.01 ng/μL). Since
we had an idea of the number of Tf molecules required to saturate the antibodies, we increased
the sample volume 100-fold from 50 μL to 5000 μL to keep the total number of Tf molecules
the same. Since only a limited amount of sample (50 μL) could be applied to an LFA test strip,
the diluted GNPs in this larger sample solution needed to be concentrated and applied to LFA
to obtain a valid result. To recover these GNPs that were saturated with the target proteins, we
placed the solution in a water bath at 37°C to collect the GNPs at the interface within 10 min.
The GNPs were then extracted and applied directly to the LFA test strip. The results of this
study are shown in the bottom panel of Fig 6A. We were able to obtain a true positive result at
0.01 ng/μL, which showed a 100-fold improvement in the detection limit. The test line intensi-
ties of the false negative result at 0.001 ng/μL using this approach were lighter than those with-
out the prior concentration step when comparing samples with the same Tf concentration,

Improving Paper-Based Protein Detection with Interface Extraction

PLOS ONE | DOI:10.1371/journal.pone.0142654 November 10, 2015 10 / 14



indicating that more Tf was captured to make it difficult for the GNPs to bind to the test lines.
The test line intensities also increased as the Tf concentration decreased, which was expected
as the amount of Tf available to saturate the antibodies decreased. If GNPs were lost to either
of the two domains prior to interface extraction, the line intensities of the subsequent LFA test
would be expected to be diminished, improving the limit of detection of the assay. However,
the loss of too many GNPs would produce a control line that is too faint in intensity and the
LFA test result would be invalidated.

To study the effectiveness of ATPS interface concentration in a system more likely to be
applied to a future device, we tested lower volume ATPS solutions made with FBS to mimic a
small sample blood draw from a patient. Due to the more complicated composition of FBS, the
procedure used with the ATPS in PBS was reoptimized for the FBS system. The higher protein
content of FBS altered the volume ratio of the ATPS, requiring different concentrations of PEG
and salt to form a 1:1 volume ratio. Since the experiments performed in FBS also utilized
smaller sample volumes, the volume of GNP had to be scaled down, and a more concentrated
GNP stock was made. In addition, the incubation time for the ATPS was extended from 10 to
25 min as the FBS slowed down the phase separation process. Additionally, due to the complex
mixture comprising FBS, the time for the LFA test was extended from 10 to 15 min. Despite
serum representing a more complex matrix, Fig 7A shows that LFA combined with ATPS

Fig 6. Results of LFA for detecting Tf in PBS. (A) Images of test strips without (top panel) and with (bottom panel) the prior concentration step using the
ATPS interface extraction step. 50 μL sample solutions were applied to each LFA test strip. (B) MATLAB quantification of test signal intensity where a value
above a threshold of 0.25 corresponded to a negative test.

doi:10.1371/journal.pone.0142654.g006

Fig 7. Results of LFA for detecting Tf in FBS. (A) Images of test strips without (top panel) and with (bottom panel) the prior concentration step using the
ATPS interface extraction step. 50 μL sample solutions were applied to each LFA test strip. (B) MATLAB quantification of test signal intensity where a value
above a threshold of 0.25 corresponded to a negative test.

doi:10.1371/journal.pone.0142654.g007
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interface extraction still yielded a 100-fold improvement in the detection limit compared to
LFA without prior concentration. As previously mentioned, we used lower volumes to more
closely resemble a practical application, and used 10 μL of the sample for LFA only and
1000 μL of the sample for LFA combined with ATPS interface extraction. A similar optimiza-
tion process was performed for the synthetic urine system, ultimately demonstrating an analo-
gous 100-fold improvement in detection limit, as displayed in Fig 8A.

In order to quantitatively analyze our LFA results from Figs 6A, 7A and 8A, the signal inten-
sities of the control and test lines were assessed using a customMATLAB script. The relative
Signaltest intensities obtained for each LFA test strip were compared to a threshold value of
0.25 in Figs 6B, 7B and 8B, where a relative Signaltest value less than 0.25 indicated positive
detection of Tf and a relative Signaltest value greater than 0.25 indicated negative detection of
Tf. When quantitatively analyzing the LFA panels for PBS, FBS, and synthetic urine, the LFA
only results indicated a detection of Tf at 1 ng/μL while the results of performing ATPS inter-
face extraction along with LFA indicated a detection of Tf at 0.01 ng/μL. Therefore, the results
of the quantitative analysis of the LFA test strips in Figs 6A, 7A and 8A have confirmed our
visually determined 100-fold improvement in the detection limit of LFA for Tf.

Conclusions
In this study, a novel approach to improve the performance of the LFA paper-based immuno-
assay was investigated. Specifically, a multi-functional nanoprobe, or the GNP, was developed
and utilized to first capture target protein molecules in a sample, then concentrate preferen-
tially to the interface of the ATPS, and finally serve as the colorimetric indicator for LFA. Dif-
ferent volume ratios of the PEG-salt ATPS were investigated to achieve the fastest and greatest
recovery of the GNPs at the interface. A 1:1 volume ratio was found to be optimal since over
80% of the GNPs could be recovered at the interface within only 10 min in an ATPS comprised
of PEG, potassium phosphate, and PBS. Using this volume ratio, we subsequently demon-
strated the improved performance of detecting a model protein with LFA by combining LFA
with the ATPS interface extraction step. This effectively decreased the detection limit of LFA
by 100-fold in PBS, FBS, and synthetic urine. Furthermore, the 100-fold improvement in detec-
tion limit demonstrated in complex fluids indicates that this new technology is robust and may
eventually be implemented successfully with patient samples. We believe that this innovation
will have great impact on the emerging field of paper-based assays since we provide a rapid,

Fig 8. Results of LFA for detecting Tf in synthetic urine. (A) Images of test strips without (top panel) and with (bottom panel) the prior concentration step
using the ATPS interface extraction step. 50 μL sample solutions were applied to each LFA test strip. (B) MATLAB quantification of test signal intensity where
a value above a threshold of 0.25 corresponded to a negative test.

doi:10.1371/journal.pone.0142654.g008
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inexpensive, and highly effective solution for concentrating proteins with minimal power and
no need for laboratory equipment.

Supporting Information
S1 Table. Molar extinction coefficient chart.Molar extinction coefficients based on gold
nanoparticle diameter at the maximum of the surface-plasmon-peak. The values below were
taken from the data sheet provided by BBInternational Life Science (Madison, WI).
(DOCX)
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