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Optimization of cerebrospinal 
fluid microbial DNA metagenomic 
sequencing diagnostics
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Ka‑Wei Tang1,2

Infection in the central nervous system is a severe condition associated with high morbidity 
and mortality. Despite ample testing, the majority of encephalitis and meningitis cases remain 
undiagnosed. Metagenomic sequencing of cerebrospinal fluid has emerged as an unbiased approach 
to identify rare microbes and novel pathogens. However, several major hurdles remain, including 
establishment of individual limits of detection, removal of false positives and implementation 
of universal controls. Twenty-one cerebrospinal fluid samples, in which a known pathogen had 
been positively identified by available clinical techniques, were subjected to metagenomic DNA 
sequencing. Fourteen samples contained minute levels of Epstein-Barr virus. The detection threshold 
for each sample was calculated by using the total leukocyte content in the sample and environmental 
contaminants found in the bioinformatic classifiers. Virus sequences were detected in all ten samples, 
in which more than one read was expected according to the calculations. Conversely, no viral reads 
were detected in seven out of eight samples, in which less than one read was expected according to 
the calculations. False positive pathogens of computational or environmental origin were readily 
identified, by using a commonly available cell control. For bacteria, additional filters including a 
comparison between classifiers removed the remaining false positives and alleviated pathogen 
identification. Here we show a generalizable method for identification of pathogen species using 
DNA metagenomic sequencing. The choice of bioinformatic method mainly affected the efficiency 
of pathogen identification, but not the sensitivity of detection. Identification of pathogens requires 
multiple filtering steps including read distribution, sequence diversity and complementary verification 
of pathogen reads.

Infections in the central nervous system (CNS) are severe and despite extensive microbiological diagnostic 
analysis a causative pathogen cannot be identified in many of the cases. A majority of CNS infections are caused 
by viruses, such as herpes simplex virus 1 (HSV1), varicella zoster virus (VZV or human herpesvirus 3) and 
enterovirus1,2. Among bacterial CNS infections, Streptococcus pneumoniae and Neisseria meningitidis are the 
most common pathogens, while fungal or parasitic meningitis CNS infections are less common3. Epstein-Barr 
virus (EBV) has been implicated in recurrent meningitis and chronic encephalitis4. However, due to the high 
prevalence of EBV and its ability to remain latent in B-lymphocytes after primary infection and its role in 
tumorigenesis, assessing the clinical relevance of EBV DNA detected in cerebrospinal fluid (CSF) is difficult and 
presence of EBV is often considered to be a benign incidental finding5,6.

Current microbiological diagnostic methods include cultivation and nucleic acid detection of CSF, which are 
restricted to prior knowledge of the putative causing agent. Cultivation can detect a wide range of microorgan-
isms; however, it is limited to viable and culturable pathogens. In contrast, nucleic acid detection is rapid and 
highly sensitive, but constrained to genetically conserved regions of known pathogens. Metagenomic sequencing 
using massive parallel sequencing, has the capability to discern multiple species and identify unknown species 
in samples. In metagenomics, the total nucleic acid present in the clinical sample is sequenced, thus providing 
an unbiased tool to diagnose infections and unknown species in samples7–9.
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While there currently is no universal standard for metagenomic sequencing in a clinical setting and the 
technique is still faced with some major challenges10, there are studies using different approaches attempting to 
standardize the analysis11–13. In addition, metagenomic sequencing guidelines have recently been published for 
viral metagenomics in a clinical setting14–16.

Contrary to PCR, the sensitivity in metagenomic sequencing is dependent on the fraction of pathogen 
sequences in the total sequencing library. Furthermore, laboratory contaminants detected in sequencing have 
been shown to differ greatly between laboratories17. Nucleic acid derived from the host and environmental 
contaminants must therefore be taken into account. Previous studies have calculated the sensitivity by using 
dilution of an exogenous pathogen into a known quantity of host background. While this gives an estimation 
of sensitivity, it does not take into account the variability of total nucleic acid content in clinical samples nor 
does it provide any guidance on how the sensitivity of each sample might be calculated prior to sequencing. 
However, spike-in controls are a well-tested approach to conclude reproducibility and separate contaminants 
from true pathogens13,18.

Bioinformatic pathogen identification is a second major obstacle. Several publicly available bioinformatic 
tools for classification are available, such as Centrifuge, Kraken, PAIPline and PathSeq19–22. Two conceptually 
different methods are frequently used, alignment of single reads (e.g. BLAST), or assemblies (k-mers), against 
pathogen databases. The list of pathogens generated by these applications are often long and require exhaustive 
examinations in order to discern the true pathogen from bioinformatic misclassification and environmental 
contaminants. Criteria for identifying the causative pathogen include sequences disseminated throughout the 
microbial genome of the proposed pathogen, a threshold for number of pathogen reads in relation to total 
number of reads, and confirmation using several alignment algorithms have been suggested to increase the 
specificity23,24. Each laboratory does however apply their own criteria.

We investigated the robustness of microbial DNA metagenomics for clinical diagnostics of CNS-infections. 
To evaluate the diagnostic performance of the method, 21 CSF samples with known pathogens levels originating 
from patients with variable levels of leukocyte content were sequenced with the aim to identify factors important 
for calculating sensitivity. Also, four different taxonomic classifiers were assessed for their efficiency to identify 
pathogens as well as the number of false positive pathogens identified. Two commonly available cell lines were 
implemented as a positive and negative control to support the removal of environmental contaminants and 
bioinformatic misclassifications.

Results
We implemented a metagenomic DNA sequencing methodology to unbiasedly detect microbial species in CSF 
samples from patients with CNS symptoms in which a pathogen or EBV had been detected (Additional 3: 
Table 1). Samples positively identified with pathogen-specific quantitative PCR (qPCR), 16S rRNA gene sequenc-
ing or bacterial/mycotic culture in CSF were included. Different pathogen types and variation of viral loads 
were chosen. The majority of samples CSF contained low levels of EBV, but variable levels of leukocyte content. 
These samples were chosen to establish the sensitivity of the method. DNA from each sample was extracted and 
fragmented before library preparation and sequenced using massive parallel sequencing. An overview of the 
experimental procedure, bioinformatic classifiers, and post-classification analyses are depicted in Fig. 1.

Bioinformatic classifiers.  Four bioinformatic classifiers were included, Kraken2, Centrifuge, our in-house 
developed PaRCA (Pathogen detection for Research and Clinical Applications) and CosmosID. CosmosID was 
tested mainly for its ability to generate concise pathogen lists, but the format of the platform prevented a detailed 
analysis of the raw data and was therefore not included in all comparisons in the manuscript. The four bioinfor-
matic classifiers diverged with regards to fraction of processed reads (from 85 to 100%, Additional 3: Tables 2–3). 
However, the ability to identify the primary pathogen was similar when comparing the classifiers.

Sensitivity.  Initially, three CSF samples (Sample 1–3) with high virus load of herpesvirus were analyzed. 
HSV1 and VZV were detected by all bioinformatic classifiers (Table 1). In sample 1, HSV1 was positively identi-
fied at 1 × 104 genome equivalents per milliliter (Geq/ml) using qPCR. The sequencing library consisting of more 
than 15 million reads contained 6.2–7.2 HSV1 reads per million sequences analyzed (parts per million; ppm). 
The following two samples originated from patients with similar values of VZV DNA levels quantified by qPCR 
(1.9 and 3.9 × 105 Geq/ml). Despite equivalent levels a ten-fold difference in detected VZV reads was observed 
between sample two (15–16 ppm) and sample three (135–147 ppm). Sample 2 contained 272 × 106 white blood 
cells (WBC) per liter compared with sample 3 which contained 17 × 106 WBC per liter (Table 1). Thus, the differ-
ence in sensitivity was related to variations in the leukocyte composition in the samples.

To further test the sensitivity, two CSF samples containing JC polyomavirus (JCV), a DNA virus with a rela-
tively small genome, were processed. One sample contained high virus levels (1.9 × 105 Geq/ml) and the other 
low virus levels (4.3 × 103 Geq/ml) (Sample 4–5). JCV DNA was readily detected in both samples ranging from 
1757 to 2096 ppm in sample 4 and 40–57 ppm in sample 5.

In order to verify that the methodology was applicable for bacterial agents, we sequenced CSF from two 
patients with pneumococcal meningitis, diagnosed by cultivation and/or 16S rRNA gene Sanger sequencing 
(Sample 6–7). DNA from Streptococcus pneumoniae (S. pneumoniae) was classified with a range between 30,704 
to 60,661 ppm (Sample 6), and 679–804 ppm (Sample 7). In addition to the bacterial samples, we included two 
CSF samples from patients with RNA viral enterovirus CNS infection (Sample 8–9). As expected, no DNA reads 
were identified. Enterovirus was, however, found using metagenomic RNA sequencing (Additional 1: Fig. 1).

Samples with co-infections, where EBV was detected along with a primary infectious agent (Enterovirus 
sample 9, VZV sample 10–11 and Cryptococcus sp. sample 12), were analyzed. EBV was not detected in sample 



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3378  | https://doi.org/10.1038/s41598-022-07260-x

www.nature.com/scientificreports/

DNA extraction 30 min

Library preparation 2 h
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Evaluation of library: 
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amplification 1-2 h
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Figure 1.   DNA metagenomic sequencing workflow. DNA from cerebrospinal fluid specimens, containing 
leukocytes and pathogens, was extracted and followed by library preparation and sequencing. Datasets 
generated by the Ion S5 were processed by four different bioinformatics classifiers to profile the microbiome. 
BLAST was used for verification. Flowchart for identification of pathogens by removing false positive species. 
Virus contaminants can be removed by comparison of sample datasets with controls by which environmental 
and bioinformatic misclassifications are identified. Phages can be disregarded as these viruses do not infect 
human cells. A final manual examination of remaining viral reads is required for coverage and sequence 
analysis. The bacterial contaminants were removed by applying a filter of cutoff value and comparison between 
classifiers and controls followed by a manual examination.
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9 in accordance with the predicted sensitivity. The enterovirus RNA was as expected not detected in our DNA 
sequencing libraries. VZV and EBV were detected in sample 10, and only VZV was detected in sample 11. Nei-
ther yeast nor EBV DNA was detected in sample 12. The results were expected when the following equation was 
applied for calculating the sensitivity for each agent.

The theoretically expected number of pathogen reads was calculated using the Eq. (1) according to pathogen 
genome size (GP), the diploid human genome size of 6.5 billion base pairs (GH), pathogen copy according to 
PCR per milliliter (CP), whole blood cell count per milliliter (CH), and adjusted according to the volume (V), 
sequencing library size (L) and mappability in percent (M) to remove major contaminants.

Thus, in 0.3 ml CSF with a normal WBC count (5 × 103 per milliliter), containing one pathogen with a 1 million 
base pairs genome, a sequencing of library 10 million reads would produce one single pathogen read, provided 
that the mappability is > 95%.

We included additional nine CSF samples with low levels of EBV DNA (50–2000 Geq/ml) (Sample 13–21). 
With the exception of sample 13 (patient diagnosed with CNS Hodgkin’s lymphoma type Post-Transplant Lym-
phoproliferative Disorder), and sample 16, where EBV was considered the cause of the symptoms, the EBV 
findings were clinically interpreted as benign incidental findings i.e. not the causative agent for the symptoms 
of infection. The EBV DNA detected in the majority of samples is likely to originate from latently infected 
B-lymphocytes recruited into the CSF. Despite the limitations for absolute quantification using qPCR and the 
stochasticity of distribution of low-level pathogen particles, with one exception the calculated reads correlated 
with the detected reads in the sequencing data (Table 1). In ten samples, more than 1 viral reads were expected 
and pathogen sequences were found in all samples (Fig. 2a). In eight samples where less than 1 read was expected 
to be found, EBV reads were only detected in one dataset (sample 17). Sixteen copies of EBV per milliliter was 
detected in sample 17 using qPCR and 11 reads were detected using metagenomic sequencing even though 0.3 
reads were expected. The discrepancy between the calculation and sequencing results is most likely due to the sto-
chastic distribution of the few viral particles in the sample. In sample 20, 0.99 reads were expected to be detected 

Pathogen read = L/

(

CH × GH × V

CP × GP
×M−1

)

Table 1.   Metagenomic sequencing pipeline results. Reads from each classifier from verified pathogen. 
Calculated reads in accordance with the presented algorithm N/A: leukocyte count missing for sample 4 and 
5, leukocyte count for sample 18 is below reference value, calculation is not applicable for bacteria, fungi and 
RNA virus. 16S rRNA 16S rRNA gene Sanger sequencing, HSV1 Herpes simplex virus 1, VZV Varicella Zoster 
virus, JCV JC polyomavirus, EBV Epstein-Barr virus.

Sample
Verified 
pathogen Clinical method

qPCR (Geq/
ml)

PaRCA 
(reads)

Kraken2 
(reads)

Centrifuge 
(reads)

CosmosID 
(reads)

BLAST 
(reads)

Calculated 
reads

Range 
(ppm)

Leukocytes 
(× 106/l)

1 HSV1 qPCR 1.0 × 104 97 105 107 107 108 90 6.2–7.2 41

2 VZV qPCR 3.9 × 105 213 219 223 211 213 365 14.9–16.0 272

3 VZV qPCR 1.9 × 105 2196 2234 2251 2170 2197 3072 134.8–147.1 17

4 JCV qPCR 1.9 × 105 23,766 24,018 24,190 22,318 23,847 N/A 1757–2096 N/A

5 JCV qPCR 4.3 × 103 496 512 515 484 498 N/A 39.8–57.1 N/A

6 S. pneumo-
niae

Cultivation/16S 
rRNA N/A 766,744 699,662 575,646 701,304 643,083 N/A 30,704–

60,611 55

7 S. pneumo-
niae EBV

16S rRNA
qPCR

N/A
3.7 × 102

12,988
–

11,762
–

12,511
–

12,277
–

12,274
–

N/A
0.1

679–804
Undet. 1064

8 Enterovirus qPCR 6.6 × 104 – – – – – N/A Undet. 95

9 Enterovirus 
EBV

qPCR
qPCR

5.8 × 104

4.1 × 102
–
–

–
–

–
–

–
–

–
–

N/A
0.1

Undet.
Undet. 814

10 EBV
VZV

qPCR
qPCR

1.9 × 103

4.7 × 103
10
7

9
7

9
7

8
7

9
7

2.5
4.5

0.8–1.1
0.7–0.8 181

11 EBV
VZV

qPCR
qPCR

5.0 × 101

2.9 × 103
–
15

–
15

–
15

–
12

–
15

0.1
5.5

Undet.
1.2–1.7 90

12 EBV
Yeast sp.

qPCR
Cultivation/
filmarray

9.1 × 102

N/A
–
–

–
–

–
–

–
–

–
–

0.2
N/A

Undet.
Undet. 164

13 EBV qPCR 1.9 × 103 81 85 82 79 82 20.5 6.7–7.5 26

14 EBV qPCR 3.7 × 102 – – – – – 0.6 Undet. 253

15 EBV qPCR 3.2 × 102 6 6 6 6 6 2.5 0.4–0.5 44

16 EBV qPCR 2.7 × 102 232 228 225 213 223 18.5 21.2–22.8 4

17 EBV qPCR 1.6 × 102 11 10 11 11 11 0.3 1.0–1.2 148

18 EBV qPCR 1.6 × 102 – – – – – N/A Undet.  < 4

19 EBV qPCR 8.1 × 101 – – – – – 0.6 Undet. 31

20 EBV qPCR 5.0 × 101 – 1 1 – 1 0.99 0–0.1 14

21 EBV qPCR 5.0 × 101 8 8 8 8 9 1.5 0.7–0.8 9
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in the dataset and a single EBV-read was identified in two of the four classifiers (Kraken2 and Centrifuge). This 
read was further confirmed using BLAST. The WBC count in sample 18 was below the reference interval of the 
leukocyte cell counter and was therefore omitted.

All pathogen reads and control from PaRCA were mapped against the corresponding genome sequences 
using CLC genomics workbench (Fig. 2; Additional 1: Fig. 3). A dispersed distribution of the reads to the cor-
responding genomes was observed for all samples, except sample 10, where 5 of the 7 VZV reads (1 overlapping 
read) originate from a repetitive region within the genome and is therefore expected to be detected at a higher 
rate, and the last 2 reads map to a downstream gene (no overlap) (Additional 1: Fig. 3d). Each sequencing library 
was subjected to BLAST using the respective reference pathogen genome. The variation of the absolute number 
pathogen reads comparing the different classifiers detected was lower than 25% (Table 1).
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Figure 2.   Pathogen genome alignment. Coverage density plot of sequencing reads from respective sample and 
control detected in PaRCA aligned to reference genomes of HSV1 (a), VZV (b), JCV (c), S. pneumoniae (d) 
and EBV (e, f). Number of reads (y-axis) at each nucleotide position of the genome (x-axis) depicted in blue. 
Dark blue represents peak, bright blue average and light blue minimum coverage for respective sections of the 
genome.
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Qualitative and quantitative detection of a known pathogen can thus reproducibly be carried out using the 
different types of bioinformatic classifiers. Furthermore, an estimation of sensitivity for pathogens can be gener-
ated for each sample which can guide the clinician whether the sequencing depth is sufficient to find a certain 
type of pathogen (Additional 4: Table 4). Notably however, each classifier produced diverse quantities of false 
positive hits.

False positive pathogens.  The diversity of viral species detected in metagenomic sequencing libraries 
were relatively low and recurrent. PaRCA, Kraken2, Centrifuge and CosmosID identified 2–31, 5–13, 17–96 
and 0–4 viral species in each sample respectively (Fig. 3b; Additional 1: Fig. 2a, Additional 4: Table 5). Many 
of the most abundant viral species identified were found in multiple samples (Fig. 3). Two samples (4 and 13) 
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Figure 3.   Calculated pathogen reads and detected pathogens in bioinformatic classifiers. Samples containing 
HSV1 (dark blue), VZV (blue) and EBV (light blue) with a calculated value of more than one read (a) were 
plotted against the number of reads detected by PaRCA. Regression line depicting a direct proportionality 
between the calculated and observed variables. The Spearman’s rank correlation coefficient and p-value is 
indicated. Mean number ± SEM of viral (b) and bacterial species (c) classified in samples and controls using 
the different bioinformatic classifiers. Dark blue bars show the total number of species classified, bright blue 
bars show the amount of bacterial species over the fraction cutoff (≥ 0.01% of the dataset), light blue bars show 
number of species not removed using controls. Purple bars show controls and light gray show controls over the 
fraction cutoff (≥ 0.01%). Ordinary one-way ANOVA with Tukey’s multiple comparisons, *p value < 0.05, **p 
value < 0.01, ***p value < 0.001, ****p value < 0.0001.
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contained human viruses which were not detected in multiple samples and not a previously confirmed pathogen 
(see below).

The non-pathogen/EBV viral reads were either of human origin, misclassified or contaminations. Human 
endogenous retrovirus K was identified in all samples, except for the water control, which was expected as the 
reads originate from the human genome (Fig. 4 bottom; Additional 4: Table 5). Another ubiquitously detected 
virus was the BeAN 58,058 virus, which was detected in all samples, except for the water control. An additional 
BLAST examination identified these hits as human reads. Low levels of phage sequences known to infect bacteria 
from the Enterobacteriales order were detected in a few samples and in the water control, most likely derived from 
bacteria purified enzymes used in the various steps of library preparation. A conspicuous pseudomonas phage 
contaminant in sample 4, 5 and the water control are likely derived from a bacterial contaminant at one of the 
sequencing sites. Streptococcus phage species were detected in sample 6, from a patient with S. pneumoniae men-
ingitis. Importantly, the most prominent viral species identified in patient samples were also present in the cell 
controls at similar levels and displayed a similar sequence identity and could therefore be discarded as a pathogen.

Compared with the relatively few viral agents detected by the classifiers, bacterial species were abundant; 
61–712 bacterial species were identified using PaRCA, 370–1408 in Kraken2, 845–2826 in Centrifuge and 0–14 
in CosmosID (Fig. 3c; Additional 1: Fig. 2b). Two samples originated from patients with a known S. pneumoniae 
meningitis (sample 6 and 7) and bacteria were detected at 69,088 ppm and 803 ppm respectively (PaRCA). With 
the omission of the positive samples 6 and 7, trace levels (3.4–18.2 ppm) of S. pneumoniae was ubiquitously 
detected in all samples. A known environmental contamination of Pseudomonas was detected in the majority 
of the samples. In two samples (4 and 5) Pseudomonas constituted 389,480 ppm (39%) and 590,195 ppm (59%) 
of the entire sequencing library respectively, while the prevalence in other samples were lower 6.6–75,279 ppm 
(0.0007–7.5%). A large fraction of the detected bacteria was still left when using previously suggested fixed cut-off 
at 100 ppm (0.01%) (Fig. 3c; Additional 1: Fig. 2b) and unlike the virus species the contaminants/misclassifica-
tions cannot be entirely removed using the control samples. However, when further applying an additional filter 
of comparison of the detected bacterial species between the three classifiers (PaRCA, Kraken2 and Centrifuge) 
only the known pathogen (S. pneumoniae) or environmental contaminants (Pseudomonas and Escherichia coli) 
was left. Similarly no eukaryotic species were found in all three classifiers.

Considering the ubiquitous presence of viral misclassifications and contaminants in samples as well as con-
trols, a viral pathogen is easily identifiable, but requires additional analyses including read distribution and 
BLAST analysis, for verification in a clinical setting (discussed below). In contrast, the large number of bacterial 
species identified pose a bioinformatic challenge as the bacterial sequence can be derived from kit contaminants, 
lab environment or bioinformatic misclassifications which obscure the pathogen reads. As with the virus hits, 
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Figure 4.   Viral species identified in datasets. Heatmap showing the ten most abundant viral species (y-axis) 
in each of the 21 samples and 10 controls (x-axis) detected using PaRCA. AcMNPV: Autographa californica 
multiple nucleopolyhedrovirus. Controls: P; P3HR1, N; Namalwa, W; water.
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removal of bacterial contaminants using cell controls can efficiently remove the majority of species, but additional 
filters are required (Fig. 1).

Controls.  Two types of controls, water and cell control, were tested for their ability to mirror the bioinfor-
matic misclassifications and contaminations observed in samples. In the water control the dataset consisted 
of 99.6% bacterial sequences and 0.06% viral sequences (Additional 4: Table 5). The cell controls originating 
from EBV-transformed cancer cells had a composition more similar to the samples with 99.2–99.4% human 
sequences. The number of viral and bacterial strains detected in the water control was 12 and 568 respectively. In 
contrast the cell controls contain sequences ranging from 3–4 viral and 61–177 bacterial strains.

The viral strains in the water control were mainly of phage origin. In contrast the viral strains detected in the 
cell controls were similar to the CSF samples, mainly Human endogenous retrovirus K and BeAN 58,058 virus. 
Both cell lines originate from EBV-transformed cancer cells and harbors EBV DNA. The ppm-values of each cell 
line between sequencing runs were reproducible and no significant difference was found between the classifiers 
(Additional 1: Fig. 4, Additional 3: Table 6).

In the water control, 98% of the sequencing library consisted of reads from Pseudomonas and the second 
most abundant bacterial strain found was Escherichia coli (0.1%), which is to be expected as most enzymes are 
produced in this bacterial system. In contrast, none of the bacterial strains in the cell controls constituted more 
than 0.1% of the sequencing library.

Thus, the water control efficiently amplified the environmental and kit contaminants, but in contrast to the cell 
control did not find human misclassifications. Also, since the water control consisted entirely of contaminants, 
the absolute or proportionate content did not allow for a direct comparison with the patient samples. The cell 
control allowed for direct quantitative and qualitative subtraction of the majority of contaminants and putative 
pathogens were identified.

Unexpected virus findings.  In sample 2 and 3 we identified 29–34 EBV reads in both samples in all clas-
sifiers (Additional 4: Table 5). The reads were dispersed throughout the genome and displayed minor sequence 
Pathogen detection in DNA metagenomic sequencing in CSF is mainly limited by the leukocyte count which 
affects the sensitivity and bioinformatically with the reference genome in accordance with previous EBV findings 
(Additional 1: Fig. 5a, b). Due to the limited sample volume we were unable to verify and quantify this finding 
using qPCR.

In sample 4 we identified three viruses which were unexpected, mastadenovirus, papillomavirus and torque 
teno virus (Additional 1: Fig. 5c–e). PaRCA identified 32 reads matching human mastadenovirus C (HAC), 
Kraken2 32 reads, Centrifuge 30 reads and CosmosID did not report any HAC sequences. The majority of reads, 
25 out of 32 were 198 bp long, 5 reads were shorter and 2 were longer. BLAST-analysis showed that all reads 
shared the same 3’-end. Four reads had mismatches in comparison with the reference sequence. Considering 
the size and distribution of the reads our findings are most likely a laboratory amplicon contamination. Human 
papillomavirus (HPV) reads were detected in PaRCA (12 reads), Kraken2 (2 reads), but not by Centrifuge and 
CosmosID. Ten of the 12 reads were 105 bp long and the remaining two, 104 bp and 106 bp respectively. All reads 
aligned to the 3’-end of the virus genome in the L1 gene. Examination of BLAST results showed a high similarity 
with HPV98 with a one or two base pair mismatch. As above, considering the size and distribution of the reads 
our findings were most likely a laboratory amplicon contamination. CosmosID has an inbuilt function to filter 
out hits that are considered to be amplicons, therefore the software did not report these reads. Different strains 
of Anellovirus/Torque teno virus (TTV) were detected in the classifiers. PaRCA identified 75 reads, Kraken2 25 
reads, Centrifuge 55 reads, while CosmosID did not detect any TTV reads. Five distinct consensus reads/contigs 
were formed from the 75 reads identified in PaRCA. Thirty-one reads formed a consensus read of 196 bp. BLAST 
analysis of this read displayed a 97% identity with TTV14, but only for 91 bp of the fragment. The remaining parts 
of the contig did not show any alignment with any viral species. The origin of this read is therefore unknown. 
BLAST analysis of the remaining 4 reads/contigs showed alignment (> 95% query cover and identity) to an 
Anellovirus isolate previously identified in metagenomics. The alignment showed an unusual coverage of the 
5’-end of the genome and all the reads were aligned to the first half of the genome. The reason for this unusual 
coverage is unknown, but considering that TTV is widely detected in metagenomic sequencing and the multiple 
reads aligning to a clinical isolate it is probable that these four contigs/reads originate from the patient sample.

In sample 13, we detected 10 reads corresponding to hepatitis C virus (HCV) in PaRCA. Kraken2, Centrifuge 
and CosmosID detected 5, 6 and 6 reads respectively. The 10 reads were concentrated to the 5’-end of the genome, 
but spread within the initial half of the genome (Additional 1: Fig. 5f.). An analysis of the BLAST results showed 
alignment with HCV genotype 1. Synonymous mutations were found in multiple reads as well as gaps. Two reads 
had a fusion between sequences from different regions of the HCV genome. The sequence diversity indicates 
that the virus is from a patient, but the frameshift and fusion reads indicate that they are of an artificial origin. 
Also, the patient had undergone HCV serology analysis which was negative. Finally, considering that HCV is a 
RNA virus this finding is most likely a laboratory amplicon contamination.

Discussion
In this study we subjected 21 CSF samples from patients with suspected or confirmed CNS infection to metagen-
omic DNA sequencing. Pathogen detection accuracy and efficiency was evaluated using five bioinformatic tools. 
Using 14 samples with minute levels of EBV we concluded that the sensitivity of detection was mainly affected 
by leukocyte content in the samples and to lesser degree environmental contamination. Bioinformatic classifiers 
were essentially equally efficient in terms of sensitivity, but produced vastly different number of false positive 
hits, which inhibited efficient clinical pathogen identification. The removal of these false positive hits originating 
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from contaminants and bioinformatics classifications were alleviated by using an EBV-containing cell control 
which served as a positive as well as a negative control. A number of approaches have been suggested for how to 
identify a causative agent in clinical samples bioinformatically, e.g. by calculating the fraction of pathogen reads 
and/or an absolute number of reads23,24. However, applying this method, the majority of viral samples used in 
this study would be considered negative and/or contain a number of agents which would be considered falsely 
positive depending on the choice of classifier. The lower detection limit could be generalized and compared 
between studies/laboratories if the leukocyte count was provided. In a similar manner, a general quantification 
of viral content using ppm is an efficient, albeit insufficient reference point for comparison between studies25,26. 
An alternative would be an estimation of the number of pathogen copies per milliliter which can be calculated 
using our algorithm. Furthermore, it is evident that local contaminants greatly impact the sequencing library con-
stitution. Therefore, it is necessary that findings in negative controls from each study be presented in its entirety. 
Major efforts have been invested in separating true pathogens from contaminations, e.g. using bioinformatic 
pipelines to find signatures of contaminants27, which in combination with exogene controls and studentized 
residual approaches could determine whether a possible contaminant might be a causative agent18. Another 
approach is to use healthy patient control samples to build a dataset with expected ppm for a given finding, 
thus being able to calculate standard z-scores to remove contaminants28. Here, we calculated a ratio between 
samples and controls in a similar manner as previously described13, which effectively removed the majority of 
background, leaving a manageable list of possible pathogens. Recently, guidelines from the European Society of 
Clinical Virology (ESCV) have been published with regards to both experimental procedures and bioinformatic 
pipelines, outlining the importance of careful consideration of each step in order to gain trustworthy results with 
minimal contamination14,15,29. We propose that information of the leukocyte content would also aid in the effort 
to determine whether a possible pathogen might be detectable.

Nine CSF-samples were identified at the clinic to only contain EBV, and we did not identify any additional 
pathogen, confirming the results from the clinic. Importantly, using our algorithm a lower detection limit could 
be determined for pathogens. Our bioinformatic classifier PaRCA, which uses a combination of single reads 
alignment and assemblies was able to detect more reads from HAC, HPV, TTV and HCV, but failed to detect the 
single EBV read in sample 20. Bioinformatic classifiers for clinical practice should not only quantify the pathogen 
reads, but also provide information of read distribution, sequence diversity and subtraction of environmental 
contaminants and bioinformatic misclassifications, facilitating pathogen detection as shown in this study. Novel 
pathogens will also require classifiers to detect diverse sequences, as well as enable investigation of sequences 
which might not classify completely to a genus. Our finding of a novel TTV strain shows that there is a large 
difference between bioinformatics classifiers’ ability to identify divergent sequences.

In this study we have used material archived at − 20 °C, which impaired a proper RNA analysis due to degra-
dation. However, with proper archiving at − 80 °C, it is manageable to perform RNA metagenomic sequencing9. 
Future studies using fresh CSF-samples where RNA integrity and quantity is measured may provide similar 
guidelines for RNA pathogen detection. We only included two verified bacterial CSF-samples in this study, one 
which was detected by culturing and 16S rRNA gene sequencing, and the second one detected by 16S rRNA gene 
sequencing. A limit of using metagenomic sequencing of CSF from bacterial meningitis patients is the high levels 
of leukocytes, but this may be compensated by the higher amount of bacterial nucleic acid compared with viral 
genomes, as previously observed9. Here, we applied a fraction cutoff for bacterial findings (> 0.01%) in order 
to decrease the amount of false positive bacterial species findings. This cutoff value should not be considered 
fixed and future studies with larger bacterial cohorts would provide additional guidelines for bacterial species 
identification.

We suggest that prior to clinical metagenomic DNA sequencing, an estimation of sequencing depth is made 
by adjusting it to the leukocyte content in the sample. Also, a pathogen-containing cell control sequenced at the 
same depth should be included in the same sequencing run in order to generate the same type of reproducible 
background. Bioinformatic processing should include a comparison between the pathogens detected in the 
cell control and the sample as well as between multiple classifiers. Further candidate pathogen reads should be 
confirmed by using BLAST and mapped against a reference genome to identify read distribution and sequence 
diversity. Even though true pathogen sequences should extremely rarely overlap, PCR duplicates can be present, 
especially in small sequencing libraries and/or samples that have undergone multiple cycles of amplification prior 
to sequencing. A comprehensive evaluation including a theoretical estimation on sensitivity of the metagenomics 
test as well as other clinical microbiological assays e.g. serology and PCR should assist the clinician in interpret-
ing the final results.

Methods
All methods were carried out in accordance with relevant guidelines and regulations.

Sample collection.  Included in this retrospective study were cerebrospinal fluid samples from patients 
with CNS symptoms of infection, in which the Department of Clinical Microbiology at Sahlgrenska University 
Hospital or the The Public Health Agency of Sweden previously had verified the infectious agent during 2015–
2017. The sample cohort was mainly chosen to include samples with low levels of Epstein-Barr virus, but also a 
few samples with a variety of microorganisms (DNA/RNA virus, bacteria or fungi) determined by confirmatory 
testing using qPCR, cultures, 16S rRNA gene Sanger sequencing or FilmArray (Additional 2: Methods). The 
samples were stored at − 20 °C after clinical testing. The cell lines P3HR1 (HTB-62, American Type Culture Col-
lection, ATCC, USA) and Namalwa (CRL-1432, American Type Culture Collection, ATCC, USA), were used 
as combined negative controls as well as positive controls, due to its inherent EBV genome. The controls were 
processed in parallel with the patient samples during all the laboratory steps.
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Sample processing.  For samples processed at the Department of Clinical Microbiology at Sahlgrenska 
University Hospital, total nucleic acid was extracted from 400 µl of cerebrospinal fluid using the MagNA Pure 
Compact Nucleic Acid Isolation Kit I (Roche Diagnostics, Indianapolis, IN, USA) on the MagNA Pure compact 
automated extractor. For samples processed at The Public Health Agency of Sweden, total nucleic acid was 
extracted from 200 µl of cerebrospinal fluid sample using the MagDEA® Dx SV (Precision System Science Co 
Ltd, Matsudo-city, Chiba, Japan) on the magLEAD® 12gC automated extractor (Precision System Science Co 
Ltd). DNA concentrations were determined using the Qubit Fluorometer (Thermo Fisher Scientific, Waltham, 
MA, USA) using the dsDNA HS Assay Kit (Thermo Fisher).

Library preparation and sequencing.  DNA libraries were prepared according to the modified proto-
col for metagenomic samples, developed at the Public Health Agency of Sweden, using the Ion Xpress Plus 
Fragment Library Kit (Thermo Fisher) on the AB Library Builder System (Thermo Fisher). Samples were frag-
mented to 200 bp, followed by ligation of Ion P1 Adapter as well as Ion Xpress Barcode adapters. The protocol 
was adjusted to suit low-input samples (< 50 ng DNA) by using a reduced volume of P1 adapter and barcodes 
(0.5 µl). The libraries were amplified, selecting the number of amplification cycles according to the sample input 
concentration, varying between 14 to 20 cycles. Amplified libraries were size-selected choosing an optimal size 
range for each individual sample to ensure removal of small-sized PCR concatemers, varying between 100 to 
320 bp (including adapters). Size selection was performed using the Pippin Prep platform (Sage Science, Beverly, 
MA, USA) with 2% Dye free Agarose Gel Cassette. Following visualization and an estimation of the concentra-
tion using the High Sensitivity D1000 DNA Kit on the Agilent 2200 TapeStation system (Agilent Technologies, 
CA, USA), the samples were pooled according to concentration. Subsequently, libraries were purified using 
Agencourt AMPure XP (Beckman Coulter, Brea, CA, USA). Finally, libraries were quantified using qPCR with 
the Ion Library TaqMan Quantitation Kit (Thermo Fisher) and the size estimated using High Sensitivity D1000 
DNA Kit on Agilent 2200 TapeStation system (Agilent Technologies). For template preparation, libraries were 
pooled to a final concentration of 50 pM, if obtainable. For libraries with lower concentration than 50 pM, librar-
ies were pooled to the available concentration. Thereafter, the Ion Chef Platform was used to ligate the libraries 
onto spheres using the Ion 540 Kit-Chef (Thermo Fisher). Following clonal amplification, libraries were loaded 
onto Ion 540 Chip and sequencing was performed on the S5 System (XL, Prime; Thermo Fisher) according to 
the manufacturer’s protocol for 200 bp read length.

Ethical approval.  The study design and methods including waiver of informed consent were approved by 
the Swedish Ethical Review Authority, Region Göteborg (191-18).

Bioinformatic analysis

Quality control.  BAM-files were converted into fastq files using the Torrent Suite Software provided for the 
Ion S5 system. Reads were processed with FASTX toolkit30 to fasta files. Fastqc was used to identify low-quality 
reads. Sequences were then subjected to the individual pipelines described below.

Pathogen detection for research and clinical applications (PaRCA).  PaRCA is implemented as a 
fully automated one-click snakemake pipeline31. The pipeline can be configured to accept RNA-data, DNA-data 
or a combination of both from the same sample on a per-sample basis. Data from negative controls can also be 
added to provide a background for comparisons. PaRCA can use any protein and nucleotide database as input 
for classification, the ones used in this case are described below. The output of the pipeline is an aggregated 
HTML summary with Krona-graphs, sample statistics and pipeline performance. Classified reads for each iden-
tified species are also provided in the HTML interface using hyperlinks.

Databases were created using built-in tools in Kraken2 and Kaiju. Briefly, databases corresponding to bacteria, 
viruses and eukaryotes were created at DNA, RNA and protein level resulting in nine total k-mer databases. The 
viral databases consisted of all viral data in GenBank, the bacterial database consisted of the full Progenomes 
data32 and eukaryotic databases were composed of the GenBank data for vertebrates, parasites and fungi. After 
download, the Progenomes database was continuously updated using scripts to reflect changes within the NCBI 
taxonomy. Reads were initially trimmed at both directions using BBDuk (BBMap 37.50) using an entropy mask 
of 0.9, trim quality of 16 and a minimum length of 40. Reads were corrected using Fiona (0.2.9) with id = 3 for 
substitution errors.

Reads were classified using Kraken2 and Kaiju by using individual databases33. Kraken2 results were fil-
tered using the kraken-filter with a threshold of 0.15 for eukaryotes and 0.05 for viruses and bacteria (a higher 
threshold indicates higher stringency). Thresholds for Kaiju: score and minimum matches were set to 85.20 for 
eukaryotes, 80.18 for bacteria and 75.15 for viruses.

After initial classification and filtering, Kraken2 results were individually compared and reads with hits in 
multiple databases were evaluated based on k-mer score with the highest scoring match being retained for further 
downstream analysis. Kaiju scores were internally compared and the hit with the longest protein alignment was 
preserved. Reads with both Kraken2 and Kaiju hits were then compared and the lowest common ancestor of the 
two results was selected using mergeOutputs with “-c lowest” from the Kaiju package. Reads where the lowest 
common ancestor was a species designation were directly counted and saved while reads with a higher lowest 
common ancestor were further processed in the pipeline. Reads only classified by a single k-mer classifier were 
labelled as “singletons” and further processed.
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Reads were ordered by taxonomic ID, which then were regressed through the taxonomic tree until either a 
genus-level or kingdom-level was reached. Reads without genus-level information or reads with a classification 
above genus level were stored separately for further analysis. After ordering into genus, all taxonomic IDs cor-
responding to a member of the genus were automatically downloaded from NCBI and corresponding accession 
identifiers were parsed from the NCBI accession dump file. Accession identifiers were then used to create a slice 
of the BLAST nt-database for that specific genus. Reads classified as belonging to the order “primates” were not 
processed further and received the taxonomic ID 9606 (Homo Sapiens).

Reads were analyzed in BLAST within the genus using a threshold of an e-value of 10–3 and the ten best hits 
were then retained. The ten results per read were parsed and the bit-score per taxon in the hits were aggregated. 
The taxon with the highest aggregate bit score was then selected as the putative taxon ID for the read. After 
taxon identification, results were merged and regressed in order to identify the species level classification of 
the putative taxon. If the kingdom level was reached before a species identification was found, the original 
taxon identifier was used in its place. Finally, any reads that were not successfully classified within a genus in 
the BLAST database creation step were collected and subjected to BLAST against the full NT-database with an 
e-value of > 10–5 and a minimum query coverage of 20% as threshold, again the ten best hits were preserved. 
The results from both BLAST analyses were aggregated based on bit score and the resulting taxon ID regressed 
to species level if possible.

Classified reads were collected and presented using a krona-graph and tables in an html format. Tables were 
reorderable on name, taxonomic id and read count. Tables were also filterable, including wildcard functionality. 
FASTQ-files containing reads classified to an individual species and aggregates corresponding to kingdoms and 
unclassified reads were directly downloadable.

Kraken2.  Kraken2-build download-library script was used to download the reference libraries for human, 
bacteria, virus, fungi, protozoa, plasmid and archaea. The human herpesvirus 4 (NC_009334) was added manu-
ally to the database for EBV mapping. Kraken2 was used to classify the reads using the default parameters with 
the dustmasker option.

Centrifuge.  Centrifuge was used to classify the reads towards the default database including a manually 
added human herpesvirus 4 (NC_009334). Default parameters were used with the inbuilt quality control and 
repeat masker based dustmasking from NCBI tools19. In order to obtain reads from all pathogens included in 
this study, the total of both leaf and genus levels were incorporated from the Centrifuge reports, thus leading to 
higher amounts of total classified reads, however, since not all species were converted into the ETE3 toolkit, and 
some stops at genus level, this does not affect final results of classified pathogens.

CosmosID.  Unassembled sequencing reads were directly analyzed using the commercially available genomic 
platform CosmosID to achieve identification of microbes at species level34. Each uploaded sample was searched 
and cleared from host sequences by the platform prior to analysis. CosmosID automatically filters out phages 
and amplicon-originated sequences.

BLAST.  BLAST analysis was performed with reference genomes for the pathogens. The cutoff was set 
to ≥ 95% sequence identity and an e-value of ≤ 10–3. Following standard steps for pre-processing reads, a BLAST 
search was performed with reads set as subjects and reference genomes set as queries. Reference genomes used 
were NC_001806 (HSV1), NC_001348 (VZV), NC_00196 (JCV), NC_003098 (S. pneumoniae), NC_007605 
(EBV), NC_001405 (Human Mastadenovirus C; HAC), FM_955837.2 (Human Papillomavirus 98; HPV98), 
MH_649255.1 (Anellovirus), and NC_004102.1 (HCV).

Calculations and statistical analysis.  Pathogen reads classified with PaRCA were uploaded to the CLC 
genomics workbench (Ver. 11, Qiagen) to perform and plot coverage analysis with the inbuilt tool “Map to 
reference”. Read distribution over the reference genomes (listed under BLAST section) was evaluated with total 
number of pathogen reads in mind, and BLAST analysis was performed to confirm the read identity.

Classified sequences from Kraken2 and Centrifuge were visualized using Pavian35. Ratio between sample 
ppm and control ppm were calculated, where a ratio ≤ 10 was considered a contamination.

GrapPad Prism Ver. 7.0c was utilized to perform statistical analysis. Kruskal–Wallis test with Dunn’s multiple 
comparison tests was applied to compare reproducibility through pipelines. Ordinary one-way ANOVA with 
Tukey’s multiple comparisons was used to compare thresholds for background species removal. A p value ≤ 0.05 
was considered significant.

Data availability
Available on the European Genome-phenome Archive. The PaRCA software is available on https://​github.​com/​
Clini​calGe​nomic​sGBG/​PARCA.
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