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Recent experimental and computational efforts have provided large data sets describing three-dimensional organization of

mouse and human genomes and showed the interconnection between the expression profile, epigenetic state, and spatial

interactions of loci. These interconnections were utilized to infer the spatial organization of chromatin, including enhanc-

er–promoter contacts, from one-dimensional epigenetic marks. Here, we show that the predictive power of some of these

algorithms is overestimated due to peculiar properties of the biological data. We propose an alternative approach, which

provides high-quality predictions of chromatin interactions using information on gene expression and CTCF-binding alone.

Using multiple metrics, we confirmed that our algorithm could efficiently predict the three-dimensional architecture of

both normal and rearranged genomes.

[Supplemental material is available for this article.]

Spatial interactions between promoters and their regulatory se-
quences are required to maintain a cell type–specific expression
pattern (Rao et al. 2014). It is known that enhancers do not neces-
sarily regulate the closest promoters, and enhancer–promoter (EP)
interactions often span large genomic distances (Rao et al. 2014;
Tang et al. 2015). Although enhancer targets can be directly iden-
tified by using high-resolution 3C-methods (Rao et al. 2014), these
data are expensive to obtain and currently available only for a
small subset of cell types. Besides, experimental identification of
enhancer targets does not provide a mechanism explaining target
selection.

Several computational tools have been developed to address
these challenges. Their task was to predict three-dimensional EP
interactions, based on data on one-dimensional genetic and epige-
netic marks (Fortin and Hansen 2015; Moore et al. 2015; Chen
et al. 2016; Chiariello et al. 2016; Whalen et al. 2016; Zhu et al.
2016; Di Pierro et al. 2017; Al Bkhetan and Plewczynski 2018b;
Buckle et al. 2018; Kai et al. 2018; Zeng et al. 2018; Zhang et al.
2018; Ibn-Salem and Andrade-Navarro 2019; Qi and Zhang
2019). All these tools fall into two categories: physical models
and statistical approaches. The former rely on knowledge of poly-
mer physics to build a physical model of chromatin and optimize
the model parameters to fit experimental (usually Hi-C) data
(Chiariello et al. 2016; Di Pierro et al. 2017; Buckle et al. 2018).
The optimized model can be used to infer spatial conformation
of chromatin, including those regions containing EP interactions.
In contrast, statistical methods do not imply any a priori knowl-
edge of polymer physics, aiming to find consistent patterns in epi-
genetic data which would explain three-dimensional contacts of
loci (Moore et al. 2015; Chen et al. 2016; Whalen et al. 2016; Di
Pierro et al. 2017; Kai et al. 2018; Zeng et al. 2018; Zhang et al.
2018; Ibn-Salem and Andrade-Navarro 2019). Thus, statistical ap-
proaches are able to predict spatial contacts of chromatin even
without complete knowledge of the physical mechanisms under-
lying the three-dimensional organization of the genome.

Here, we aimed to infer the three-dimensional interactions of
chromatin, and particularly promoter–enhancer interactions, in
normal and rearranged genomes, using available epigenetic data.
We benchmarked the existing statistical approach and found
that its predictive power is overestimated due to the peculiar prop-
erties of the biological data. Thus, we have aimed to develop a new
machine-learning algorithm for quantitative prediction of ge-
nome architecture based on broadly available epigenetic data sets.

Results

TargetFinder fails to predict EP interactions

Our objective was to develop an algorithm for prediction of en-
hancer–promoter interactions in normal and rearranged genomes.
For this aim, we decided to employ existing TargetFinder algo-
rithm (Whalen et al. 2016), which is of particular interest because
of high accuracy, a low false-discovery rate, and reproducibility,
demonstrated by an analysis of several human cell types. Since sev-
eral well-studied examples of chromosomal rearrangements caus-
ing changes of chromatin architecture have been investigated
using mouse models (Fishman et al. 2018; Spielmann et al.
2018), we aimed to extend the TargetFinder algorithm for predic-
tion of EP interactions in mouse cells.

We annotated promoters and enhancers as interacting and
noninteracting using high resolution Hi-C data on mouse embry-
onic stem (ES) cells (Bonev et al. 2017) and collected a set of 24 ge-
netic and epigenetic predictors. To construct our data sets, we used
an original definition of “interacting” promoters and enhancers,
proposed in a TargetFinder paper (Whalen et al. 2016), i.e., pro-
moter and enhancer were considered as interacting only if they
were located in the anchors of a Hi-C loop. The accuracy of
TargetFinder (measured by either precision, recall, or F1-score on
a validation data set) was lower than previously reported on
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human data (Table 1). We found that changing the ratio of inter-
acting to noninteracting EP pairs from 1:20 to 1:1 increases F1-
scores; however, obtained values were still below that reported pre-
viously (Table 1; Whalen et al. 2016). We additionally ran
TargetFinder on mouse cortex and neural progenitor cells (NPC)
data (Bonev et al. 2017) using 10 available epigenetic predictors.
As in the ES cells data, TargetFinder was not efficient on these
data sets (Table 1).

To understand why TargetFinder fails to predict EP interac-
tions, we reprocessed original human data, generating predictors,
training, and validation data sets for human GM12878 cells de
novo. Running TargetFinder on these reprocessed human data
sets resulted in low F1-scores, with only small improvement com-
pared to mouse ES cells data (Table 1).

Comparing our protocol of data processing with the pipeline
that was used to generate the original TargetFinder data sets, we
noticed the difference in composition of training and validation
samples. In the original approach, EP pairs were randomly split
to obtain training (∼90% of data) and validation (∼10% of data)
data sets. Our pipeline randomly selects two chromosomes and
designs all EP pairs on these chromosomes as a validation data
set (∼10% of all data) and the rest of EP pairs as a training data
set. This difference in design of training and validation data sets
is essential, because, when we performed a by-chromosome split
of the original TargetFinder data on human GM12878, F1-scores
were reduced a lot compared to the random-split and become sim-
ilar to those obtained for mouse data (Table 1). Moreover, when
we used the random-split strategy on mouse data, F1-scores
increased substantially (Table 1). Thus, the TargetFinder perfor-
mance strongly depends on the design of training and validation
data sets.

To explain the observed effect of the data splitting strategy on
TargetFinder efficiency, we explored the structure of EP data sets.
We found that ∼70% of GM12878 promoters interact with multi-
ple enhancers, which are located close to each other. Such EP pairs
share a large portion of genomic region between promoter and en-
hancer (referred to hereafter as “window”). In general, overlaps of
EP windows are frequent (>99% of all pairs share a windowwith at
least one other pair) and overlap size is often large. Thus, epigenet-
ic predictors characterizing a window of these pairs are not inde-
pendent, and EP pairs with a shared window should not
be placed in both the training and validation data set (Fig. 1A,B).
As this happens when employing the random-split strategy,
TargetFinder couldmatch overlapping samples in training and val-
idation sets based on window information and then copy the in-
formation about interactions from the pair in the training set to
the pair in the validation set. One should note that patterns of spa-

tial contacts of neighboring genomic regions are correlative. Thus,
interactions of two EP pairs, one from the training set and another
from the validation set, are often similar if both promoters and en-
hancers are located nearby (i.e., if window overlap is high). To con-
firm this, for each EP pair we explicitly used interaction of the EP
pair with the highest window overlap as a predictor and obtained
a high F1-score (∼0.9) for GM12878 cells. Moreover, for NPC and
mouse cortex data sets, which contain approximately three times
less interacting EP pairs thanmouse ES cells and humanGM12878
cells (Table 1) and therefore the lowest rate of overlapping win-
dows, we obtained the lowest F1-scores in the random-split design.

To sum up, the random-split strategy breaks the assumption
of independence of samples in the training and validation data
sets and thus results in overestimation of the predictive power of
machine-learning algorithms. In contrast, when using a by-chro-
mosome splitting strategy, genomic regions never overlap between
training and validation data sets, allowing unbiased estimation of
algorithms’ efficiency. Considering that TargetFinder efficiency
drops when using by-chromosome data splitting, we claim that
this algorithm cannot reconstruct relations between 1D-genetic
marks and 3D-genome organization. Moreover, while this manu-
script was in preparation, Xi and Beer (2018) independently con-
cluded that the local epigenomic state cannot discriminate
interacting and noninteracting enhancer–promoter pairs with
high accuracy.

We note that other published algorithms also use a random-
split design of training and validation data sets (see Discussion).
Thus, our results highlighted specific peculiarities of the biological
data, which should be considered in the future to prevent overfit-
ting issues and incorrect efficiency estimation ofmachine-learning
approaches focused on predictions of chromatin interactions.

Enhancer–promoter interactions are quantitative rather than

qualitative

As we found that TargetFinder cannot efficiently predict EP inter-
actions, we aimed to improve this algorithm. We considered the
following enhancements.

First, we decided that epigenetic marks not only between, but
also outside of, the promoter and enhancer should be considered.
This makes sense in light of recently discovered mechanisms, un-
derlying the spatial organization of chromatin. For example, ac-
cording to the loop extrusion model (Fudenberg et al. 2017),
binding of CTCFs in the converged orientation outside of, but
close to, an EP pair will result in increased looping between the
promoter and enhancer. Based on the loop extrusion model, we
also introduced orientation of CTCF sites as a predictor.

Table 1. Effect of train/validation split strategy on TargetFinder efficiency

F1-score

Cell type Predictors Loops
Interacting EP

pairs
Train/validation

split
Interacting:Noninteracting

1:20
Interacting:Noninteracting

1:1

Mouse ES cells 24 9091 1602 This paper 0.015 0.56
Original 0.82 0.91

Mouse cortex 10 9972 625 This paper 0.19 0.69
Original 0.42 0.79

Mouse NPC 10 9360 635 This paper 0.16 0.71
Original 0.46 0.77

Human GM12878 100 9448 2113 This paper 0.039 0.61
Original 0.77 0.89
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Second, we reconsidered the definition of the enhancer–pro-
moter interaction. TargetFinder and other approaches (Li et al.
2019) define an EP pair as interacting only if the enhancer and pro-
moter occur within anchors of a Hi-C loop. To benchmark this ap-
proach, we collected all interacting EP pairs for humanmonocytes
based on SlideBase andGeneHancer databases (seeMethods for de-
tails). In addition to promoter-capture 3C data, these databases uti-
lize information of co-expression of promoters and regulatory
elements, their distance, and other information to define interact-
ing EP pairs. We used human monocytes data because these cells
are represented in the SlideBase and GeneHancer database and
characterized by high-resolution Hi-C (Phanstiel et al. 2017),
which allowed comparison of Hi-C loops and interacting EP pairs.
We confirmed that contact frequencies between interacting EP
pairs, as well as between loop anchors, are higher than average
(Fig. 2A,B). However, the vast majority of interacting EP pairs do
not overlap with loops, although they are often located within a

reasonable distance from loop anchors (Fig. 2C). Similar results
were obtained for human macrophages (Supplemental Fig. S1).

The set of EP pairs described in SlideBase and GeneHancer is
probably not complete, and these databases (partially) rely on the
3C information to infer EP connections. The gold standard for
identification of functional EP interactions is direct genetic screen-
ing. Such screenings are expensive and time-consuming, thus
there is a very limited number of experimentally validated enhanc-
ers, which prevents systematic genome-wide analysis of their rela-
tions to Hi-C loops. However, individual reports of genetically
validated functional EP interactions support our general conclu-
sion. For example, a recent study (Fulco et al. 2016) identified sev-
en distal enhancers of the MYC gene, which form two clusters
located 0.16 and 1.9 Mb away from theMYC promoter, respective-
ly. According to Fulco et al. (2016), all of these enhancers affect
MYC expression inK562 cells proportionally to the number of con-
tacts between the enhancer and the MYC promoter in this cell
type. However, we found that only e6 and e7 enhancers overlap
Hi-C loops (Fig. 2D). Moreover, out of five loops containing the
MYC promoter, only one contains validated MYC enhancers.
Altogether, this means that binary classification of EP interactions
guided by the location of Hi-C loop anchorsmay have poor predic-
tive power. These observations are consistent with the recentmod-
el of enhancer–promoter communication (Furlong and Levine
2018), which suggests that loops and domains serve to decrease
the effective distance separating enhancers and promoters but
are not necessarily formed by EP pairs themselves.

Thus, we concluded that increased interaction frequency,
rather than location within loop anchors, should be used to char-
acterize EP interaction. As spatial interactions are quantitative, we
aimed to design a quantitative algorithm which predicts frequen-
cies of spatial interactions between genomic loci in general and EP
interactions in particular.

Quantitative prediction of EP interactions using machine-learning

tool 3DPredictor

We used the following biological information to predict EP and
other genomic interactions: ChIP-seq profiles, describing chroma-
tin binding of architectural proteins or histone modifications;
RNA-seq profiles, describing gene expression levels; E1 values, clas-
sifying chromatin to active (A) and inactive (B) compartments;
and, genomic distance, which is an essential factor of three-dimen-
sional contacts. We restricted our algorithm to the prediction of
mid-range contacts (≤1.5 Mb) since almost all EP interactions oc-
cur within this distance. To increase sample size and avoid overfit-
ting, we included contacts of all loci, regardless of the presence of
promoters and enhancers, into the training set. We always per-
formed training and validation on different chromosomes and
never used chromosome number or genomic coordinates of loci
as predictors, to prevent overfitting.

Using recently generated Hi-C and genomic data on mouse
hepatocytes and human K562 and GM12878 cells, we compared
several forms of predictors parametrization and performance of
different machine-learning algorithms (see Supplemental Note;
Supplemental Figs. S9–S12; Supplemental Tables S2, S3 for
details). To estimate the quality of predictions, we used Pearson’s
correlation, stratum-adjusted correlation coefficient (SCC) (Yang
et al. 2017a), mean squared error (MSE), mean absolute error
(MAE), and mean relative error (MRE). As a result, we developed
3DPredictor, a machine-learning tool for computational predic-
tion of chromatin interactions. Analyses of importance of different

A

B

Figure 1. Promoter–enhancer pairs with overlapping windows in train-
ing and validation data sets. (A) Schematic illustration showing how infor-
mation could be shared between training and validation data sets because
of overlapping EP windows. (B) Distribution of distances between bound-
aries of overlapping EP windows. For each EP pair, we found thewindow of
another EP pair, so that the distance between boundaries of their windows
(d=D1+D2) is minimal. Histogram shows distribution of the obtained val-
ues of d.
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epigenetic features showed that information about cohesin and
CTCF-binding, gene expression, chromatin accessibility, and dis-
tance between loci has the greatest contribution to the prediction
accuracy (see Supplemental Fig. S2; Supplemental Table S1;
Supplemental Note). Moreover, according to the feature impor-
tance analysis, epigenetic characteristics of the region between in-
teracting loci are essential for accurate prediction (Supplemental
Fig. S2), which supports a previously obtained (Whalen et al.
2016) conclusion that there is significant information relevant
to looping interactions outside the interacting loci themselves.

Although various epigenetic information contributed to the
prediction of chromatin contacts, it appeared that many predic-
tors are interchangeable. We were able to generate accurate pre-
dictions of chromatin interactions in mouse hepatocytes
(Pearson’s r= 0.92–0.95, SCC=0.53–0.72, MSE=0.0017–0.0082,
MAE=0.0010–0.0015, MRE=0.52–1.74) (Fig. 3A–F), limiting in-
put information to CTCF ChIP-seq data (including orientation
of the occupied CTCF sites), RNA-seq data, and distance between
loci, and using only one chromosome out of 20 for training.
These results canbe further improvedusingmultiple chromosomes
for training (Fig. 3B–F). Orientation of CTCF sites was among the
features with the highest importance, and omitting this informa-
tion impaired predictions of loops (Supplemental Figs. S2, S3).
Thus, we used information about CTCF binding, RNA-seq, and ge-
nomic distance for all predictions in this paper.

Chromatin contacts areknowntobe
moderately similar between cell types
(Rao et al. 2014; Battulin et al. 2015).
To find whether our predictions are
cell type–specific, we first compared the
chromatin architecture of different cell
types using the aforementioned mea-
sures. In most cases, results obtained by
3DPredictor differ from real data less
than cell types differ from each other
(Fig. 3B–F). For example, for 13 chromo-
somes, 3DPredictor results, judged by
the mean average error, resemble ex-
perimental hepatocyte’s Hi-C data more
closely than experimental data derived
from other studied cell types. For five
more chromosomes (Chromosomes 1, 4,
6, 9, and 15), prediction errors were com-
parable with the MAE obtained for dif-
ferent cell types, and on Chromosomes
19 and X, predictions were worse than
transferring contact counts from other
cell types. Similar results were obtained
for the MSE and MRE. According to the
SCC, 3DPredictor performs approximate-
ly at the level of intercellular differences,
whereas, according to thePearson’s corre-
lation, predictions were almost always
more similar to the hepatocyte’s data
than other cell types.

We next compared Hi-C data of
mouse hepatocytes and NPC and found
that some genomic regions show appar-
ently different 3D-organization in these
cell types. In most cases, the differences
were due to the presence of cell type–spe-
cific TADs, borders of which coincide

with cell type–specific CTCF sites, as was observed previously
(Rao et al. 2014; Bonev et al. 2017).Weutilized an insulation-based
score to select genomic regions with cell type–specific chromatin
architecture (see Methods for details), and ran 3DPredictor for
these regions using cell type–specific RNA-seq and CTCF ChIP-
seq data. Predicted contact frequencies reflected cell type–specific
genome organization (Fig. 4A–C; Supplemental Fig. S4), and corre-
lation of insulation scores of predicted and experimental data was
much higher than between cell types (Fig. 4D). We provided an
example of an accurate prediction of the cell type–specific TAD
boundary in NPC and hepatocytes in Figure 4, B and C, and in
Supplemental Figure S4.

Finally, we ran 3DPredictor on human GM12878 data.
According to allmetrics except SCC, predictions fit experimentally
derived Hi-C interactions better than data from other cell
types, even when using a single chromosome for training (Supple-
mental Fig. S5). At the same time, however, transferring interac-
tion frequencies from other cell types results in better SCC
values compared to the predictions, with only one exception on
Chromosome 9, and, in general, SCC values obtained on human
data were slightly lower than obtained on mouse data.

When focused on EP contacts, we found that for this specific
set of interactions predictions accuracy was the same as for other
interactions. The MRE of contact frequencies for interacting (ac-
cording to SlideBase and GeneHancer databases) EP pairs was

BA

DC

Figure 2. Hi-C loops do not provide complete information about interacting EP pairs. (A,B) Distribution
of row (A) and distance-normalized (B) contact frequencies for interacting EP pairs and loop anchors in
humanmonocytes. (C ) Number of interacting EP pairs overlapping loops inmonocyte data. Red line rep-
resents the number of EP pairs overlapping any Hi-C loop anchors or located within a distance not more
than x kb of them, shown as a function of x.Gray line and gray area represent average plus three standard
deviations of 100 randomized controls. (D) Chromatin interactions within the region on human
Chromosome 8 containing seven experimentally validated MYC enhancers (yellow lines, e1–e7) and
Hi-C loops (purple squares). Although both enhancers and loops were identified in the same cell type
(K562 cells), they show little overlap.
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slightly lower than for all chromatin interactions predicted in
monocytes and the MSE and MAE slightly higher (Fig. S5A;
Supplemental Fig. S6). In general, experimentally derived contact
frequencies of EP pairs in monocytes were highly correlated
with predicted contact frequencies for corresponding loci in these
cells (Fig. 5B). We defined cell type–specific EP interactions (see
Methods) to examine whether 3DPredictor captures differences
in EP interactions between cell types. As for the cell type–specific
TADs, the difference between predicted and experimentally mea-
sured EP interactions was smaller than between interactions of
these enhancers and promoters measured in different cell types
(Fig. 5C). These results have also been confirmed using mouse
data (Supplemental Fig. S7) and both low-resolution (25 kb) (Fig.

5; Supplemental Fig. S7) and high-resolu-
tion (5 kb) (Supplemental Figs. S6, S7)
models.

We next used 3DPredictor trained
on mouse hepatocytes data (single chro-
mosome or half of the genome) to pre-
dict contact frequencies in mouse NPC
(Fig. 6A). Predictions of spatial interac-
tions for the cell type that was not used
for training appeared to be as good as
when the same cell type was used for
training and validation (Fig. 6B–F).
From the practical point of view, this in-
dicates that our approach can be used to
predict three-dimensional genome orga-
nization, including EP contacts, in those
cell types where 3C-data are not avail-
able. From a fundamental standpoint,
these results show that principles of ge-
nome architecture are very similar in dif-
ferent cell types.

Comparing 3DPredictor with other

models

There are several computational tools
which could quantitatively predict short-
and mid-range chromatin interactions
(see Discussion for comprehensive com-
parison of these tools). For example,
MEGABASE+MiChroM (Di Pierro et al.
2017) predicts chromatin interactions
at 50-kb resolution using information
about epigenetic marks and CTCF loops.
Whereas modeling of CTCF-mediated
looping interactions requires Hi-C data
to infer loop anchors, use of the reduced
MiChroM Hamiltonian lacking the term
in that energy function that models the
CTCF-mediated looping interactions
can be used to predict chromatin con-
tacts without any experimental mea-
surements of 3D genome organization
(Di Pierro et al. 2017). We benchmarked
3DPredictor against this reduced MEGA-
BASE+MiChroM model and found that
3DPredictor significantly outperforms
it, showing much higher SCC (Supple-
mental Table S5; Supplemental Fig.

S13A–C). However, we wish to note that MEGABASE+MiChroM
was originally developed to capture long-range interactions medi-
ated by chromatin compartmentalization, and lack of information
about CTCF-mediated loops could explain, at least partially, poor
performance of short-range interactions prediction.

Qi and Zhang have recently proposed another model based
on polymer physics to predict Hi-C interactions using epigenetic
data (Qi and Zhang 2019). In contrast to the full MEGABASE+
MiChroMmodel, Qi and Zhang do not use experimental 3C infor-
mation to define CTCF-mediated loop anchors, requiring only
ChIP-seq data and genomic sequence to describe the CTCF bind-
ing landscape. When employing the approach proposed by Qi
and Zhang to infer chromatin contacts in GM128787 cells, we

BA

DC

FE

Figure 3. 3DPredictor efficiently reconstructs spatial interactions based on CTCF occupancy, ex-
pression, and genomic distance. (A) Representative region of mouse Chromosome 2 showing predicted
and experimentally derived Hi-C interactions in mouse hepatocytes. (B–F) Various metrics of 3DPredictor
accuracy for each chromosome of mouse hepatocytes. Circles represent comparison between two rep-
licas; green squares show comparisons between hepatocytes and other cell types. Red triangles display
3DPredictor results obtained using single Chromosome 5 for training; data obtained when validating on
the same chromosome are marked with stars. Purple triangles show results of 3DPredictor trained on 10
chromosomes (results for even chromosomes obtained using model trained on odd chromosomes and
vice versa).
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obtain better results compared to the reduced MEGABASE+
MiChroM model (Supplemental Tables S5, S7). However, perfor-
mance of 3DPredictor on the same data set was even higher,
judged by SCC, Pearson’s correlation, MSE, and MAE (Supple-
mental Fig. S15A–C; Supplemental Table S7). It is worth pointing
out that the polymer models were developed with 3D structures
in mind and are useful for studying compartmentalization and
higher-order contacts as well.

A statistical approach showing that CTCF looping and gene
expression could explain chromatin contacts in mammalian cells
was recently proposed by Rowley et al. (2017). This approach re-
quires a very limited amount of information as an input; however,
similarly to the full MEGABASE+MiChroM model, it cannot be
used to predict chromatin interactions, because information about
CTCF looping should be extracted from experimental Hi-C data.
For example, in the region of Сhromosome 4 of GM12878 cells,
analyzed by Rowley et al. (2017), their model uses only 63 manu-
ally selected CTCF sites, which comprise ∼35.4% of all CTCF-
bound sites in this region (Supplemental Fig. S16). Moreover, the
Rowley et al. (2017) approach requires Hi-C information to define
pairs of interacting CTCF sites. This information cannot be trivial-
ly obtained from ChIP-seq data because, in some cases, loops are
formed between distal CTCF-bound sites, skipping the nearest
CTCF-bound site in convergent orientation (see Supplemental

Fig. S16 for representative examples and
Kai et al. 2018 for systematic analysis).
Nevertheless, we compared 3DPredictor
with the Rowley et al. (2017) model and
found that the latter gives significantly
better results (Supplemental Table S6;
Supplemental Fig. S14A–C). Consistent
with the fact that Rowley et al. (2017) de-
rived information about CTCF-mediated
looping from the experimental data,
their model captures experimental loops
especially well (Supplemental Fig. S14C).
Although 3DPredictor does not require
any experimental 3C-information, it
also captures approximately half of the
looping interactions (Supplemental Fig.
S17), and predicted frequencies of con-
tacts between loop anchors were higher
than between other genomic regions
(Supplemental Fig. S14D).

Predicting effects of chromosomal

rearrangements on three-dimensional

genome organization

One of the applications of enhancer
targets prediction is understanding of
EP rewiring after chromosomal rear-
rangements. There are several well-stud-
ied examples of pathological changes in
EP contacts caused by deletions, inver-
sions (Lupiáñez et al. 2015), or duplica-
tions (Franke et al. 2016). Recently,
PRISMR (Bianco et al. 2018) was devel-
oped to resolve the chromatin structure
of a rearranged genome. Although im-
pressively accurate, PRISMR requires
Hi-C data to optimize chromatin model

parameters, which limits its usage to cell types with available
Hi-C data or genomic regions with three-dimensional structure
conserved across cell types. 3DPredictor lacks these limitations,
as we have shown that it can predict chromatin packaging of cell
type–specific regions and previously unstudied cell types.

We employed recently generated 5C data describing mouse
Epha4 rearrangements to find whether 3DPredictor can infer ec-
topic interactions in the mutated genome. We re-analyzed 5C
data generated fromwild-type cells, as well as cells carrying homo-
zygous deletion of ∼1.5 Mb encompassing Epha4 gene (Lupiáñez
et al. 2015). This deletion (referred to as DelB in Bianco et al.
2018) results in establishment of ectopic contacts between the
Pax3 gene and Epha4 enhancers cluster, which is associated with
Pax3 misexpression, leading to brachydactyly.

We ran 3DPredictor trained on mouse hepatocytes to infer
three-dimensional organization of the rearranged Epha4 locus in
hindlimb cells. We did not use any a priori knowledge of the
three-dimensional structure of the wild-type Epha4 locus in
hindlimb cells, yet 3DPredictor results were very similar to experi-
mental data (Fig. 7A). We used the method described in Bianco
et al. (2018) to find ectopic interactions in the rearranged locus.
Out of 1561 interactions inferred from the experimental data,
589 were captured by 3DPredictor, including a majority of interac-
tions between the Pax3 gene and Epha4 enhancers (Fig. 7A,B). The
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Figure 4. 3DPredictor accurately reconstructs cell type–specific chromatin organization.
(A) Representative region on Chromosome 3 showing different 3D organization in mouse hepatocytes
and NPC. Cell type–specific TAD boundary is marked by arrow. (B,C) Comparison of 3DPredictor results
with experimental NPC (B) or hepatocyte (C) data for the same region of Chromosome 3. (D) Insulation
scores in 88 NPC cell type–specific regions correlate with insulation scores calculated based on predicted
contacts significantly better than with insulation scores based on experimental hepatocyte data (P-value
4 × 10−6).
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overlap between real and predicted ectopic interactions was large
and differed significantly from a randomized control (P-value <5
×10−6) (Fig. 7C). This shows that our model successfully predicts
ectopic interactions in the rearranged genome.

Discussion

Machine-learning approaches are actively employed to capture
complex epigenetic signatures underlying chromatin contacts.
As we have shown here, biological data may have a specific struc-
ture, which should be accounted for when designing computa-
tional experiments. For example, pairs of loci with overlapping
windows partially share the epigenetic environment and often dis-
play similar three-dimensional architecture. This means that these
regions cannot represent independent samples in training and val-
idation data sets, and correlations captured by machine-learning
approaches do not reflect the causation underlying genome archi-
tecture if overlapping regions are present in both training and val-
idation data sets.

We benchmarked TargetFinder because it is often cited as a
straightforward tool and employed for prediction of EP interac-
tions (Atlasi and Stunnenberg 2017; Gudmundsson et al. 2017;
Moorthy et al. 2017; Stricker et al. 2017; Yang et al. 2017b; Wu
et al. 2018; Zhu et al. 2018); however, this is not the sole example
of research that does not take into account this peculiarity of the
biological data. For instance, recently published EP2vec (Zeng
et al. 2018) utilizes the same data set as TargetFinder and con-
structs training and validation samples in the same way. Another
tool aimed to predict CTCF loops, CTCF-MP (Zhang et al. 2018),
does not take into consideration nested loops when employing
window features. Although both EP2vec and CTCF-MP can gener-

ate predictions without window infor-
mation, performance of such a setup is
lower: ∼10% of accuracy drops when
CTCF-MP is trained without DNase I
and ChIP-seq window features and
F1-score drops ∼2%–4% when EP2vec is
trained without TargetFinder-derived
window features.

In the recent preprint describing a
tool for HiC-data prediction, HiC-Reg
(Zhang et al. 2019), the authors also
show that sharing genomic regions be-
tween training and validation data sets
improves prediction scores. However,
the authors connect this observation to
a chromosome-specific biological mech-
anism, which cannot be modeled when
overlapping data are omitted from the
validation set. Whereas chromosome-
and even region-specific mechanisms of
DNA-packaging indeed exist (Jiang et al.
2017)—andwehave also shown that pre-
diction is better when multiple chromo-
somes are used to train the model—
better results of intrachromosomal
cross-validation are likely to originate
from existence of overlapping regions.
One should note that, although pairs
with overlapping left or right anchors
are not shared between training and val-

idation data sets in HiC-Reg (so-called easy samples), authors do
not exclude regions, which share a part of the window between in-
teracting anchors.

We next raised the question of definition of promoter–
enhancer interaction. Currently, most of the studies use all 3C-
interactions, which differ statistically from distance-adjusted
background as functional EP interactions (Whalen et al. 2016;
Mishra andHawkins 2017). According to our results, functional in-
teractions of promoters and enhancers do not fully overlap with
Hi-C loops and probably do not overlap completelywith any other
set of enriched interactions. Whereas spatial proximity is required
for EP communication, it is not clear which spatial distance is nec-
essary and sufficient to achieve functional interaction. For exam-
ple, the recent study of the Shh-ZRS TAD showed that nearly the
entire ∼900-kb intra-TAD region can be activated by the ZRS en-
hancer, although pronounced loopingwas observed only between
the Shh promoter and ZRS enhancer (Symmons et al. 2016).
Removing the Shh-ZRS TAD boundary reduces intra-TAD contact
frequencies to the background level and disturbs Shh expression
in the developing limbs; however, relocating the enhancer closer
to the Shh promoter region restores the expression pattern. These
results indicate that background-level interactions within the
TAD might be sufficient to establish functional connections of
the promoter and enhancer. Moreover, a recent paper reports
that intra-TAD promoter regions often show a significant level of
interaction with TAD boundaries, and disruption of these interac-
tions does not lead to changes of expression levels (Sun et al.
2019). To sum up, our view is that a statistical increase of spatial
contact frequencies, i.e., formation of loops, is an important
indicator of promoter–enhancer connectivity but cannot be solely
used to distinguish functional interactions. In accord with
this, a recent large-scale CRISPR assay of promoter–enhancer
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Figure 5. Accurate prediction of promoter–enhancer interaction frequencies. (A) Prediction accuracy
of contact frequencies of EP pairs defined as “interacting” in monocytes according to SlideBase and
GeneHancer databases (“EP”), and all other pairs of loci (“all except EP”). (B) Scatterplot displaying pre-
dicted (y-axis) and experimentally measured (x-axis) contact frequencies for interacting EP pairs.
(C ) Distribution of the similarity scores for cell type–specific EP interactions in different cell types (K562
versus monocytes) or experimental and predicted data (K562 experimental versus K562 predicted and
monocytes experimental versus monocytes predicted). See Methods for definition of cell type–specific
EP interactions and similarity scores. Data in A–C provided for 25-kb resolution.
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connections (Fulco et al. 2019) suggested a quantitative “contact-
by-activity” model of EP interaction. In this model, enhancer im-
pact is quantitative and proportional to both promoter–enhancer
proximity and enhancer activity. Whereas the latter can be esti-
mated using DNase I or ATAC-seq data available for many cell
types, here, we described 3DPredictor, which can be used to quan-
titatively predict the spatial architecture of chromatin, including
enhancer–promoter interactions, to supplement this ATAC-seq
or DNA-seq data.

There are many methods published previously for prediction
of TAD boundaries, Hi-C interactions, and enhancer–promoter in-
teractions (Xu et al. 2018). CITD (Chen et al. 2016), MEGABASE
(Di Pierro et al. 2017), EpiTensor (Zhu et al. 2016), and the model
described in Qi and Zhang (2019) can predict 3D-interactions, in-

cluding EP interactions, at various resolu-
tions based on epigenetic data. However,
these tools require a large amount of epi-
genetic information: 5–10 patterns of
histone modifications for CITD; 11 for
MEGABASE; 12 for Qi and Zhang
(2019); and 16 histone modifications
and additional data for EpiTensor. CISD
(Zhang et al. 2017) and PRISMR (Bianco
et al. 2018) are able to infer chromatin
contacts genome-wide as well but re-
quire Hi-C data as an input. In contrast,
3DPredictor could make predictions
when supplied with CTCF and RNA-seq
data only.

Chromatin simulations proposed
by Rowley et al. (2017) also utilize CTCF
and transcription data only; however,
they requiremanual selection of interact-
ing CTCF sites based on Hi-C data, thus
making it impossible to predict 3D-inter-
actions from epigenetic data alone.

3DEpiLoop (Al Bkhetan and
Plewczynski 2018b), Lollipop (Kai et al.
2018), CTCF-MP (Zhang et al. 2018),
the BART model (Huang et al. 2015),
and other tools (Fortin and Hansen
2015; Jenkinson et al. 2017; Al Bkhetan
and Plewczynski 2018a) could predict
specific chromatin features, such as
TAD boundaries, A/B-compartments,
and CTCF-interactions or loops. Howev-
er, in contrast to 3DPredictor, these
approaches (1) do not infer EP interac-
tions, (2) perform qualitative, rather
than quantitative, prediction (i.e., classi-
fication), and (3) formost of them, signif-
icantly more input information is
required than for 3DPredictor.

There are multiple computation
tools designed specifically to infer EP in-
teractions (for example, Whalen et al.
2016; Cao et al. 2017; O’Connor et al.
2017; Hait et al. 2018; Zeng et al. 2018;
Li et al. 2019). However, all these
tools are fundamentally different from
3DPredictor, as they consider EP interac-
tion as qualitative, rather than quan-

titative. Moreover, most of them require a large amount of
epigenetic data to make predictions, and performance of some of
them (Whalen et al. 2016; Zeng et al. 2018) might be overestimat-
ed, as discussed above.

To sum up, 3DPredictor is a unique tool, which allows
predicting a large set of interactions, including EP interac-
tions, quantitatively, using only a small amount of input epigenet-
ic data.

It is essential that our model not only predicts chromatin in-
teractions in the normal genome but could also capture ectopic
interactions, which are formed as a result of chromosomal rear-
rangements. Currently, both the experimental data describing
3D genome alterations associated with known rearrangements
and tools modeling the spatial landscape of novel variants are
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Figure 6. 3DPredictor accurately reconstructs genome organization of novel cell types. (A) Example of
mouse NPC Hi-C contact map derived from experimental data (above diagonal) or obtained using
3DPredictor trained on hepatocyte contacts and provided with epigenetic data relevant for NPC.
(B–F) SCC (B), Pearson’s correlation (C), MRE (D), MSE (E), or MAE (F ) measurements of 3DPredictor ac-
curacy for training and validation on the same (green and purple lines) or different (red line) cell types.
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limited. At the same time, we (Gridina et al. 2018) and others
(Lupiáñez et al. 2015; Franke et al. 2016; Redin et al. 2017;
Zepeda-Mendoza et al. 2017) have recently reported novel varia-
tions with unexpected pathological phenotypes, which might be
explained, at least partially, by changes of chromatin organization
(Fishman et al. 2018; Spielmann et al. 2018). Future development
and validation of models predicting chromatin contacts in a rear-
ranged genome is essential for a better understanding of the
biological consequences of these rearrangements. Moreover, inte-
grating chromatin interactions, derived from 3DPredictor, with
enhancer activity information using the “activity-by-contact”

model may allow precise estimation of
transcriptional changes caused by struc-
tural variations.

Methods

Hi-C data processing

Hi-C data for mouse hepatocytes
(GSE95116) and cardiomyocytes
(SRX2658510) were downloaded from
NCBI and processed using Juicer
(Durand et al. 2016b). Resulting .hic-files
are deposited at the genedev hic-file
server (http://genedev.bionet.nsc.ru/
site/hic_out/) under accessions “Hepat”
and “CardioMyo”. Hi-C data for mouse
ES cells, NPC, cortex (Bonev et al.
2017), CH12.LX lymphocytes (Rao et al.
2014), and human GM12878, K562,
IMR-90, NHEK (Rao et al. 2014), macro-
phages, and monocytes (Phanstiel et al.
2017) are available at the AidenLab hic-
file server via Juicebox and Juicer Tools
(Durand et al. 2016a,b). All data sets
were KR-normalized. For each Hi-C data
set, contacts were obtained at 25- or 5-
kb resolutions using the Juicer Tools
dump command. To be able to perform
comparisons between cell types, we nor-
malized data sets, dividing each contact
by normalization coefficient Coef, which
reflects average bin coverage

Coef =
∑

i [K
∑

i,j,=N Ci,j

N
,

where Ci,j is the contacts between the
ith and jth bins, K is the number of bins
on Chromosome 1, and N is the number
of bins in the genome. To speed up Coef
computation, we only used bins of
Chromosome 1, although this should
not affect results, as we use KR-normal-
ized matrices where coverage of all bins
is roughly equal.

Loops were called by the Juicer
Tools HiCCUPS command with default
parameters using heat maps at 25- or 5-
kb resolution. K562 loops presented in
Figure 2 are from Rao et al. (2014).

First eigenvector (E1) values of Hi-C
matrixes were obtained using the Juicer
Tools eigenvector module.

5C data describing the three-dimensional organization of the
wild-type andmutatedmouse Epha4 locus in distal limb buds were
downloaded from GEO: GSE92291. Data were processed by the
HiC-Pro (Servant et al. 2015) pipeline using the mm10 genome.

The relative error of Hi-C contact counts shown in
Supplemental Figure S3 was estimated based on a binomial distri-
bution

RE =
���
1
N

√
× 100%,

where N is a number of Hi-C reads between contacted loci. The
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Figure 7. 3DPredictor captures three-dimensional organization of rearranged genomic regions.
(A) Contact map of mouse DelB locus, carrying homozygous deletion of ∼1.5 Mb, with experimentally
measured contacts in the top and 3DPredictor modeling results in the bottom. White lines correspond
to contacts of the deleted locus. Note ectopic interactions between Pax3 and Epha4 TADs (indicated
by arrows). These ectopic interactions are even more visible in B, where the same region is plotted and
only those interactions which differ between WT and DelB by more than three standard deviations are
kept. In A, the color indicates contact counts, whereas in B, the color indicates significance of differences
betweenWT and DelB data. (C ) Sizes of observed (red vertical bar) and expected (blue bars) overlaps be-
tween experimental and predicted ectopic interactions.
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average and standard deviation of relative errors were indepen-
dently calculated for each genomic distance.

To estimate correlation of contact counts on different resolu-
tions for Supplemental Figure S9, weused data for Chromosome10
of theGM12878 cell line.We randomly choose 1000 loci pairs and
calculated Pearson’s correlation between KR-normalized contact
frequencies on different resolutions. We aggregated calculations
of 100 independent samplings by averaging to obtain final results.

Definition of promoters and enhancers

For human macrophages and monocytes, enhancers were defined
using the SlideBase (http://slidebase.binf.ku.dk) database. This da-
tabase is supported by the FANTOM5 consortium (http://fantom
.gsc.riken.jp/data/) (Andersson et al. 2014) and represents a map
of human regulatory elements of each cellular state. It contains
levels of enhancer expression based on CAGE sequencing of RNA
isolated from everymajor human organ, over 200 cancer cell lines,
30 time courses of cellular differentiation, mouse developmental
time courses, and over 200 primary cell types. Thereby, an enhanc-
er can be specific to a set of primary cells and organs (tissue sam-
ples) or can be broadly (or ubiquitously) expressed. We took into
account enhancers displayed in >25% of samples related to the tar-
get cell line.

Using the GeneHancer database (https://www.genecards
.org), we defined gene promoters regulated by a given enhancer.
GeneHancer is a database of genome-wide enhancer-to-gene
and promoter-to-gene associations, embedded in GeneCards.
GeneHancer EP associations were generated using the following
information:

1. eQTLs (expression quantitative trait loci) from GTEx;
2. capture Hi-C EP long-range interactions;
3. expression correlations between eRNAs and candidate target

genes from FANTOM5;
4. cross-tissue expression correlations between a transcription fac-

tor interacting with an enhancer and a candidate target gene;
and

5. GeneHancer-gene distance-based associations, scored utilizing
inferred distance distributions. Associations include several ap-
proaches: (a) nearest neighbors, where each GeneHancer is as-
sociated with its two proximal genes; (b) overlaps with the
gene territory (intragenic); (c) proximity to the gene TSS (<2
kb). TSS proximity scores are boosted to elevate GeneHancer as-
sociations in the vicinity of the gene TSS.

The “true” interacting EP pairs of human monocytes and
macrophages were calculated by combining the list of cell type–
specific enhancers from SlideBase and a list of enhancer-gene asso-
ciations from GeneHancer.

When using the TargetFinder pipeline on human data, we
used the authors’ definition of active promoters and enhancers
and obtained coordinates from https://github.com/shwhalen/
targetfinder. For mouse data, we first obtained promoters using
TSSs (transcription start sites) downloaded from UCSC and active
enhancers based on annotations from Bogu et al. (2016). Next,
we defined interacting pairs as promoters and enhancers located
within the anchors of one loop.

ChIP-seq data processing

All ChIP-seq data for human GM12878 and K562 cell lines were
downloaded from https://github.com/shwhalen/targetfinder.
ChIP-seq data for mouse hepatocytes (NCBI SRX2578761–
SRX2578762), mouse NPC (NCBI SRX2636706–SRX2636707,
ENCODE ChIP-seq data for forebrain embryo 13.5, GSE96107,

GSE96107), mouse cortex (ENCODE ChIP-seq data for forebrain
embryo 13.5, GSE96107, GSE96107), and human monocytes
(ENCODE ENCSR000ATN) were downloaded from NCBI or
ENCODE and processed using the aquas pipeline (https://github
.com/kundajelab/chipseq_pipeline). CTCF motif orientation was
defined using GimmeMotifs (van Heeringen and Veenstra 2011)
software.

RNA-seq data processing

RNA-seq data for human GM12878 (ENCODE ENCFF212CQQ)
andhumanK562 (ENCODEENCFF026BMH) cell lineswere down-
loaded fromENCODE. RNA-seq data formouse hepatocytes (NCBI
GSE95111) andmouse NPC (NCBI GSM2533845) were download-
ed from NCBI. Data for human monocytes (NCBI SRX2785183)
were downloaded from NCBI and processed using standard proto-
cols with HISAT2 and StringTie (Pertea et al. 2016).

Prediction of three-dimensional interaction frequencies

For training purposes, all data were split into nonoverlapping ge-
nomic intervals. Usually, we use one or several chromosomes for
training and other chromosomes for validation. To perform pre-
diction genome-wide, we first used odd chromosomes for training
and made predictions for contacts on even chromosomes, and
then used even chromosomes for training and predicted contacts
on odd chromosomes. Unless otherwise mentioned, we used
only CTCF and RNA-seq data for predictions. For all results except
those described in the Supplemental Note, we used Gradient
Boosting with parameters n_estimators = 100, max_depth=9, sub-
sample = 0.7. Predictors parametrization and other details are ex-
plained in detail in the Supplemental Note.

Estimating predictions efficiency

We used several metrics to choose the best model. Pearson’s corre-
lation is the most commonmetric; however, Pearson’s correlation
is dominated by dependence of contact frequencies from genomic
distance. Thus, we also used the SCC metric (Yang et al. 2017a)
which measures correlation of contact frequencies on each diago-
nal of the Hi-C matrix independently, thereby neglecting the
factor of genomic distance. To reduce the effect of random
noise, we smoothed the Hi-C matrices before calculating SCC, as
was suggested by Yang et al. (2017a). All comparisons were
carried out with the same noise smoothing parameter h=2 (see
Supplemental Note; Supplemental Table S4 for justification of
the h value). In addition, to evaluate the model’s quality, we
used other metrics such as MSE, MAE, and MRE.

To benchmark model predictions against transfer of contact
counts fromanother cell type,we performed pairwise comparisons
of mouse Hi-C data (CH12.LX lymphocytes, cortical neurons, car-
diomyocytes cells, and hepatocytes) using the same metrics as de-
scribed above. Similarly, we compared human NHEK, K562, IMR-
90, GM12878 to benchmark predictions of human data.

Comparing 3DPredictor with other models

Chromatin interactions for GM12878 cells predicted by
MEGABASE+MiChroM were downloaded from the Juicebox
server (https://s3.amazonaws.com/hicfiles/external/ctbp_8_4_17/
all_intra_megabase_michrom.hic). As these interactions were at
50-kb resolution, we predicted the same regions at 5-kb resolution
and averaged data to obtain contacts at 50 kb.

Interaction frequencies for a 53- to 75-Mb region on
Chromоsome 4 of GM12878 cells, predicted by Rowley et al.
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(2017), as well as CTCF loop anchors were provided by VG Corces,
MJ Rowley, and MH Nichols (pers. comm.).

Interaction frequencies for a 20- to 45-Mb region on
Chromоsome 1 of GM12878 cells, predicted by Qi and Zhang
(2019), were provided by Y Qi and B Zhang (pers. comm.).

Note that weused here a SCC smoothing parameter of 2 for all
comparisons, whereas Qi and Zhang (2019) used SCC smoothing
parameter values >5. Note that changing the smoothing para-
meter does not affect results of the 3DPredictor benchmark (see
Supplemental Fig. E in Qi and Zhang 2019 and Supplemental
Note; Supplemental Tables S4, S7 in this paper for details of the
SCC smoothing parameter effect).

Defining cell type–specific TADs and cell type–specific

EP interactions

To define cell type–specific TAD boundaries, we utilized an insula-
tion-based score, which reflects depletion of contacts spanning the
putative TAD boundary, similar to the approach used in Sexton
et al. (2012), Vietri Rudan et al. (2015), and Fishman et al. (2019)
but with some modifications. The schematic representation of
the current approach is shown in Supplemental Figure S8. In par-
ticular, for each bin i of the Hi-C matrix A, we define four vectors
aL, bL, aR, bR , each containing N elements

aL = (Ai−k,i−1 ); bL = (Ai−k+2,i+1 ); aR = (Ai−1;i+k+2); bR

= (Ai+1;i+k+4); k = 1, . . . , N,

where Ai,j is the number of contacts between bins i and j, and N is
empirical constant which was equal to 5 in this study. Thus, for
two bins a and b, surrounding the bin i, vectors aL, bL, aR, bR
describe local (± N bins) contacts.

Then, the insulation score Si of bin i was computed by divid-
ing the frequency of contacts crossing bin i to the frequency of dis-
tance-matched contacts located downstream from or upstream of i
(Supplemental Fig. S8) and summing obtained ratios

Si =
∑

j=1,...,N

ajL
bjL

+
∑

j=1,...,N

ajL
bjL

.

If, for a bin i, we observed a high (above the empirically defined up-
per threshold) insulation-based score in one cell type and low (un-
der the empirically defined lower threshold) score in another cell
type, then we considered the bin i as a center of the cell type–spe-
cific region. We defined the upper and lower thresholds based on
the distribution of insulation scores (Supplemental Fig. S18) so
that the upper threshold corresponded to the strong insulation
and the lower thresholdwas close to the natural noise of insulation
in Hi-C data. In particular, we used the following parameters to
compare NPC and hepatocytes: bin size = 25 kb; N= five, which
means that we used the interval ±100 kb around the putative
boundary to calculate the insulation score; the upper threshold=
3×N=15; the lower threshold=2.4 ×N=12. With these parame-
ters, we obtained 88 cell type–specific regions.

To estimate prediction accuracy for cell type–specific EP inter-
actions, we compared differences between predicted and control
data with differences between cell types and replicates. We charac-
terized contacts of EP pairs by an observed-to-expected contacts ra-
tio (OE). The EP interactionswere referred to as cell type–specific, if
theOE differs between replicates less than two times and differs be-
tween cell types more than two times:

log2
OErep1

OErep2

∣∣∣∣
∣∣∣∣ , 1 and log2

OEcelltype1

OEcelltype2

∣∣∣∣∣
∣∣∣∣∣ . 1.

To measure the similarity of cell type–specific interactions in
two samples (i.e., predicted and experimental data or two experi-
mental samples), we calculated the mean difference of OE values
for corresponding interactions:

Similarity = mean log2
OE1

OE2

∣∣∣∣
∣∣∣∣

( )
.

The cell type–specific interactions were obtained comparing
mouse hepatocytes (combined data and replicates) with NPC
(only combined data) and human K562 cell (combined data and
by replicates) with monocytes (only combined data) on 5-kb and
25-kb resolution.

Analysis of looping contacts

For quantitative comparison of interactions in loop anchors
shown in Supplemental Figure S17, we used loops derived from
the experimental NPC Hi-C data using HiCCUPS. We next aimed
to call loop anchors based on 3DPredictor data using HiCCUPS.
However, HiCCUPS required normalization vectors to be provided
in .hic-files, and since these vectors were not available for predict-
ed data, we failed to annotate the loops automatically. Thus, we
manually annotated all loops for both experimental and predicted
Hi-C maps of Chromosome 5 of NPC cells (Supplemental Tables
S8, S9 show coordinates of the manually annotated loop anchors)
and compared obtained data to estimate the number of correctly
predicted loops.

Modeling chromosomal rearrangements

To model chromosomal rearrangements, we used 3DPredictor
trained on mouse hepatocyte cells. To generate predictors, we ob-
tained CTCF (NCBI SRX1975285–SRX1975286) and RNA-seq
(NCBI SRX1975216–SRX1975217) data from wild-type mouse
hindlimb E11.5 cells. Next, we deleted all CTCF peaks and genes
from the region [mm10]: Chr 1: 76,392,403–78,064,264, which
corresponds to the deletion coordinates described in Bianco et al.
(2018). The resulting set of predictors was used to model all chro-
matin contacts within the region [mm10]: Chr 1: 70,950,000–
81,000,000. To compare contact frequencies predicted by the
model with experimental data, we defined ectopic interactions
as described in Bianco et al. (2018). We first generated a normal-
ized difference matrix between mutated and WT matrices. For
this, we multiplied the mutant matrix by a coefficient that equal-
izes the coverage of regions that are not involved in the mutation.
Next, we subtracted the WT matrix from the mutated matrix. We
normalized the difference matrix by dividing each subdiagonal
by the average number of reads observed at the corresponding ge-
nomic distance inWT data. After we get the normalized difference
matrix, we found ectopic interactions for each subdiagonal.
Specifically, we filtered out the subdiagonal elements, which
were above the 96th percentile of all subdiagonal values, and cal-
culated the standard deviation of the remaining values. All points
that differ from zero by more than three standard deviations were
considered ectopic.

Software availability

3DPredictor source code (https://github.com/labdevgen/
3DPredictor) and Jupiter Notebook with the code used to
reproduce TargetFinder results (https://github.com/labdevgen/
targetFinderTests) are both freely available on GitHub and in
Supplemental Code.
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