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The eradication of Listeria monocytogenes from food chains is still a great challenge for
the food industry and control authorities since some clonal complexes (CCs) are either
better adapted to food processing environments (FPEs) or are globally widespread.
In this work, we focus on the in-house evolution of L. monocytogenes genotypes
collected from a heavily contaminated FPE whose contamination pattern underwent
a massive and yet unexplained change. At the beginning of the sampling in 2010,
a high variety of most likely transient L. monocytogenes genotypes was detected
belonging to sequence type (ST) 1, ST7, ST21, ST37. After several efforts to intensify
the hygiene measures, the variability was reduced to L. monocytogenes ST5 that was
dominant in the following years 2011 and 2012. We aimed to elucidate possible genetic
mechanisms responsible for the high abundance and persistence of ST5 strains in this
FPE. Therefore, we compared the genomes of six L. monocytogenes ST5 strains to
the less frequently occurring transient L. monocytogenes ST37 and ST204 from the
same FPE as well as the highly abundant ST1 and ST21 isolated in 2010. Whole
genome analysis indicated a high degree of conservation among ST5 strains [average
nucleotide identity (ANI) 99.93–99.99%; tetranucleotide correlation 0.99998–0.99999].
Slight differences in pulsed field gel electrophoresis (PFGE) patterns of two ST5 isolates
could be explained by genetic changes in the tRNA-Arg-TCT prophages. ST5 and
ST204 strains harbored virtually identical 91 kbp plasmids related to plasmid group
2 (pLM80 and pLMUCDL175). Interestingly, highly abundant genotypes present in the
FPE in 2010 did not harbor any plasmids. The ST5 plasmids harbored an efflux pump
system (bcrABC cassette) and heavy metal resistance genes possibly providing a higher
tolerance to disinfectants. The pLM80 prototype plasmids most likely provide important
genetic determinants for a better survival of L. monocytogenes in the FPE. We reveal
short-term evolution of L. monocytogenes strains within the same FPE over a 3 year
period and our results suggest that plasmids are important for the persistence of ST5
strains in this FPE.

Keywords: Listeria monocytogenes, food processing environment, persistence, multi locus sequence type, whole
genome sequencing, plasmid
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INTRODUCTION

The zoonotic agent Listeria monocytogenes is capable to switch
from an environment-associated to a pathogenic lifestyle and
poses a high risk for immunocompromised persons, pregnant
women, neonates and the elderly (Freitag et al., 2009; Allerberger
and Wagner, 2010).

Cheeses, especially fresh-, soft and semi-hard varieties were
often found to be vehicles in listeriosis outbreaks in the past
and recently (Schoder et al., 2014; Buchanan et al., 2017).
The epidemiological investigation of cheese-related outbreaks
revealed substantial deficiencies in hygiene or in applied
manufacturing protocols, a lack of consistent L. monocytogenes
monitoring in food lots and food processing environments
(FPEs), and the underestimation of L. monocytogenes growth
potential during storage (Rückerl et al., 2014; Buchanan et al.,
2017; Center of Disease Control and Prevention (CDC),
20171).

The proximity to urban and agricultural environments
increases the chance of L. monocytogenes introduction into
food processing facilities due to their natural reservoirs and
contamination cycles in soil, manure, decaying vegetation and
water (Vivant et al., 2013; Linke et al., 2014).

As common colonizers of FPEs, distinct L. monocytogenes
subtypes are able to survive in inefficiently cleaned niches
of equipment and adapt to several stress factors such as
low temperature, osmotic pressure, low pH and sublethal
concentrations of biocides (Melo et al., 2015). A high
L. monocytogenes prevalence in FPEs is often reported, and
a constant risk of L. monocytogenes transmission to consumers
remains a central challenge to the food industry (Almeida et al.,
2013; Ferreira et al., 2014; Stessl et al., 2014; Malley et al., 2015;
Muhterem-Uyar et al., 2015).

Listeria monocytogenes consists of four evolutionary lineages
(I, II, III, and IV). Most listeriosis cases are associated with genetic
lineage I (serotype 1/2b, 4b) and genetic lineage II (serotype
1/2a, 1/2c) strains (Orsi et al., 2011). Epidemic clones (ECs),
genetic similar isolates involved in temporally and geographically
unrelated large outbreaks, were defined by multi-virulence-locus
sequence typing (MvLST) focusing on six to eight virulence
associated genes (Chen et al., 2007). Multilocus sequence typing
(MLST), a reference method for defining clonal complexes
(CCs) based on seven housekeeping genes, was a different
approach to identify genetically related isolates and highly
abundant outbreak associated clones (Cantinelli et al., 2013).
The most prevalent CCs correspond to important outbreak
associated ECs: CC1 and ECI, CC2 and ECIV, CC5 and ECVI,
CC6 and ECII, CC7 and ECVII, CC8 and ECV harboring
full prerequisites of virulence (e.g., prfA, internalin A and B;
listeriolysin O and actA). Listeriolysin S (Listeria pathogenicity
island; LIPI-3) present in genetic lineage I strains [CC1-6, 59,
77, 224 and sequence type (ST) 54] and LIPI-4 (cellobiose-family
PTS system) limited to CC4, contribute to neural and placental
invasiveness (Cotter et al., 2008; Maury et al., 2016; Moura et al.,
2016).

1http://outbreakdatabase.com/search/?organism=Listeria+monocytogenes

The progressive expansion of some genetic lineage II CCs
(CC121, CC9, CC8, CC7, CC37, CC155, CC177, and CC204),
indicate a special adaptation to the environment and to food
matrices (Fox et al., 2016; Knudsen et al., 2017; Maury et al., 2016;
Moura et al., 2016).

So-called persistent L. monocytogenes strains were reported
to be better environmentally adapted due to the presence of
resistance markers on plasmids (e.g., plasmid group1: plM33;
group 2: plMST6; plM5578, plM80; pLM6179), the presence of
prophages (tRNA, comK, phiLMST6), premature stop codons in
inlA, stress-survival islet 1 (SSI-1; in ST3, 7, 8, 9, 155, and 204)
or SSI-2 (CC121), enhanced biofilm formation, and/or tolerance
to disinfectants as benzalkonium chloride (BC) (Elhanafi et al.,
2010; Lomonaco et al., 2013; Müller et al., 2013; Melo et al., 2015;
Liang et al., 2016; Martínez-Suárez et al., 2016; Xu et al., 2016;
Buchanan et al., 2017; Hingston et al., 2017; Knudsen et al., 2017;
Kremer et al., 2017).

The combination of classical molecular subtyping methods
such as pulsed-field gel electrophoresis (PFGE) with whole-
genome sequencing (WGS) empowers both, epidemiological
outbreak investigations and in-depth analysis of genetic markers
for persistence (Gilmour et al., 2010; Buchanan et al., 2017; Chen
et al., 2017).

This study focused on a group of L. monocytogenes genetic
lineage I isolates (ST5), which became highly prevalent in a
cheese processing environment within a 3 year investigation.
Subtyping of L. monocytogenes ST5 isolates using PFGE revealed
three similar but slightly distinct AscI PFGE patterns. The
FPE harbored initially a high variety of L. monocytogenes
genotypes on food contact (FCS) and non-food contact
surfaces (NFCS), which decreased after improved hygiene
measurements, so that mainly drains remained positive (Rückerl
et al., 2014). Within this follow-up study we aimed to
gain insight into genetic markers possibly responsible for
the dominance of ST5 L. monocytogenes isolates from this
FPE. Therefore, we compared persistent (ST5, n = 6) to
sporadically isolated L. monocytogenes (ST1, ST21, ST37, and
ST204; n = 5) from the same habitat by a comparative WGS
approach. Furthermore, we determined potential resistances
to antimicrobials, the epidemic clone and virulence type and
performed cell culture experiments to estimate the in vitro
virulence potential (ST1, ST5, ST21, ST37, ST204 vs. ST9) of these
isolates.

MATERIALS AND METHODS

L. monocytogenes Isolates and
Processing Facility Characteristics
The L. monocytogenes occurrence in an Austrian cheese
processing facility was investigated during 2010 to 2012. Raw
material (vegetables, bacon) and intermediate products were
occasionally contaminated. Initially, the PFGE analysis revealed
a heterogeneous picture of up to 17 different PFGE profiles
corresponding to nine STs. The heterogeneity of PFGE-profiles
decreased resulting in one predominant profile (FCP7, ST5)
(Rückerl et al., 2014).
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During this study, a strain panel of 11 L. monocytogenes
strains, isolated from the same FPE habitat (drains) but
different building compartments within the FPE were included
in the WGS comparison. The strain set comprised four
representatives of the predominant L. monocytogenes PFGE-
genotype FCP7 (ST5) isolated during 2011–2012 (strains
4, 6, 8, and 13KSM) and two slightly different subtypes,
FCP7st1 (10KSM) and FCP7st2 (11KSM). Furthermore, two
representatives of the PFGE-profile FCP8 (ST37) (1KSM and
14KSM), which were recurrently isolated and one representative
of the initially most abundant subtypes in 2010: 15KSM
(ST1) and 2KSM (ST21) were included. The ST1 and ST21
isolates represented 76.8% of all isolates in 2010. At the
end of the investigative period, L. monocytogenes PFGE-
profile FCP12 (ST204, 3KSM) was introduced in the FPE
(Figures 1, 2) revealing ongoing contamination events in this
FPE. The L. monocytogenes isolates were stored at the strain
collection of the Institute for Milk Hygiene, Milk Technology
and Food Science (University of Veterinary Medicine in
Vienna).

Multi-Locus Sequence Typing (MLST)
and Multi-Virulence-Locus Sequence
Typing (MVLST)
Multi-locus sequence typing of seven housekeeping loci
(abcZ, bglA, cat, dapE, dat, ldh, and lhkA) was performed.
ST were determined using the Institute Pasteur Database2.
L. monocytogenes STs detected in this study were compared with
L. monocytogenes MLST profiles stored in the Institute Pasteur
isolate database3.

Multi-virulence-locus sequence typing was performed as
described previously4 (Chen et al., 2007; Lomonaco et al., 2013)
by amplification of intragenic regions of six virulence genes
(clpP, dal, inlB, inlC, lisR, and prfA). Sequencing was performed
by LGC Genomics (LGC, Berlin, Germany). Multiple sequence
alignments were performed with Clustal Omega5 (Li et al., 2015)
and compared with sequences from the L. monocytogenesMVLST
database4.

DNA Isolation, Whole Genome
Sequencing and Genome Analysis
Genomic DNA from L. monocytogenes strains was isolated
using NucleoSpin R© tissue kit (Macherey-Nagel, Düren,
Germany) according to manufacturer’s instructions for Gram-
positive bacteria. The genomes were sequenced by Illumina
HiSeq2000 sequencing technology (Illumina Inc., San Diego,
CA, United States) at the Campus Science Support Facilities
(CSF) Next Generation Sequencing unit, Vienna, Austria using
paired-end sequencing technology and 100 bp read length.
For each strain, eight million reads were de novo assembled
using the software SeqMan NGen R© (DNAStar, Madison, WI,

2http://bigsdb.pasteur.fr/listeria/listeria.html
3http://bigsdb.pasteur.fr/perl/bigsdb/bigsdb.pl?db=pubmlst_listeria_isolates_
public
4https://sites.google.com/site/mvlstdatabase/home
5http://www.ebi.ac.uk/Tools/msa/clustalo/

United States). The average coverage for the strains was as
follows: 295× (1KSM), 277× (2KSM), 359× (3KSM), 311×
(4KSM), 294× (6KSM), 282× (8KSM), 296× (10KSM), 290×
(11KSM), 289× (13KSM), 287× (14KSM) and 260× (15KSM).
The final number of assembled contigs ranged from 23 to 44
and 1 to 5 for chromosomal DNA and plasmids, respectively
(Table 1).

The chromosomal contigs were aligned to the following
reference genomes using the “move contigs” option in MAUVE
(Darling et al., 2010): EGD-e (GenBank accession number
AL591824) for ST21, ST37 and ST204. SLCC2755 (GenBank
accession number FR733646) for ST5 and F2365 (GenBank
accession number AE017262I) for ST1. The plasmid contigs
were ordered to the plasmid N1-011A (GenBank accession
number CP006611). All chromosome and plasmid contigs were
connected by using the spacer “nnnnnnn” to maintain the desired
order during annotation. The annotation of aligned contigs was
achieved with the fully automated service RAST6 (Aziz et al.,
2008; Overbeek et al., 2014). Details about bacterial strains
(n = 11) including basic assembly and annotation information
are listed in Table 1.

Comparative Genome Analysis
Multiple genome, prophage and plasmid alignments were
performed by applying the progressive Mauve software
tool (Darling et al., 2010). Average nucleotide identities
between genomes and plasmids and correlation indexes of
tetra-nucleotide signatures (Pairwise Tetra calculation) was
determined using the JSpeciesWS Web Server (Richter et al.,
2016). Comparison of present or absent genes among strains
was determined by using the BLAST options of RAST6. Genome
comparisons and predictions of homologous proteins were
verified with BLASTN, BLASTP, uniProt and by applying
pairwise sequence alignments based on BLAST7 (Altschul
et al., 1990; Camacho et al., 2009). Similar to a previous study
(Kuenne et al., 2013) we used a similarity cut-off of 60%
amino acid identity and 80% coverage for identification
of homologous proteins. Available L. monocytogenes
genomes sequences in the NCBI database were compared
to the genomes included in this study for their symmetric
identity8.

Accession Numbers
Genome sequences have been submitted to the NCBI and
can be found under following GenBank accession numbers:
JYOH00000000 (strain 1KSM), JYOI00000000 (strain 2KSM),
JYNF00000000 (strain 3KSM), JYOJ00000000 (strain 4KSM),
JYOL00000000 (strain 6KSM), JZBQ00000000 (strain 8KSM),
JZHB00000000 (strain 10KSM), JZHC00000000 (strain 11KSM),
JZCT00000000 (strain 13KSM), JYOS00000000 (strain 14KSM),
JYOT00000000 (strain 15KSM).

6http://rast.nmpdr.org/
7http://www.uniprot.org/
8https://www.ncbi.nlm.nih.gov/genome/genomes/159?
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FIGURE 1 | Decrease in Listeria monocytogenes genotypic heterogeneity in a cheese processing environment during 2010–2012 based on Rückerl et al. (2014).
Different multi-locus sequence types are abbreviated by sequence type (ST). The strain are denoted by 1–15KSM. Further abbreviations: non-food contact surfaces
(NFCS) and food-contact surfaces (FCS).

Antimicrobial Resistance Testing
The antimicrobial resistance (AMR) of L. monocytogenes isolated
from the cheese FPE was tested by applying the commercially
available SensitreTM Gram-positive plate assay (Thermo Fisher
Scientific, Waltham, MA, United States). A panel of 18
antimicrobials at the concentrations indicated in parentheses
included in the assay: erythromycin (ERY; 0.25 to 4 µg/ml),
clindamycin (CLI; 0.12 to 2 µg/ml), quinupristin/dalfopristin
(SYN; 0.12 to 4 µg/ml), daptomycin (DAP; 0.25 to 8 µg/ml),
vancomycin (VAN; 1 to 128 µg/ml), tetracycline (TET; 2 to
16 µg/ml), ampicillin (AMP; 0.12 to 16 µg/ml), gentamicin
(GEN; 2 to 16 µg/ml), rifampin (RIF; 0.5 to 4 µg/ml),
levofloxacin (LEVO; 0.25 to 8 µg/ml), linezolid (LZD; 0.5 to
8 µg/ml), penicillin G (0.06 to 8 µg/ml), ciprofloxacin (CIP;
0.5 to 2 µg/ml), trimethoprim-sulfamethoxazole (SXT; 0.5/9.5
to 4/76 µg/ml), ceftriaxone (AXO; 8 to 64 µg/ml), gatifloxacin
(GAT; 1 to 8 µg/ml), oxacillin+2% NaCl (OXA+, 0.25
to 8 µg/ml).

Listeria monocytogenes isolates (KSM1-KSM15) were grown
on Mueller-Hinton agar (Oxoid) for 24 h at 37◦C incubation.
The overnight cultures were suspended in sterile saline solution
(0.85% NaCl) to achieve a turbidity of a McFarland standard
of 0.5 and then diluted 1:100 before use. The breakpoints for
MICs and multi-drug resistance (MDR; resistance to two or more

antibiotic classes) were determined according to EUCAST9 and
Clinical and Laboratory Standards Institute (CLSI) standards.

Virulence Tissue Culture Assays Using
the Caco-2 Cell Line
The human intestinal adenocarcinoma cell line Caco-2 (ATCC R©

HTB-37TM) was cultivated in Eagle’s minimum essential
medium (MEM, Thermo Fisher Scientific, Waltham, MA,
United States) supplemented with 10% fetal bovine serum,
2 mM/l L-glutamine, 1% (v/v) non-essential amino acids, and
antibiotics (100 IU/ml penicillin, 100 mg/ml streptomycin, and
0.25 mg/ml amphotericin B) (all Sigma–Aldrich, St. Louis, MO,
United States) at 37◦C in a humidified atmosphere (95% relative
humidity) containing 5% CO2.

One colony of L. monocytogenes [1, 2, 3, 4, 6, 15KSM and
5KSM] was inoculated in brain heart infusion complemented
with yeast extract (BHI-Y, Merck) and cultivated for 8 h at 37◦C.
The bacterial culture was adjusted to OD600 0.1 in 8 ml BHI-Y
and grown for 32 h at 10◦C without shaking mimicking natural
contamination conditions in a cheese processing facility. Cell
monolayers were infected with L. monocytogenes at a multiplicity
of infection (MOI) of 25 for 1 h at 37◦C. The cell monolayers

9http://www.eucast.org/clinical_breakpoints/
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FIGURE 2 | Distribution of L. monocytogenes sequence types (STs) in the building compartments I and II isolated from non-food contact surfaces (NFCS),
food-contact surfaces (FCS) and raw materials (RM) or products (P) during the study phase (2010–2012).
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were washed with Dulbecco’s Phosphate Buffered Saline (PBS;
Thermo Fisher Scientific) and incubated in Eagle’s minimum
essential medium (MEM), 10% FBS containing gentamicin
(100 µg/ml) for 45 min (invasion) and 4 h (intracellular
growth), respectively. The cells were lysed with 1 ml 0.1%
Triton X-100 (Merck) and colony forming units (CFU) were
determined by plating on tryptic soy agar (Biokar Diagnostics,
Allonne, France) complemented with 0.6% yeast extract. The
invasion efficiency (%) was calculated as mean CFU recovered
after 45 min of gentamicin treatment divided by CFU of
the inoculum. The intracellular growth coefficient (IGC) was
calculated as follows: IGC= (intracellular bacteria4h-intracellular
bacteria45 min)/intracellular bacteria45 min. Each experiment was
performed in triplicate and repeated four times. Two reference
strains EGDe (ST35) and QOC1 (ST403; Austrian Quargel
outbreak clone 1) were included in the experimental setting.
5KSM (ST9) served as control strain with low invasion capacities
due to a truncated inlA gene. A one way ANOVA (SPSS.20
software, SPSS Inc., Chicago, IL, United States) was undertaken
to calculate the variance on the mean invasion and IGC of
four independent experiments performed with each strain, and
post hoc test (Tukey-HSD) was used to determine significant
differences between the strains (P < 0.05).

RESULTS AND DISCUSSION

Molecular Subtyping of
L. monocytogenes Occurring in the
Same FPE from 2010 to 2012
The investigation took place in a heavily contaminated FPE
producing a variety of fresh and soft cheeses. L. monocytogenes
was isolated from 19.5% of more than 1200 total swab and drain
samples from both FCS and NFCS. The processing environment
(drains, walls, doors, and floors) was found to be positive for
L. monocytogenes during the whole investigation at a high rate
(15.8%; Rückerl et al., 2014). These data demonstrate that the
quality management procedures in the analyzed FPE were not
efficient to reduce the contamination to an acceptable level. Due
to the massive contamination and the high number of positive
isolation events, this enterprise was particularly well suited
to study the in-house L. monocytogenes population structure.
MLST typing resulted in nine L. monocytogenes STs present
to some extent during the study: ST37, ST1, ST5, ST7, ST87,
ST21, ST570, ST9, and ST204 (Figure 1). For the genomic
analysis, we chose representatives of ST1, ST5, ST21, ST37,
and ST204 for the following reasons: The dominant clone
ST5 was absent at the beginning of sampling in 2010, but
increased massively in abundance in 2011 and 2012 when 74.6
and 95.2% of all tested isolates from all compartments were
ST5 (Figures 1, 2). How this highly dynamic contamination
could have happened remains unclear. An introduction of
the ST5 strains from outside into the FPE during late
2010/early 2011 is highly likely. This occurrence and following
dominance of ST5 strains implies that the sanitary advice
was not followed completely. Chlor-free disinfectants including

quaternary ammonium compounds and polyhexamethylene
biguanide (polihexanide) were applied in excessive form and
combined with floor carpets where disinfectants might have
accumulated.

ST37 strains (indistinguishable by PFGE) were isolated at
three occasions in the beginning and at a single occasion in 2012,
always from the same compartment (production and packaging).
The ST204 isolate (3KSM) was most likely introduced in 2012 and
isolated at three occasions from two compartments (washing area
and cheese processing and ripening; Figure 2). This ST became
more abundant in 2013 (data not shown). ST1 (15KSM) and ST21
(2KSM) were highly abundant in the 1st year of sampling and
represented 76.8% of all isolates from 2010 (Figure 1).

In comparison to MLST, PFGE-typing with AscI revealed two
subtypes among the six L. monocytogenes ST5 isolates, which
were indistinguishable by PFGE and MLST: 4KSM, 6KSM, 8KSM,
10KSM, 13KSM; one band difference by PFGE but the same ST
was found in 10KSM and 11KSM thus indicating some minor
genetic changes in 10KSM and 11KSM-possibly in prophage
regions (Gilmour et al., 2010; Rückerl et al., 2014).

Globally disseminated ST5 strains representing epidemic
clone VI [virulence type (VT) 63] were isolated from
geographically distant areas (e.g., Austria, Canada, Australia,
Switzerland, Finland, China, and Chile), different origin
(humans, animals, food, environment) and caused several
United States multi-state listeriosis outbreaks (imitation
crabmeat 1996; cantaloupe 2011; Hispanic style cheese and
stone fruits 2014, ice cream 2015) (Schmid et al., 2014; Wang
et al., 2015; Buchanan et al., 2017; Meier et al., 2017; Institute
Pasteur MLST database10). Major differences among ST5/ECVI
strains were observed with WGS/PFGE analysis (Chen et al.,
2017) or comK prophage typing (Lomonaco et al., 2013) in
the gain or loss of prophage regions such as tRNA-Arg TCT,
comK and tRNA-Arg CCG prophages. Interestingly, comK
prophages were absent in the cantaloupe outbreak strain 1 (Chen
et al., 2017) and all ST5 strains included in this study. Zhang
et al. (2016) reported a close genetic relatedness for ST5 strains
from food and human cases in Shanghai, China circulating
rather locally. Another L. monocytogenes genotype chosen for
this study was ST37: ST37 strains were reported to undergo a
recent clonal expansion and were predominantly isolated from
Austrian soil, compost samples, plant material and water10

(Linke et al., 2014). ST37 strains included in this study were
corresponding to VT61 in the MLVST database. Recent reports
indicate sporadic isolation of ST37 in products of animal origin
(Schoder et al., 2014; Rodríguez-Lázaro et al., 2015; Kvistholm
Jensen et al., 2016) but also few clinical cases have been reported
(Maury et al., 2016). ST204 (VT10) were up to now isolated
from the cheese and meat production chain in the Czechia and
Australia (Stessl et al., 2014; Fox et al., 2016), European fish FPE
(MLST database Institute Pasteur) and Danish FPE (Knudsen
et al., 2017). ST1/ECI is globally the most prevalent genotype
and was recently involved in the United States caramel apple
outbreak (2014–2015) (Chen et al., 2016; Maury et al., 2016).
ST21 (VT123) is strongly associated to wild animals (hare, birds)

10http://bigsdb.pasteur.fr/listeria/listeria.html
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and the environment (soil) (Linke et al., 2014; MLST database
Institute Pasteur). A Minimum spanning tree (MST) analysis
of L. monocytogenes lineages I and II strains of this study, in
comparison with the Institute Pasteur strain collection based on
identical allelic abcz types including VTs and ECs is depicted in
Supplementary Figure S1. All ST5 strains were identified as ECVI
(VT63) and ST1 as ECI (VT20).

Comparative Genome Analysis
of Transient and Persistent
L. monocytogenes STs
The WGS analysis revealed typical genomic features of
L. monocytogenes such as assembly size – which do not represent
the actual genome sizes because the genomes are not closed –
ranging from 2.894 (14KSM) to 3.043 Mb (10KSM) and a
genomic G+C content of 37.9% (den Bakker et al., 2010)
(Table 1). Overall, all sequenced ST5 genomes are highly
similar to each other (Figure 3). The average nucleotide identity
(ANI) was >99.98% for 4KSM, 6KSM, 8KSM and 13KSM
and >99.93% for 10KSM and 11KSM which had slightly
different PFGE patterns (Supplementary Table S1). Also the
Tetranucleotide analysis revealed highly similar genomes within
the ST5 strains from this study, showing r2 values greater
than 0.99998 (Supplementary Table S2), which is indicative
of clonal relationships between the ST5 strains (Burall et al.,
2016). The two ST37 genomes (1KSM, 14KSM) shared 99.94%
ANI (Supplementary Figure S2). Schmid et al. (2014) reported
a human listeriosis cluster caused by ST5 strains potentially
linked to an Austrian fresh cheese facility or a meat product
manufacturer (A and B). The authors identified in a core genome
MLST phylogenetic approach for producer A and B a ≤19 and
≤8 gene difference from the human cluster but could not link
the case directly due to missing quantitative data. We compared
human and cheese isolates from producer A to our ST5 isolates
and found also a high ANI (99.94%) but the tetranucleotide
coefficient was 0.99992 indicating no clonal relationship (data
not shown). A direct comparison with 1528 available genomes
at the NCBI database revealed the highest symmetric identity for
4, 6, 8, and 13KSM (>99.7%). Interestingly, A45 isolated from
food in Canada and LM05-00704 (unpublished genome Institute
Pasteur; GenBank accession number: GCA001564595.1) were
more similar (>99.4%) to 4, 6, 8, and 13KSM than 10 and 11KSM
(99.34%) (Hingston et al., 2017). The comparison of 1KSM and
14KSM revealed a 98.5% symmetric identity11.

Prophage Content and Conservation
The L. monocytogenes strains included in this study harbored
one or two prophages, either located adjacent to tRNAs or
inserted into the comK gene (3KSM, 15KSM) (Table 2). The
highest homology (100%) between tRNA Arg-TCT prophages
was found within ST5 strains (4, 6, 8, and 13KSM; approximately
43.69 kbp length). The ST5 PFGE subtype strains 10 and 11KSM
both harbor larger and thus slightly distinct tRNA Arg-TCT
prophage regions (approximately 61 and 47 kbp) (Table 2

11https://www.ncbi.nlm.nih.gov/genome/

and Supplementary Table S3), which could be responsible for
the slightly different PFGE patterns of 10KSM and 11KSM
compared to the other ST5 strains. The isolate 14KSM (ST37)
differed from 1KSM (ST37) by the absence of the tRNA-Ser-CGA
prophage (Table 2 and Supplementary Figure S2) suggesting
that the tRNA Ser-CGA prophage was lost in 14KSM during
the time of sampling. Rearrangements in prophage regions
and hypervariable hotspots were identified as major drivers
for rapid niche adaptation of outbreak related (CC8; ECV
strains 08-5578 and 08-5923) or persistent L. monocytogenes in
the meat chain (Gilmour et al., 2010; Verghese et al., 2011;
Kuenne et al., 2013). Prophages are most often conserved
among outbreak related isolates. Highly similar but unrelated
genotypes can be differentiated by phage typing tools (e.g.,
PHAST, PHASTER, comK typing) and support the identification
of listeriosis outbreaks (Lomonaco et al., 2013; Chen et al.,
2017). Based on the differences in prophage content in some of
the strains in this study, particularly the different tRNA Arg-
TCT prophages in the ST5 PFGE subtypes 10 and 11KSM, it
is tempting to speculate that these changes in prophages were
detrimental for their adaptation and survival to this particular
FPE; and thus subsequently these two subtypes got lost from
the FPE. This is in line with recent reports describing an
important role of prophages for adaptation and survival under
stress conditions (Wang et al., 2010; Hingston et al., 2017)
or an increased competitiveness (Burns et al., 2015). Recently,
we (Schmitz-Esser et al., 2015) described a high similarity of
persistent ST121 strains isolated from different FPEs in their
prophage regions. The only differences in their genomes were
caused by putative rearrangements of prophages (strain 6179)
in hypervariable hotspot 7 (lmo0458-lmo0480). Similar to what
we stated above, it is conceivable that these rearrangements were
detrimental for the survival of 10KSM and 11KSM strains in this
FPE, as these changes occurred only temporarily during 2011.

Plasmids in ST5 and ST204
Putatives plasmids assigned to Listeria group 2 (Kuenne et al.,
2010) were detected in all ST5 and ST204 strains with assembly
sizes ranging from 90.2 to 92.0 kb (Table 1). Plasmids of
ST5 and ST204 were virtually identical and showed more than
99.97% nucleotide identity to each other with more than 99.3%
coverage (Figure 4 and Supplementary Table S3). The ANI of
ST5 and ST204 plasmids was 99.98% when compared to pLM80, a
plasmid initially identified in the 1998–1999 multistate outbreak
strain H7550 (ST6/ECII) involving contaminated hot dogs (Chen
et al., 2016). High homologies (99.97%) were identified between
pLM80-like plasmids isolated in this study and pUCDL_175, a
plasmid harbored by a ST204 strain highly abundant in Australia
(Figure 4) (Fox et al., 2016). Furthermore, a close relationship
to N1-011A, a large uncharacterized plasmid (149 kbp) isolated
from a ST3 strain, was identified (nucleotide identity >99%,
coverage 68%). The high similarity of the ST5 and ST204 plasmids
in strains from the FPE, suggests that the plasmids might have
been transferred from the ST5 strains to the ST204 strains which
occurred in the FPE in 2012 and became more abundant in
2013 (data not shown). Alternatively, the presence of almost
identical plasmids (pLM80 prototypes) in different CC (5, 6, 9,
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FIGURE 3 | BlastP comparison of L. monocytogenes ST5 genomes from the same FPE compared with L. monocytogenes CFSAN029793. BlastP was performed in
Patric (Wattam et al., 2017). The percent sequence identity is indicated in different colors for unidirectional and bidirectional BlastP hits. List of tracks, from outside to
inside: L. monocytogenes CFSAN029793, L. monocytogenes 13KSM, L. monocytogenes 11KSM, L. monocytogenes 10KSM, L. monocytogenes 8KSM,
L. monocytogenes 6KSM, L. monocytogenes 4KSM.

121, 204) and serotypes (1/2b, 4b) which are globally spread,
suggests that a high selective pressure acts on these plasmids and
they probably confer additional stress response capabilities to
their host strains (Fox et al., 2016; Liang et al., 2016; Xu et al.,
2016; Hingston et al., 2017; Meier et al., 2017). Our findings
are in line with recent studies suggesting that the presence of
almost identical plasmids in strains from different geographic
sources and years suggests important contribution of plasmids to

survival in food and FPEs (Schmitz-Esser et al., 2015; Fagerlund
et al., 2016; Fox et al., 2016). The ST5 and ST204 plasmids
harbor putative type III restriction modification systems, possibly
involved in the protection against foreign DNA, genes predicted
to be involved in oxidative stress response (peroxidase, NADH-
oxidoreductase), a heavy metal resistance operon, cold and
osmotic stress (clpB, clpL), a multidrug detoxification system
including the bcrABC cassette efflux pump system, responsible

TABLE 2 | Identified prophages in the L. monocytogenes genomes included in this study.

1KSM 2KSM 15KSM 4KSM 6KSM 8KSM 3KSM 11KSM 13KSM 14KSM 10KSM

STa 37 21 1 5 5 5 204 5 5 37 5

tRNA-Arg-TCT prophage 44.3b (1)c 43.7 (1) 43.7 (1) 43.7 (1) 44 (2) 47.2 (6) 43.7 (1) 44 (2) 61.8 (10)

tRNA-Ser-CGA prophage 33.7 (1)

tRNA-Arg-CCG prophage 39.9 (1)

comK prophage 39.1 (1) 35.1 (3)

aST, sequence type; bAssembly size (kbp); cNumber of contigs.
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FIGURE 4 | MAUVE alignment of L. monocytogenes 4, 6, 8, 10, 11, 13KSM (ST5), 3KSM (ST204) and reference plasmids plmUCDL175 (ST204, Fox et al., 2016)
and pLM80 (ST6; reference strain H7858). Homologous regions are shown in the same color. The height of the similarity profile within each block corresponds to the
average level of conservation (Darling et al., 2010). The two contigs of pLM80 and pLMUCDL175 are shown separately.

for increased benzalkonium chloride tolerance (Elhanafi et al.,
2010; Meier et al., 2017) which seem to have a positive impact on
the niche adaptation and long-term persistence. During hygiene
measures at this FPE, a huge variety of different sanitizers and
disinfectants were applied. The testing for potential resistance to
disinfectants showed an increased tolerance of the ST5 strains
to BC and of the ST204 strain (3KSM) to Weiquat, a multi-
component disinfectant including BC (Rückerl et al., 2014). The
other strains from this FPE – which did not harbor the pLM80
related plasmid showed a lower tolerance toward disinfectants.
This suggests a potential adaptation to the niche of isolation
(drains) where disinfectant stress was high (Rückerl et al., 2014).
Based on the presence of the bcrABC loci on the plasmids, it is
highly likely that the plasmids contribute to the spread of ST5
and the occurrence of ST204 strains in this FPE. Of note, the
most abundant L. monocytogenes STs found in this FPE in 2010:
ST1 (15KSM) and ST21 (2KSM), and the sporadically isolated
ST37 strains (1KSM, 14KSM) did not harbor plasmids, a bcrABC
cassette, or other genes involved in tolerance to disinfectants
(Tn6188, qacH, emrB, emrE).

Presence of Virulence, Stress and
Biofilm Associated Genes
The scanning of the genomes for 81 known virulence
associated genes (reference genome EGDe; e.g., internalin
genes, prfA, plcA, hly, mpl, actA, plcB, uhpT, and bsh)
and biofilm markers revealed that they were to a majority

present in all L. monocytogenes test strains (Supplementary
Tables S4, S5). SSI-1 responsible for increased acid and
salt adaptation also in human hosts, was present in both
ST5 and ST204 strains. Lineage II strains 1 and 14KSM
(ST37), 15KSM (ST1), and 2KSM (ST21) contained the
yet uncharacterized lmof2365_0481 gene instead of SSI-1.
Malekmohammadi et al. (2017) reported the clonality of SSI-1 in
CC3, 5, 7, and 9 suggesting a higher tolerance toward salt and
nisin.

AMR-Results
Antimicrobial resistance testing of the L. monocytogenes strains
(1–15KSM) showed susceptibility to a broad range of antibiotic
classes. Especially for VAN (glycopeptides antibiotic), TET
(tetracycline), SXT (sulfonamide), RIF (rifamycine), GAT (4th
generation fluoroquinolone), STR (aminoglycoside), and ERY
(macrolide) no antibiotic resistance was observed (MIC below
the test concentrations). All strains were resistant to a cyclic
lipopeptide (DAP; MIC > 8 µg/ml).For some antibiotic
substances MIC or MIC ranges were observed within the test
concentrations and are provided in Table 3.

Generally, ampicillin in combination with gentamicin and
trimethoprim/sulfonamide as important antibiotics in the
treatment of listeriosis were effective in all strains according to
EUCAST and CLSI clinical breakpoints.

Multi-drug resistance resistance was detected in 15KSM (ST1,
ECI) for cephalosporine (AXO > 64 µg/ml), fluoroquinolone
(CIP > 2 µg/ml) and cyclic lipopeptide (DAP > 8 µg/ml).
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FIGURE 5 | Invasion efficiency of L. monocytogenes strains included in this
study in human Caco2 cells. Mean values and standard deviations of the four
independent biological replicates are presented. Different letters indicate
significant differences (P < 0.05) between the invasion efficiency of the strains.

FIGURE 6 | Intracellular growth of L. monocytogenes strains included in this
study in human Caco2 cells. Mean values and standard deviations of the four
independent biological replicates are presented. Different letters indicate
significant differences (P < 0.05) between the invasion efficiency of the strains.

15KMS indicated also a higher tolerance to OXA+ (β-lactam
antibiotic; 16-fold increase), GEN (gentamicin; 2-fold increase)
and LZD (linezolid; 4-fold-increase) in comparison to the other
test strains. 15KSM associated to the globally most abundant CC1
showed increased MICs in several antibiotic substances which
were not plasmid mediated.

ST 5 strains showed higher MICs for following antibiotics
in comparison to genetic lineage II strains: OXA+ (β-lactam
antibiotic; up to 8-fold increase), SYN (streptogramine; up to
4-fold increase), PEN (β-lactam antibiotic; 2-fold increase) and
AXO (cephalosporine; 2-fold increase) (Table 3).

Natural resistance of L. monocytogenes to oxacillin and
resistance to ciprofloxacin, linezolid, clindamycin, ampicillin
and rifampicin were more often reported in genetic lineage
I strains. The induction of AMR through sublethal stress
exposure by low concentrated antimicrobials and heavy
metals is very likely. Co-selection for benzalkoniumchloride,
hydrogen peroxide, heavy metals and antibiotics (macrolides,
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cefotaxime, fluoroquinolone) is a cross resistance phenomenon
in L. monocytogenes and is mediated by efflux pumps (mdrL,
lde, emrE) (Conficoni et al., 2016; Martínez-Suárez et al.,
2016; Komora et al., 2017). In our study the higher tolerance
to antibiotics observed in genetic lineage I strains seemed
not to be plasmid mediated. A further explanation of higher
antibiotic tolerance in genetic lineage I strains could be the
biphasic population response of cells including persister cell
subpopulations (Buchanan et al., 2017). More research is
needed to fully understand the natural and acquired antibiotic
resistance in L. monocytogenes applying harmonized protocols to
complement missing epidemiological cut-offs.

Invasion Efficiency and Intracellular
Growth in Caco-2 Cells
In the in vitro cell culture experiment six L. monocytogenes
strains from the cheese FPE [1, 2, 3, 6, 15KSM and 5KSM
(ST9, truncated inlA)] were compared to the reference strains
EGDe (ST35) and the outbreak isolate QOC1 (ST403). Invasion
efficiency was significantly higher (P < 0.05) for ST1, ST21
and ST204 (5.45–6.91%; group a) compared to ST5, ST37 and
the reference strains EGDe and QOC1 (2.52–3.90%; group b)
(Figure 5). The intracellular growth potential between the strains
was also significantly different (P < 0.05): 3KSM (ST204)
showed the highest intracellular growth comparable to 6KSM
and the reference strains EGDe and QOC1 (group bd; Figure 6).
2KSM (ST21) had the lowest intracellular growth potential in
comparison to the other test strains. These data suggest that all
tested strains except 5KSM are able to replicate intracellularly
once inside the host cell. Ciolacu et al. (2015) compared several
STs (ST2, ST8, ST9, ST20, ST121, and ST155) isolated from
illegally sold food products in Romania. The invasion efficiency
and intracellular growth was comparable low for the ST9 isolates
harboring a premature stop codon (PMSC) in the inlA gene. The
other STs showed a high invasion and proliferation variability in
Caco 2-cells comparable to our findings. The isolates included
in this study harbored the full prerequisites for virulence and
host adaptation, especially ST1 with the additional presence
of listeriolysin S (Cotter et al., 2008). For risk assessment
purposes it is relevant to estimate the virulence potential of
L. monocytogenes contaminants. Strains harboring truncated inlA
genes are assumed to have less potential to invade human
epithelial cells (InlA/E-cadherin pathway) and would need a
higher infective dose (3 log more cells to cause an infection)
and might particularly affect mainly immunodeficient hosts with
comorbidities (Maury et al., 2016; Buchanan et al., 2017).

CONCLUSION

This study compared the genomes of transient and persistent
L. monocytogenes strains isolated from the same cheese
processing plant during a 3-year time period from 2010 to 2013.
In line with previous results (den Bakker et al., 2010; Kuenne
et al., 2013), the chromosomal backbone of the predominant ST5
strains isolated during 2011–2012 was highly conserved. Two

ST5 subtypes (10 and 11KSM), each of them isolated only once,
harbored slightly different tRNA-Arg-TCT prophages, suggesting
that the changes in the prophage regions were detrimental
for their survival in this FPE. Our data suggest that plasmids
harboring – among others – a bcrABC resistance cassette against
disinfectants were key for the adaptation and survival of the
persistent ST5 strains in this FPE in spite of various concomitant
hygiene measures in action in this FPE. A striking result was that
L. monocytogenes ST5 (genetic lineage I; 1/2b, 3b) and ST204
strains (genetic lineage II; 1/2a, 3a) shared the same plasmids
and additionally possessed SSI-1 for acid and salt adaptation. The
occurrence of virtually identical plasmids in L. monocytogenes
strains from various years and environments described here
and in other recent studies strongly suggests the importance of
plasmids for the survival of L. monocytogenes strains in various
FPE (Fox et al., 2016; Liang et al., 2016; Xu et al., 2016; Hingston
et al., 2017; Meier et al., 2017). More research will be needed in the
future to determine the contribution of these plasmids to survival
in FPE.
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